
Partial Grounded Fixpoints

Bart Bogaerts, Joost Vennekens, Marc Denecker
Department of Computer Science, KU Leuven
Celestijnenlaan 200A, 3001 Heverlee, Belgium

{bart.bogaerts,joost.vennekens,marc.denecker}@cs.kuleuven.be

Abstract
Approximation fixpoint theory (AFT) is an alge-
braical study of fixpoints of lattice operators. Re-
cently, AFT was extended with the notion of a
grounded fixpoint. This type of fixpoint formalises
common intuitions from various application do-
mains of AFT, including logic programming, de-
fault logic, autoepistemic logic and abstract argu-
mentation frameworks.
The study of groundedness was limited to exact
lattice points; in this paper, we extend it to the
bilattice: for an approximator A of O, we de-
fine A-groundedness. We show that all partial A-
stable fixpoints are A-grounded and that the A-
well-founded fixpoint is uniquely characterised as
the least precise A-grounded fixpoint. We apply
our theory to logic programming and study com-
plexity.

1 Introduction
Approximation fixpoint theory (AFT) is an algebraical unify-
ing study of semantics of nonmonotonic logics. Given a lat-
tice operator and a so-called approximating bilattice operator,
Denecker, Marek and Truszczyński (henceforth DMT) [2000]
defined several types of fixpoints. They showed that all of the
main semantics of logic programming are induced by AFT,
using Fitting’s partial immediate consequence operator as an
approximator of the two-valued immediate consequence op-
erator. They identified approximating operators for default
logic (DL) [Reiter, 1980] and autoepistemic logic (AEL)
[Moore, 1985] and showed that AFT induces all main and
some new semantics in these fields [Denecker et al., 2003].

Recently, AFT was used in a broader context. It was used
to study properties such as modularity and predicate intro-
duction in a unifying framework by Vennekens et al. [2007;
2006]. Strass [2013] showed that many semantics for Dung’s
argumentation frameworks (AFs) [Dung, 1995] and abstract
dialectical frameworks (ADFs) [Brewka and Woltran, 2010]
can be retrieved by application of AFT. In this study, he also
extends AFT with new types of fixpoints. Bi et al. [2014]
extended AFT to account for inconsistencies and used this to
integrate logic programs with description logics. Bogaerts et
al. [2014] defined the causal logic FO(C) based on AFT.

Bogaerts et al. [2015] extended AFT with a concept called
groundedness which is a surprisingly simple formalisation of
intuitions that have existed in different research domains for
years. They showed that grounded fixpoints are an intuitive
concept, closely related to exact (two-valued) stable fixpoints.
In the context of logic programming, grounded fixpoints can
be characterised using a generalised notion of unfounded set.

Grounded fixpoints are lattice elements; in this work, we
generalise them to points in the bilattice, while still maintain-
ing the elegance and desirable properties of groundedness.
For the case of logic programming, this generalisation boils
down to extending groundedness to partial (or three-valued)
interpretations. There are several reasons why it is important
to generalise a notion as groundedness to a partial context.

The first, and probably most obvious one, is that sometimes
partial fixpoints are a central topic of study themselves. As an
example, in AFs and ADFs, most of the studied semantics are
three-valued.

A second reason is that studying concepts in the bilattice
(i.e., in a partial context) is more general than studying them
only in the original lattice. For example, many of our results
are generalisations of results from Bogaerts et al. [2015];
sometimes, these generalisations even fill holes in their the-
ory. E.g., while Bogaerts et al. [2015] showed that exact A-
stable fixpoints are grounded, we show that all A-stable fix-
points are A-grounded. Also, while Bogaerts et al. [2015]
showed that, if the well-founded fixpoint is exact, then it is
grounded, we show that the A-well-founded fixpoint is al-
ways A-grounded. This last result illustrates that the well-
founded semantics does a great job at avoiding ungrounded
models: the well-founded model is not just some grounded
model, it is the least precise grounded model.

A third reason is that even in domains where we are only
interested in two-valued models, partial models can be use-
ful, e.g., as an analysis tool. For example, in answer set pro-
gramming [Marek and Truszczyński, 1999] almost all spec-
ifications are designed for two-valued stable model seman-
tics. Errors in such specifications may lead to logic programs
without stable models; they are hard to debug. Partial stable
models [Przymusinski, 1991] can help the debugging process
as they can sometimes pinpoint the reason for inconsistency.
As a trivial example, let Σ be a vocabulary and p a symbol
not in Σ. Augmenting any logic program over Σ with the rule

p← ¬p

Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence (IJCAI 2015)

2784

yields a logic program without stable models. Debugging
tools can use the observation that p is undefined in every
partial stable model to identify the “mistake” in the above
program, namely the extra rule. The technique of debug-
ging knowledge bases based on partial stable models is
used for example in the XNMR system [Castro and War-
ren, 2001]. Partial stable models are not only used for de-
bugging. Real-life databases often contain (local) inconsis-
tencies. The partial stable model semantics for deductive
databases is more robust than the two-valued stable seman-
tics in this case. It only assigns the value unknown to atoms
in an inconsistent part of the database, hence it still facili-
tates inference on the rest of the database [Seipel et al., 1997;
Eiter et al., 1997].

Summarised, the main contributions of this paper are as
follows.

1. We extend the notion of groundedness to points in the
bilattice.

2. We study the relationship between partial grounded fix-
points and the other fixpoints studied in AFT. An impor-
tant result in this context is that we find a new character-
isation of the well-founded fixpoint based on grounded-
ness.

3. We study how partial grounded fixpoints depend on the
choice of an approximator.

4. We apply our theory to logic programming.

5. We study complexity of both credulous and sceptical
reasoning of partial grounded model semantics in logic
programming.

2 Preliminaries
In this section, we recall the basics of AFT. Our presentation
follows the preliminaries section from Bogaerts et al. [2015].

Lattices and Operators A complete lattice 〈L,≤〉 is a set
L equipped with a partial order ≤, such that every set S ⊆
L has both a least upper bound and a greatest lower bound,
denoted lub(S) and glb(S) respectively. A complete lattice
has a least element ⊥ and a greatest element >. As custom,
we also use the notations

∧
S = glb(S), x∧y = glb({x, y}),∨

S = lub(S) and x ∨ y = lub({x, y}).
An operator O : L→ L is monotone if x ≤ y implies that

O(x) ≤ O(y). An element x ∈ L is a prefixpoint, a fixpoint, a
postfixpoint if O(x) ≤ x, respectively O(x) = x, x ≤ O(x).
Every monotone operator O in a complete lattice has a least
fixpoint, denoted lfp(O), which is also O’s least prefixpoint.

Approximation Fixpoint Theory Given a lattice L, AFT
makes uses of the bilattice L2. We define projections for pairs
as usual: (x, y)1 = x and (x, y)2 = y. Pairs (x, y) ∈ L2 are
used to approximate all elements in the interval [x, y] = {z |
x ≤ z ∧ z ≤ y}. We call (x, y) ∈ L2 consistent if x ≤ y,
that is, if [x, y] is non-empty. We use Lc to denote the set of
consistent elements. Elements (x, x) ∈ Lc are called exact.
We sometimes abuse notation and use the tuple (x, y) and the
interval [x, y] interchangeably. The precision order on L2 is

defined as (x, y)≤p (u, v) if x ≤ u and v ≤ y. If (u, v) is
consistent, this means that (x, y) approximates all elements
approximated by (u, v), or in other words that [u, v] ⊆ [x, y].
If L is a complete lattice, then so is 〈L2, ≤p 〉.

AFT studies fixpoints of lattice operators O : L → L
through operators approximating O. An operator A : L2 →
L2 is an approximator of O if it is ≤p -monotone, and has
the property that for all x, O(x) ∈ [x′, y′], where (x′, y′) =
A(x, x). Approximators are internal in Lc (i.e., map Lc

into Lc). As usual, we restrict our attention to symmetric
approximators: approximators A such that for all x and y,
A(x, y)1 = A(y, x)2. DMT [2004] showed that the consis-
tent fixpoints of interest (supported, stable, well-founded) are
uniquely determined by an approximator’s restriction to Lc,
hence, sometimes we only define approximators on Lc.

AFT studies fixpoints of O using fixpoints of A.

• TheA-Kripke-Kleene fixpoint is the ≤p -least fixpoint of
A and has the property that it approximates all fixpoints
of O.

• A partial A-stable fixpoint is a pair (x, y) such that
x = lfp(A(·, y)1) and y = lfp(A(x, ·)2), where A(·, y)1

denotes the operator L → L : x 7→ A(x, y)1 and analo-
gously for A(x, ·)2.

• The A-well-founded fixpoint is the least precise partial
A-stable fixpoint.

• An A-stable fixpoint of O is a fixpoint x of O such that
(x, x) is a partial A-stable fixpoint.

The A-Kripke-Kleene fixpoint of O can be constructed by
iteratively applying A, starting from (⊥,>). For the A-well-
founded fixpoint, a similar constructive characterisation has
been worked out by Denecker and Vennekens [2007].

Definition 2.1. An A-refinement of (x, y) is a pair (x′, y′) ∈
L2 satisfying one of the following two conditions:

• (x, y)≤p (x′, y′)≤pA(x, y), or

• x′ = x and A(x, y′)2 ≤ y′ ≤ y.

An A-refinement is strict if (x, y) 6= (x′, y′).

Definition 2.2. A well-founded induction of A is a sequence
(xi, yi)i≤β with β an ordinal such that

• (x0, y0) = (⊥,>);

• (xi+1, yi+1) is anA-refinement of (xi, yi), for all i < β;

• (xλ, yλ) = lub≤p {(xi, yi) | i < λ} for each limit ordi-
nal λ ≤ β.

A well-founded induction is terminal if its limit (xβ , yβ) has
no strict A-refinements.

For an approximator A, there are many different ter-
minal well-founded inductions of A. Denecker and Ven-
nekens [2007] showed that they all have the same limit, which
equals the A-well-founded fixpoint of O. If A is symmetric,
the A-well-founded fixpoint of O (and in fact, every tuple in
a well-founded induction of A) is consistent.

In general, a lattice operator O : L → L has a family of
approximators of different precision. For two approximators
A and B of O, we say that A≤pB if A(x, y)≤pB(x, y)

2785

for all (x, y) ∈ Lc. In this case, all A-stable fixpoints are B-
stable fixpoints, and theB-well-founded fixpoint is more pre-
cise than the A-well-founded fixpoint. DMT [2004] showed
that there exists a most precise approximator, UO, called the
ultimate approximator of O. This operator is defined by
UO : Lc → Lc : (x, y) 7→ (

∧
O([x, y]),

∨
O([x, y])), where

O([x, y]) = {O(z) | z ∈ [x, y]}.
Bogaerts et al. [2015] called a point x ∈ L grounded for

O if for each v ∈ L such that O(v ∧ x) ≤ v, it holds that
x ≤ v. They explained the intuition underlying this concept
under the assumption that the elements ofL are sets of “facts”
of some kind and the≤ relation is the subset relation between
such sets: in this case, a point x is grounded if it contains only
facts that are sanctioned by the operator O, in the sense that
if we remove them from x, then the operator will add at least
one of them again.

AFT and Logic Programming We restrict our attention
to propositional logic programs with arbitrary propositional
formulas in rule bodies. AFT has been applied in a much
broader context [Denecker et al., 2012; Pelov et al., 2007;
Antic et al., 2013] and our results extend there as well.

Let Σ be an alphabet, i.e., a collection of symbols which
are called atoms. A logic program P is a set of rules r of the
form h← ϕ, where h is an atom called the head of r, denoted
head(r), and ϕ is a propositional formula called the body of
r, denoted body(r). An interpretation I of Σ is a subset of Σ.
The set of interpretations 2Σ forms a lattice equipped with the
order ⊆. The truth value (t or f) of a propositional formula ϕ
in a structure I , denoted ϕI , is defined as usual. With a logic
program P , we associate an immediate consequence operator
[van Emden and Kowalski, 1976] TP that maps a structure I
to

{p | ∃r ∈ P : head(r) = p ∧ body(r)I = t}.

Elements of the bilattice
(
2Σ
)2

are four-valued interpreta-
tions, pairs I = (I1, I2) of interpretations. The pair (I1, I2)
approximates all interpretations I ′ with I1 ⊆ I ′ ⊆ I2. We
are mostly concerned with three-valued (or, partial) interpre-
tations: tuples I = (I1, I2) with I1 ⊆ I2. For such an in-
terpretation, the atoms in I1 are true (t) in I, the atoms in
I2 \ I1 are unknown (u) in I and the other atoms are false (f)
in I. If I is a three-valued interpretation, and ϕ a formula,
we write ϕI for the standard three-valued valuation based on
Kleene’s truth tables [Kleene, 1938]. We identify interpreta-
tion I with the partial interpretation (I, I). If I = (I1, I2) is
a (partial) interpretation, and U ⊆ Σ, we write I[U : f] (re-
spectively I[U : t]) for the (partial) interpretation that equals
I on all elements not in U and that interprets all elements in
U as f (respectively t), i.e., the interpretation (I1 \U, I2 \U)
(respectively (I1 ∪ U, I2 ∪ U)).

Several approximators have been defined for logic pro-
grams. The most common is Fitting’s immediate conse-
quence operator ΨP [Fitting, 2002], a direct generalisation
of TP to partial interpretations defined by

ΨP(I)1 = {p | ∃r ∈ P : head(r) = p ∧ body(r)I = t}
ΨP(I)2 = {p | ∃r ∈ P : head(r) = p ∧ body(r)I 6= f}

Denecker et al. [2000] showed that the ΨP -well-founded fix-
point is the well-founded model of P [Van Gelder et al.,
1991] and that ΨP -stable fixpoints are exactly the stable mod-
els of P [Gelfond and Lifschitz, 1988].

In the context of logic programming, Bogaerts et al. [2015]
defined that a set U ⊆ Σ is a 2-unfounded set of P with re-
spect to interpretation I if TP(I[U : f]) ∩ U = ∅. Intuitively,
a 2 unfounded set is a set of atoms such that if you make
them false (starting from I), they stay false (when applying
TP). They showed that this definition is a slight variant of the
notion of unfounded set defined by Van Gelder et al. [1991].
Furthermore, they generalised1 this definition to partial inter-
pretations, resulting in a definition which is equivalent with
the definition by Van Gelder et al. [1991] for all interpreta-
tions used in the well-founded model construction. Bogaerts
et al. [2015] showed that an interpretation I is grounded for
TP if and only if I does not contain any atoms that belong to
a 2-unfounded set U of P with respect to I .

3 Partial Grounded Fixpoints
We start by giving the central definition of this text, namely
the notion of A-groundedness.

Definition 3.1. Let A be an approximator of O. A point
(x, y) ∈ Lc is A-grounded if for every v ∈ L with A(x ∧
v, y ∧ v)2 ≤ v, also y ≤ v.

The definition of this concept is a direct generalisation of
groundedness for points x ∈ L. It is based on the same in-
tuitions, but applied in a more general context. We again ex-
plain the intuitions under the assumption that the elements of
L are sets of “facts” and the ≤ relation is the subset relation
between such sets. In this case, a point (x, y) ∈ Lc repre-
sents a partial set of “facts”: the elements of x are the facts
that certainly belong to the partial set, the elements in y are
those that possibly belong to the set. Thus, y \ x are the un-
known elements and the complement of y are those that do not
belong to the set. In this case, a point (x, y) is A-grounded
if all its possible facts (those in y) are sanctioned by the op-
erator A, in the sense that if we remove some elements from
the partial set, then A will make at least one of them possi-
ble again. The above definition captures this idea, by using
a set v ∈ L to remove all elements not in v from (x, y): the
point (x ∧ v, y ∧ v) does not contain facts in the comple-
ment of v; on all other facts, (x ∧ v, y ∧ v) equals (x, y).
In an A-grounded point (x, y) removing elements must re-
sult in a state where at least one of them is re-derived to be
possible: it must hold that A(x ∧ v, y ∧ v)2 6≤ v. Stated
differently, if the removal of elements from (x, y) is not con-
tradicted by A, i.e., applying A results in a state where these
elements are still false, then these elements cannot be part
of the grounded point (y ≤ v). In what follows, we study
properties of A-grounded (fix)points, including their relation
to other fixpoints studied in AFT. A first observation is that
for exact points, i.e., bilattice points of the form (x, x), the
choice of the approximator A does not matter and our notion
of groundedness coincides with the previously defined.

1We come back to this in Section 4 and show that there are in
fact many ways to extend this definition to partial interpretations.

2786

Proposition 3.2. IfA is a symmetric approximator ofO, then
x is grounded for O if and only if (x, x) is A-grounded.

Proof. Trivial. Follows immediately from the fact that
A(x, x)2 = O(x) for all x ∈ L if A is symmetric.

A second observation is that all partial A-stable fix-
points are A-grounded. This is a generalisation of Corollary
4.5 from Bogaerts et al. [2015] which showed that all exact
stable fixpoints are grounded.
Proposition 3.3. All consistent (partial) A-stable fixpoints
are A-grounded.

Proof. Suppose (x, y) ∈ Lc is an A-stable fixpoint, i.e., x =
lfp(A(·, y)1) and y = lfp(A(x, ·)2). Also assume that for
some v, A(x ∧ v, y ∧ v)2 ≤ v. We show that y ≤ v. Since A
is ≤p -monotone and y ∧ v ≤ y, it holds that

A(x, y ∧ v)2 ≤ A(x, y)2 = y.

Analogously, since A is ≤p -monotone and x ∧ v ≤ x, it
holds that

A(x, y ∧ v)2 ≤ A(x ∧ v, y ∧ v)2 ≤ v.
Combining these two observations, we find that

A(x, y ∧ v)2 ≤ y ∧ v,
i.e., that y ∧ v is a prefixpoint of the monotone operator
A(x, ·)2. Since y is the least prefixpoint of this operator, it
must hold that y ≤ y ∧ v, thus also that y ≤ v, which we
needed to show.

Example 3.4. The converse of Proposition 3.3 does not hold.
Consider the logic program P{

p← p ∨ ¬p.
}

We claim that every bilattice point is ΨP -grounded in this
case. Indeed, if (x, y) ∈ L2, then for v = {p}, y ≤ v is
trivially true, for v = ∅, it holds that

ΨP(x ∧ v, y ∧ v)2 = ΨP(∅, ∅)2 = {p} 6≤ ∅ = v.

Hence, all points in the bilattice are ΨP -grounded. Thus,
({p}, {p}) is a ΨP -grounded fixpoint which is not ΨP -stable.

A third observation is that the A-well-founded fixpoint is
less precise than anyA-grounded fixpoint. This property gen-
eralises both the fact that theA-well-founded fixpoint approx-
imates all exact grounded fixpoints of O (Theorem 4.6 from
Bogaerts et al. [2015]) and the fact that the A-well-founded
fixpoint is less precise than any partialA-stable fixpoint (The-
orem 23 (2) from DMT [2000]).
Theorem 3.5. The well-founded fixpoint (u, v) of a symmet-
ric approximator A of O is less precise than any A-grounded
fixpoint.

Before we prove this theorem, we show that the second
type of refinements in a well-founded induction eliminates
only non-grounded bilattice points.
Lemma 3.6. Let (a, b) and (a, b′) be elements of Lc such
that A(a, b′)2 ≤ b′ ≤ b. Then for every b′′ with b′ � b′′ ≤ b,
(a, b′′) is ungrounded.

Proof. For every such b′′ it holds that A(a ∧ b′, b′′ ∧ b′)2 =
A(a, b′)2 ≤ b′ while b′′ 6≤ b′.

Proof of Theorem 3.5. Let (ai, bi)i≤β be a well-founded in-
duction of A and let (x, y) be an A-grounded fixpoint. We
show by induction that for every i ≤ β, ai ≤ x and y ≤ bi.
The results trivially holds for i = 0 since (a0, b0) = (⊥,>).
It is also clear that the property is preserved in limit ordinals.
Hence, all we need to show is that the property is preserved by
A-refinements. Suppose (a′, b′) is an A-refinement of (a, b)
and that (a, b)≤p (x, y). We show that (a′, b′)≤p (x, y). We
distinguish two cases. If (a, b)≤p (a′, b′)≤pA(a, b), then
since A is ≤p -monotone and (a, b)≤p (x, y), it holds that
A(a, b)≤pA(x, y) = (x, y), hence also (a′, b′)≤p (x, y).
For the second type of refinements, it follows from Lemma
3.6 that only ungrounded bilattice points are removed.

It is well-known that the A-well-founded fixpoint is char-
acterised as the least precise A-stable fixpoint. The previ-
ous theorem provides us with a similar characterisation of
the well-founded fixpoints in terms of groundedness. This is
an important result, as it again supports the claim that many
of the existing semantics are designed with the intuitions of
groundedness in mind: we establish a very tight link between
the well-founded fixpoints and grounded fixpoints.

Corollary 3.7. The well-founded fixpoint of a symmetric ap-
proximator A of O is the least precise A-grounded fixpoint.

Proof. The well-founded fixpoint of A is consistent and A-
stable, hence Proposition 3.3 shows that it is A-grounded as
well. Theorem 3.5 shows that it is less precise than any A-
grounded fixpoint, hence the result follows.

An operator can have multiple approximators. In Proposi-
tion 3.2, we already showed that the choice of approximator
A does not affect exact A-grounded fixpoints: these are ex-
actly the fixpoints that are grounded for O. The question still
remains how groundedness of other points in the bilattice is
influenced by such a choice. The next proposition answers
this question.

Proposition 3.8. If A and B are approximators of O and
A≤pB, then all consistent B-grounded points are also A-
grounded.

Proof. Suppose (x, y) ∈ Lc is B-grounded; we show that
it is also A grounded. Assume that for some v it holds that
A(x ∧ v, y ∧ v)2 ≤ v. Since A≤pB, it holds that

B(x ∧ v, y ∧ v)2 ≤ A(x ∧ v, y ∧ v)2 ≤ v.

Since (x, y) is B-grounded, we find that y ≤ v.

Example 3.9. The choice of an approximator can really make
a difference for the notion of A-groundedness, i.e., not all A-
grounded points areB-grounded in Proposition 3.8. Consider
the logic program P {

p←¬p.
q← q.

}

2787

Then ({q}, {p, q}) is not ΨP -grounded since

ΨP({q} ∧ {p}, {p, q} ∧ {p})2 = ΨP(∅, {p})2

= (∅, {p})2 = {p},

while {p, q} 6≤ {p}.
However, let A be the trivial approximator of TP , i.e., the

approximator such that A(x, x) = (TP(x), TP(x)) for every
x ∈ L and A(x, y) = (⊥,>) for (x, y) ∈ Lc with x 6= y.
We claim that ({q}, {p, q}) is A-grounded. We prove this
claim by showing that all v ∈ L satisfy the condition from
Definition 3.1. For v = > the condition y ≤ > is trivially
satisfied. For v = {q}, we find

A({q} ∧ {q}, {p, q} ∧ {q})2 = {p, q} 6≤ {q}.

For v = {p}, we find

A({q} ∧ {p}, {p, q} ∧ {p})2 = > 6≤ {p}

since ({q} ∧ {p}, {p, q} ∧ {p}) is not exact. For v = ∅, we
find that

A({q} ∧ ∅, {p, q} ∧ ∅)2 = {p} 6≤ ∅.

This indeed proves our claim.

4 Partial Grounded Fixpoints in Logic
Programming

In this section, we apply our theory to logic programming.
More concretely we extend the observation that in logic pro-
gramming, groundedness is closely related to unfounded sets
[Bogaerts et al., 2015]. We define several variants of un-
founded sets (one for each approximator of TP) and show
that A-groundedness is directly characterised by means of A-
unfounded sets. When taking for A Fitting’s (partial) imme-
diate consequence operator, our definition coincides with the
notion of “3-unfounded set” [Bogaerts et al., 2015].

Intuitively, an unfounded set is a set of atoms that might
circularly support themselves, but have no support from out-
side. Stated differently, an unfounded set of a logic program
P with respect to a partial interpretation I is a set U of atoms
such that P provides no support for any atom in U if the
atoms in U are assumed false. Each approximator A of the
immediate consequence operator TP defines its own notion
of support: it maps a partial interpretation I to A(I), where
A(I)1 are the atoms that are supported by P , and A(I)2 are
the atoms that are possibly supported by P , depending on the
values of atoms unknown in I. Thus, the atoms for which
A provides no support are those not in A(I)2 and the above
intuitions are formalised directly as follows.

Definition 4.1 (A-Unfounded set). Let P be a logic pro-
gram, A an approximator of TP and I a three-valued inter-
pretation. A set U ⊆ Σ is an A-unfounded set of P with
respect to I if A(I[U : f])2 ∩ U = ∅.

When A is Fitting’s immediate consequence operator, our
definition coincides with the notion of 3-unfounded set de-
fined by Bogaerts et al. [2015]. They showed that for partial
interpretations I such that I[U : f] is more precise than I,
ΨP -unfounded sets are exactly unfounded sets as defined by

Van Gelder et al. [1991] and that all interpretations in the
well-founded model construction satisfy this condition.

We now show how groundedness relates to this generalised
notion of unfounded sets. This proposition generalises Propo-
sition 5.5 from Bogaerts et al. [2015].

Proposition 4.2. LetP be a logic program, andA an approx-
imator of the immediate consequence operator TP . A partial
interpretation I is A-grounded if and only if all atoms that
belong to an A-unfounded set U of P with respect to I are
false in I.

Proof. First, suppose I = (I1, I2) is A-grounded and U is
an A-unfounded set of P with respect to I. Let V = U c.
Since U is an A-unfounded set, A(I[U : f])2 ∩ U = ∅. This
means that A(I1 ∧ V, I2 ∧ V)2 ≤ V , hence the definition of
A-groundedness yields I2 ≤ V : all elements of U are false
in I . This must hold for every A-unfounded set U .

The reverse direction is analogous. Suppose every A-
unfounded set is disjoint from I2. Let V be such that
A(I1 ∧ V, I2 ∧ V)2 ≤ V and let U = V c. Then again
I[U : f] = (I1∧V, I2∧V) hence U is anA-unfounded set of
P with respect to I. Thus, it must hold that I2 ∩ U = ∅, i.e.,
that I2 ≤ V . We conclude that I is indeed A-grounded.

Following the analogy with the classical semantics of logic
programs, we call a partial interpretation I such that I is
a ΨP -grounded fixpoint of TP a partial grounded model
of P . We briefly discuss complexity of partial grounded
model semantics. First of all, deciding whether P has a
partial grounded model is not an interesting task since the
well-founded model is always grounded. We study other
deterministic inference tasks, namely credulous and scepti-
cal query answering (sometimes also called possibility in-
ference and certainty inference, respectively) [Schlipf, 1995;
Abiteboul et al., 1990; Saccà, 1997] under the (partial)
grounded semantics. The first of these tasks consists of de-
ciding whether a symbol p ∈ Σ holds in some grounded
model, the second consists of deciding whether it holds in
all grounded models.

Theorem 4.3. Given a finite propositional logic program P
over Σ and an atom p ∈ Σ, the following hold.

1. The problem of deciding whether p holds in some partial
grounded model of P is ΣP2 -complete.

2. The problem of deciding whether p holds in all partial
grounded models of P is in P .

The first of these points is proven analogous to the proof of
Theorem 5.7 by Bogaerts et al. [2015]. Our proof is heavily
inspired by theirs.

Proof. This first problem is in ΣP2 ; this follows from the fact
that verifying whether a partial interpretation I is a partial
grounded model can be done by calculating ΨP(I[U : f]) for
all candidate ΨP -unfounded sets.

We now show ΣP2 -hardness of the problem of existence
of a (partial) grounded model of a program P in which p
holds. Let ϕ be propositional formula in DNF over propo-
sitional symbols x1, . . . , xm, y1, . . . , yn. For an interpreta-
tion I ⊆ {x1, . . . , xm}, we define ϕI as the formula obtained

2788

from ϕ by replacing all atoms xi ∈ I by t and all atoms
xi 6∈ I by f . Recall that the problem of deciding whether
there exists an interpretation I ⊆ {x1, . . . , xm} such that ϕI
is a tautology is ΣP2 -hard. We now reduce this problem to
our problem. For each xi, we introduce a new variable x′i
with as intended meaning the negation of xi. Let ϕ′ be the
formula obtained from ϕ by replacing all literals ¬xi by x′i.
Bogaerts et al. [2015] defined a program P(ϕ) consisting of
the following clauses

1. xi ← ¬x′i and x′i ← ¬xi for each i ∈ {1, . . . ,m},
2. yi ← ϕ′ for each i ∈ {1, . . . , n},
3. p← ϕ′,

4. q ← ¬p ∧ ¬q.

We need to show that there is an I ⊆ {x1, . . . , xm} such that
ϕI is a tautology if and only if P (ϕ) has a partial grounded
model in which p holds.

Bogaerts et al. [2015] already showed that there is an I ⊆
{x1, . . . , xm} such that ϕI is a tautology if and only if P (ϕ)
has an exact grounded model. Hence, all we need to show is
that if P (ϕ) has a partial stable fixpoint, then there is such
an I as well. We will prove a stronger claim, namely that
every partial grounded model ofP(ϕ) in which p holds can be
extended to a two-valued grounded model in which p holds.

It is easy to see that in each partial fixpoint M of ΨP(ϕ)

with pM = t the following properties hold:

1. y1, . . . , yn are true in M (since their rules have the same
body as p),

2. for each i ∈ {1, . . . ,m}, either both xi and x′i are un-
known in M or one of them is true and the other is false
in M .

Now, suppose M is a partial grounded model of P . By the
above observations, the only unknown atoms in M can be q,
the xi and the x′i. Now, it is easy to see thatM [{q} : f] is also
a grounded model of P . Similarly, if xi and x′i are unknown
inM , thenM [{xi} : t, {x′i} : f] is a grounded model as well.
Hence, our claim follows.

The second point follows from the fact that the well-
founded model of P can be computed in polynomial time
and that the well-founded model is the least precise partial
grounded model (Corollary 3.7).

5 Discussion and Future Work
Other classes of partial models In the context of logic pro-
gramming and argumentation frameworks, many subclasses
of partial stable models have been proposed.

• A partial stable model (X,Y) of P is called M-stable
(for maximally stable) if it is≤p maximal, i.e., if there is
no more precise partial stable model [Saccà and Zaniolo,
1997]. These models coincide with the preferred exten-
sions of Dung [1995] and the regular models of You and
Yuan [1990].

• A partial stable model (X,Y) of P is called L-stable
(for least undefined stable) if Y \ X is ⊆-minimal, i.e.,
if there exists no partial stable model (X ′, Y ′) of P such

that Y ′ \ X ′ (Y \ X [Saccà and Zaniolo, 1997]. L-
stable models only differ from exact stable models if a
program has no two-valued stable models. This property
is particularly useful in the context of debugging.

Recent work by Strass [2013] lifted these two notions to ap-
proximation fixpoint theory.2 His definitions can be used im-
mediately to define partial M -grounded and L-grounded fix-
points as well. Studying their properties, e.g., complexity, is
a topic for future work.

Non-deterministic operators Pelov and Truszczyn-
ski [2004] characterised stable fixpoints of a disjunctive logic
program using non-deterministic operators. Lots of work
remains to be done in this area. Extending approximation
fixpoint theory in general, and groundedness in particular to
non-deterministic operators remains a topic for future work.

Applications In this paper, we only applied our theory to
logic programming. However, as already indicated, our the-
ory applies to all domains in which AFT is applied. Working
out these applications is a topic for future work as well.

6 Conclusion
In this paper, we extended groundedness to points in the bi-
lattice: for every approximating operator A, we defined a no-
tion of A-groundedness. We showed that for exact lattice
points, this coincides with groundedness for O. We related
A-grounded fixpoints to other fixpoints in AFT: all A-stable
fixpoints are A-grounded and the A-well-founded fixpoint is
uniquely characterised as the least precise A-grounded fix-
point.

We applied our algebraical theory to logic programming,
where A-groundedness is closely related to unfounded sets.
Applying the theory to other research domains, such as de-
fault logic, autoepistemic logic and abstract dialectical frame-
works is a topic for future work.

Acknowledgements We would like to thank the anony-
mous reviewers and Maurice Bruynooghe for their feedback
on this work. This work was supported by the KU Leuven
under project GOA 13/010 and by the Research Foundation -
Flanders (FWO-Vlaanderen).

References
[Abiteboul et al., 1990] Serge Abiteboul, Eric Simon, and

Victor Vianu. Non-deterministic languages to express
deterministic transformations. In Proceedings of PODS,
pages 218–229, 1990.

[Antic et al., 2013] Christian Antic, Thomas Eiter, and
Michael Fink. Hex semantics via approximation fixpoint
theory. In Proceedings of LPNMR, pages 102–115, 2013.

[Bi et al., 2014] Yi Bi, Jia-Huai You, and Zhiyong Feng. A
generalization of approximation fixpoint theory and appli-
cation. In Proceedings of RR, pages 45–59, 2014.
2In order to define L-stable fixpoints, some additional assump-

tions about the lattice need to be made.

2789

[Bogaerts et al., 2014] Bart Bogaerts, Joost Vennekens,
Marc Denecker, and Jan Van den Bussche. FO(C): A
knowledge representation language of causality. TPLP,
14(4-5-Online-Supplement):60–69, 2014.

[Bogaerts et al., 2015] Bart Bogaerts, Joost Vennekens, and
Marc Denecker. Grounded fixpoints and their applications
in knowledge representation. AIJ, 224:51–71, 2015.

[Brewka and Woltran, 2010] Gerhard Brewka and Stefan
Woltran. Abstract dialectical frameworks. In Proceedings
of KR, pages 102–111, 2010.

[Castro and Warren, 2001] Luı́s Fernando Castro and
David Scott Warren. An environment for the exploration
of non monotonic logic programs. In Proceedings of
WLPE, 2001.

[Denecker and Vennekens, 2007] Marc Denecker and Joost
Vennekens. Well-founded semantics and the algebraic the-
ory of non-monotone inductive definitions. In Proceedings
of LPNMR, pages 84–96, 2007.

[Denecker et al., 2000] Marc Denecker, Victor Marek, and
Mirosław Truszczyński. Approximations, stable opera-
tors, well-founded fixpoints and applications in nonmono-
tonic reasoning. In Logic-Based Artificial Intelligence,
Springer, volume 597, pages 127–144, 2000.

[Denecker et al., 2003] Marc Denecker, Victor Marek, and
Mirosław Truszczyński. Uniform semantic treatment of
default and autoepistemic logics. AIJ, 143(1):79–122,
2003.

[Denecker et al., 2004] Marc Denecker, Victor Marek, and
Mirosław Truszczyński. Ultimate approximation and its
application in nonmonotonic knowledge representation
systems. Information and Computation, 192(1):84–121,
July 2004.

[Denecker et al., 2012] Marc Denecker, Maurice
Bruynooghe, and Joost Vennekens. Approximation
fixpoint theory and the semantics of logic and answers set
programs. In Correct Reasoning, pages 178–194, 2012.

[Dung, 1995] Phan Minh Dung. On the acceptability of ar-
guments and its fundamental role in nonmonotonic rea-
soning, logic programming and n-person games. AI,
77(2):321 – 357, 1995.

[Eiter et al., 1997] Thomas Eiter, Nicola Leone, and
Domenico Saccà. On the partial semantics for disjunctive
deductive databases. Ann. Math. AI, 19(1-2):59–96, 1997.

[Fitting, 2002] Melvin Fitting. Fixpoint semantics for logic
programming — A survey. Theoretical Computer Science,
278(1-2):25–51, 2002.

[Gelfond and Lifschitz, 1988] Michael Gelfond and
Vladimir Lifschitz. The stable model semantics for
logic programming. In Proceedings of ICLP/SLP, pages
1070–1080, 1988.

[Kleene, 1938] S. C. Kleene. On notation for ordinal num-
bers. The Journal of Symbolic Logic, 3(4):150–155, 1938.

[Marek and Truszczyński, 1999] Victor Marek and
Mirosław Truszczyński. Stable models and an alter-
native logic programming paradigm. In The Logic

Programming Paradigm: A 25-Year Perspective, pages
375–398. Springer-Verlag, 1999.

[Moore, 1985] Robert C. Moore. Semantical considerations
on nonmonotonic logic. AIJ, 25(1):75–94, 1985.

[Pelov and Truszczynski, 2004] Nikolay Pelov and
Miroslaw Truszczynski. Semantics of disjunctive
programs with monotone aggregates - an operator-based
approach. In Proceedings of NMR, pages 327–334, 2004.

[Pelov et al., 2007] Nikolay Pelov, Marc Denecker, and
Maurice Bruynooghe. Well-founded and stable semantics
of logic programs with aggregates. TPLP, 7(3):301–353,
2007.

[Przymusinski, 1991] Teodor C. Przymusinski. Stable se-
mantics for disjunctive programs. New Generation Com-
puting, 9(3/4):401–424, 1991.

[Reiter, 1980] Raymond Reiter. A logic for default reason-
ing. AIJ, 13(1-2):81–132, 1980.

[Saccà and Zaniolo, 1997] Domenico Saccà and Carlo Zan-
iolo. Deterministic and non-deterministic stable models.
J. Log. Comput., 7(5):555–579, 1997.

[Saccà, 1997] Domenico Saccà. The expressive powers of
stable models for bound and unbound DATALOG queries.
J. Comput. Syst. Sci., 54(3):441–464, 1997.

[Schlipf, 1995] John S. Schlipf. Complexity and undecid-
ability results for logic programming. Annals of Mathe-
matics and Artificial Intelligence, 15(3-4):257–288, 1995.

[Seipel et al., 1997] Dietmar Seipel, Jack Minker, and Car-
olina Ruiz. A characterization of the partial stable models
for disjunctive databases. In Proceedings of SLP, pages
245–259, 1997.

[Strass, 2013] Hannes Strass. Approximating operators
and semantics for abstract dialectical frameworks. AIJ,
205:39–70, 2013.

[van Emden and Kowalski, 1976] Maarten H. van Emden
and Robert A. Kowalski. The semantics of predicate logic
as a programming language. J. ACM, 23(4):733–742,
1976.

[Van Gelder et al., 1991] Allen Van Gelder, Kenneth A.
Ross, and John S. Schlipf. The well-founded semantics
for general logic programs. J. ACM, 38(3):620–650, 1991.

[Vennekens et al., 2006] Joost Vennekens, David Gilis, and
Marc Denecker. Splitting an operator: Algebraic modular-
ity results for logics with fixpoint semantics. ACM Trans.
Comput. Log., 7(4):765–797, 2006.

[Vennekens et al., 2007] Joost Vennekens, Maarten Mariën,
Johan Wittocx, and Marc Denecker. Predicate introduction
for logics with a fixpoint semantics. Parts I and II. Funda-
menta Informaticae, 79(1-2):187–227, September 2007.

[You and Yuan, 1990] Jia-Huai You and Li-Yan Yuan.
Three-valued formalization of logic programming: Is it
needed? In Proceedings of PODS, pages 172–182, 1990.

2790

