
Stable Model Semantics of Abstract Dialectical
Frameworks Revisited: A Logic Programming Perspective∗

Mario Alviano
University of Calabria, Italy

alviano@mat.unical.it

Wolfgang Faber
University of Huddersfield, UK

wf@wfaber.com

Abstract
This paper relates two extensively studied for-
malisms: abstract dialectical frameworks and logic
programs with generalized atoms or similar con-
structs. While the syntactic similarity is easy to
see, also a strong relation between various stable
model semantics proposed for these formalisms is
shown by means of a unifying framework in which
these semantics are restated in terms of program
reducts and an immediate consequence operator,
where program reducts have only minimal differ-
ences. This approach has advantages for both for-
malisms, as for example implemented systems for
one formalism are usable for the other, and proper-
ties such as computational complexity do not have
to be rediscovered. As a first, concrete result of this
kind, one stable model semantics based on program
reducts and subset-minimality that reached a rea-
sonable consensus for logic programs with general-
ized atoms provides a novel, alternative semantics
for abstract dialectical frameworks.

1 Introduction
Abstract argumentation frameworks (AFs; Dung 1995) are
used to represent and reason about the fundamental mech-
anism humans use in argumentation. A well-known exam-
ple is the Nixon diamond, whose arguments “Nixon is anti-
pacifist since he is a republican” and “Nixon is a pacifist since
he is a quaker” attack each other. AFs are represented by
graphs whose nodes represent abstract arguments, where ab-
stract refers to the fact that the content of these arguments is
not further analyzed. What is analyzed instead is the attack
relation, represented by links: an argument is accepted if it is
not attacked by any accepted arguments.

Abstract dialectical frameworks (ADFs; Brewka and
Woltran 2010) are extensions of AFs that essentially allow for

∗Mario Alviano was partly supported by MIUR within project
“SI-LAB BA2KNOW – Business Analitycs to Know”, by Regione
Calabria, POR Calabria FESR 2007-2013, within project “ITravel
PLUS” and project “KnowRex”, by the National Group for Scien-
tific Computation (GNCS-INDAM), and by Finanziamento Giovani
Ricercatori UNICAL.

more expressive acceptance conditions. In fact, each state-
ment, or argument, of an ADF is associated with a Boolean
function whose domain is the power set of the set of parent
nodes of the statement. Intuitively, a set of parent nodes is
mapped to true if their acceptance jointly supports the state-
ment. Conversely, a set of parent nodes is mapped to false if
their acceptance jointly attacks the statement. As an example,
consider a scenario in which three lazy programmers a, b, c
are asked to accomplish a specific task. Programmer a will
work on the task if and only if she can take all the glory (i.e.,
if neither b nor c will work) or if the total amount of work is
minimal (i.e., if both b and c will work as well). Programmer
b will work if and only if the amount of work is reasonable,
i.e., if a or c will work as well. Programmer c will work if
and only if also b will work, regardless of what a will do.
Boolean functions can be represented by propositional well-
formed formulas, which suggests a syntactic similarity with
logic programs with generalized atoms, referred to as logic
programs with Boolean functions (LPBFs) in this paper.

Several semantics have been proposed for ADFs, among
them stable models [Brewka et al., 2013; Strass, 2013].
Roughly, a model is considered stable if it can be recon-
structed via logical entailment in the reduced ADF obtained
by constraining the original acceptance conditions. Differ-
ent notions of logical entailment and reduct result in different
stable model semantics. Stable models are also defined for
LPBFs [Pelov et al., 2007; Son and Pontelli, 2007; Shen and
Wang, 2012; Gelfond and Zhang, 2014; Faber et al., 2011;
Ferraris, 2005]. A natural question is thus “What relations do
exist between these notions of stable models?”

This paper provides an answer to this question by intro-
ducing mappings from the two formalisms to what will be
referred to as definitorial LPBFs, i.e., LPBFs in which each
propositional atom is defined by exactly one rule whose body
consists of exactly one Boolean function. By restating the
original definitions of stable models, the paper will shed light
on the similarities and differences between these semantics.
In particular, stable models by Brewka et al. are equivalent
to those by Pelov et al., Son and Pontelli and by Shen and
Wang, while stable models by Strass are equivalent to those
by Gelfond and Zhang. The new, restated definitions will also
demonstrate a subset-containment relation between these se-
mantics: every stable model of Gelfond and Zhang is a stable
model of Son and Pontelli, and the inclusion is strict as the

Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence (IJCAI 2015)

2684

other direction does not hold in general.
A further advantage of the unifying framework presented

in this paper is that implemented systems for LPBFs are us-
able for ADFs, and vice versa. For example, the answer set
programming (ASP) solvers CLASP [Gebser et al., 2009] and
DLV [Alviano et al., 2011] compute stable models as defined
by Ferraris and Faber et al., respectively, which are known to
be equivalent to the definition by Pelov et al., Son and Pon-
telli and Shen and Wang for a large class of Boolean functions
known as convex [Alviano and Faber, 2013], and therefore
also to the notion by Brewka et al. thanks to the result in this
paper. Hence, for ADFs whose accepting conditions can be
expressed by standard aggregates, a one-to-one mapping to
the input language of CLASP is possible. On the other hand,
the rewritings implemented in DIAMOND [Brewka et al.,
2013; Ellmauthaler and Strass, 2014] to map ADFs to ASP
can be used in ASP as well to encode convex Boolean func-
tions other than standard aggregates. The simplicity of the
new characterizations also suggests a strategy for computing
stable models by Strass and by Gelfond and Zhang within
an ASP solver. Moreover, the unifying framework brings
several complexity results from one formalism to the other,
possibly making the future complexity analysis even more at-
tractive as new results will immediately apply to both LPBFs
and ADFs. Finally, stable models by Faber et al. and Fer-
raris, popular in LPBFs but having no counterpart in ADFs,
are also restated in terms of the unifying framework. The
lazy programmers example will be used to illustrate what dif-
ferences there are to the existing semantics, and why stable
models by Faber et al. and by Ferraris can be considered a
valid point of view also for ADFs. Proofs and a tool for com-
puting Strass stable models by modern ASP solvers such as
CLASP [Gebser et al., 2009] or WASP [Alviano et al., 2013;
2014] are available at http://alviano.net/software/adf/.

2 Background
This section introduces basic notions concerning ADFs and
LPBFs.

2.1 Boolean Functions and Interpretations
Let T,U,F denote the truth values true, undefined and false,
respectively. Let V be a set of propositional variables, also
referred to as statements or atoms. A Boolean function f is a
function f : 2D → {T,F}, where D ⊆ V defines the domain
of f . For such a function f , the set D is denoted by dom(f),
and f(V) will be used as a shorthand for f(dom(f)∩V), for
all V ⊆ V .
Example 1. Simple Boolean functions are represented by
conjunctions, disjunctions, and in general well-formed propo-
sitional formulas. In fact, the conjunction a ∧ (b ∨ c) de-
fines a function f such that dom(f) = {a, b, c}, f({a, b}) =
f({a, c}) = f({a, b, c}) = T, and f(∅) = f({a}) =
f({b}) = f({c}) = f({b, c}) = F. Also aggregates define
Boolean functions: COUNT ({a, b}) = 1 defines a function
f such that dom(f) = {a, b}, f({a}) = f({b}) = T, and
f(∅) = f({a, b}) = F. �

An interpretation is a pair (L,U) such that L ⊆ V and
U ⊆ V , where L,U are called lower and upper bound, re-

spectively. This is based on a common representation of four-
valued interpretations that stores true atoms (L) and possi-
bly true atoms (U). Intuitively, atoms in L are true, those
in U \ L are undefined, those in V \ U are false, and those
in L \ U are inconsistent. An interpretation (L′, U ′) ex-
tends an interpretation (L,U), denoted (L,U) ≤k (L′, U ′),
if L′ ⊇ L and U ′ ⊆ U . Relation ≤k corresponds to the
knowledge order, i.e., undefined atoms do not increase in an
extension. An interpretation (L,U) is total or two-valued if
L = U ; in this case, the interpretation will be usually de-
noted L. Two sets S, S′ of total interpretations are equiva-
lent with respect to a context V ⊆ V , denoted S ≡V S′, if
{I ∩ V | I ∈ S} = {I ∩ V | I ∈ S′}.

A Boolean function f is true with respect to an interpreta-
tion (L,U) if f(I) = T for all I ⊆ V such that (L,U) ≤k I .
Similarly, f is false if f(I) = F for all I ⊆ V such that
(L,U) ≤k I . If none of the previous cases apply then f is
considered undefined. These concepts are formalized next.
Definition 1. The evaluation of a Boolean function f with
respect to an interpretation (L,U) is defined as follows:

[f](L,U) :=


T if f(I) = T for all L ⊆ I ⊆ U
U if f(I) = T and f(J) = F for

some L ⊆ I ⊆ U,L ⊆ J ⊆ U
F otherwise.

(1)

(Note that L 6⊆ U implies [f](L,U) = T for all functions.)

2.2 Abstract Dialectical Frameworks
An abstract dialectical framework F is a triple 〈S, E, C〉,
where: S is a nonempty, finite set of statements; E ⊆ S × S
is a set of links; C = {Cs}s∈S is a set of Boolean functions,
where dom(Cs) = par(s), with par(s) denoting the parents
of s in the graph 〈S, E〉. Each Cs is referred to as the accep-
tance condition of s.

A total interpretation I is a model of F , denoted I |= F ,
if s ∈ I whenever [Cs]I = T. A stable model semantics for
ADF was proposed by Brewka et al. (2013). It is based on
the following operator:

ΓF (L,U) := ({s ∈ S | [Cs](L,U) = T},
{s ∈ S | [Cs](L,U) 6= F})

(2)

where F is an ADF, and (L,U) is an interpretation. The least
fixpoint of ΓF is denoted by ΓF ⇑ (∅,S).
Definition 2 (Brewka et al.). A total interpretation I is a
B-stable model of an ADF F = 〈S, E, C〉 if I |= F and
I = ΓF ′ ⇑ (∅,S), where F ′ = 〈I, E ∩ (I × I), {C ′s}s∈I〉,
and C ′s is a Boolean function with domain par(s) ∩ I and
such that C ′s(A) = T if and only if both Cs(A) = T and
(par(s) \A) ∩ I = ∅, for all A ⊆ par(s).

A different notion of stable model was proposed by Strass
(2013). In particular, the characterization in (the proof of)
Proposition 3.9 in [Strass, 2013] is based on the least fixpoint
GI

F ⇑ ∅ of the following operator:

GI
F (X) := {s ∈ S | ∃A ⊆ X, Cs(A) = T,

(par(s) \A) ∩ I = ∅, (par(s) \A) ∩X = ∅}
(3)

where F = 〈S, E, C〉 is an ADF, I is a total interpretation,
and X ⊆ S.

2685

Definition 3 (Strass). A total interpretation I is an S-stable
model of an ADF F = 〈S, E, C〉 if I = GI

F ⇑ (∅,S).

The two semantics are not equivalent.

Example 2. Consider an ADF F1 = 〈S, E, C〉 such that:

• S = {a, b}, and E = {(a, a), (b, a), (b, b)};
• Ca(∅) = Ca({a}) = Ca({a, b}) = T, Ca({b}) = F;

• Cb({b}) = T, and Cb(∅) = F.

F1 has one stable model, {a}, according to Brewka et al.. In
fact, {a} |= F1, and ADF F ′1 is 〈{a}, {(a, a)}, {C ′a}〉, where
dom(C ′a) = {a} and C ′a(∅) = C ′a({a}) = T. Hence, the
least fixpoint of ΓF ′

1
is {a}. On the other hand, F1 has no

stable model according to Strass. In particular, {a} is not
stable because the least fixpoint of G{a}F1

is ∅. �

Example 3. Consider an ADF F2 = (S, E, C) such that:

• S = {a, b, c}, and E = {(a, b), (a, c), (b, a), (c, c)};
• Ca(∅) = T, Ca({b}) = F; Cb(∅) = T, Cb({a}) = F;

• Cc({b}) = Cc({b, c}) = T; Cc(∅) = Cc({c}) = F.

Interpretation {a} is a stable model according to both Brewka
et al. and Strass, while {b, c} is a stable model only according
to Brewka et al. �

2.3 Logic Programs with Boolean Functions
A logic program with Boolean functions Π is a set of rules of
the form p ← f , where p ∈ V and f is a Boolean function.
The set of atoms occurring in Π is denoted by At(Π). A total
interpretation I is a model of Π, denoted I |= Π, if p ∈ I
whenever [f]I = T, for all p← f ∈ Π.

Stable models by Pelov et al. (2007), Son and Pontelli
(2007) and by Shen and Wang (2012) are defined by means
of the least fixpoint KI

Π ⇑ ∅ of the following operator:

KI
Π(X) := {p ∈ V |∃ p← f ∈ Π,

[f]I = T, [f](X,I) = T}
(4)

where Π is an LPBF, I is a total interpretation, and X ⊆ V .

Definition 4 (Pelov et al., Son and Pontelli, Shen and
Wang). A total interpretation I is a stable model of an LPBP
Π if I = KI

Π ⇑ ∅.
A different notion of stable model was proposed by Gel-

fond and Zhang (2014).

Definition 5 (Gelfond and Zhang). A total interpretation I
is a stable model of an LPBP Π if I |= Π and there is no
J ⊂ I such that J is a model of the following program:

{p←
∧

q∈dom(f)∩I

q | [f]I = T}. (5)

The two semantics are not equivalent.

Example 4. Let Π1 = {a← g, b← h}, where:

• dom(g) = {a, b}, g(∅) = g({a}) = g({a, b}) = T,
g({b}) = F;

• dom(h) = {b}, h({b}) = T, and h(∅) = F.

Π1 has one stable model according to Son and Pontelli,
namely {a}. In fact, {a} is the least fixpoint of K{a}Π . On
the other hand, Π1 has no stable model according to Gelfond
and Zhang. In particular, {a} is not a stable model because
program (5) is Π′1 = {a← a}, and it is satisfied by ∅. �

Example 5. Let Π2 = {a← g, b← h, c← o}, where:
• dom(g) = {b}, g(∅) = T, g({b}) = F;
• dom(h) = {a}, h(∅) = T, h({a}) = F;
• dom(o) = {b, c}, o({b}) = o({b, c}) = T, and o(∅) =
o({c}) = F.

Interpretation {a} is a stable model according to Son and
Pontelli and Gelfond and Zhang, while {b, c} is a stable
model only according to Son and Pontelli. �

3 Definitorial LPBFs
A unifying framework is presented in this section to better
understand similarities and differences between the several
stable model semantics for ADFs and LPBFs.

A definitorial logic program with Boolean functions is an
LPBF Π in which there is exactly one rule of the form p← f
for each p ∈ V . For a DLPBF Π containing p ← f , func-
tion f is denoted Πp. The immediate consequence operator is
defined as follows:

TU
Π (L) := {p ∈ V | [Πp](L,U) = T} (6)

where Π is a DLPBF, and (L,U) is an interpretation. The
least fixpoint of TU

Π is denoted by TU
Π ⇑ ∅.

The new characterizations require to compute the fixpoint
of the immediate consequence operator for a program reduct
obtained by modifying Boolean functions of the input pro-
gram. In more detail, for a total interpretation I , and a
Boolean function f , the following functions are defined:

keep all(f, I)(A) := f(I) ∧ f(A) (7)

keep subsets(f, I)(A) := f(I) ∧ f(A) ∧
(dom(f) ∩A ⊆ dom(f) ∩ I)

(8)

keep equal(f, I)(A) := f(I) ∧ f(A) ∧
(dom(f) ∩A = dom(f) ∩ I)

(9)

keep supsets(f, I)(A) := f(I) ∧ f(A) ∧
(dom(f) ∩A ⊇ dom(f) ∩ I)

(10)

for all A ⊆ dom(f) = dom(k(f, I)), where k ∈ {keep all ,
keep subsets, keep equal , keep supsets}.
Definition 6 (B-stable model). A total interpretation I is a
B-stable model of a DLPBF Π if I = T I

B(Π,I) ⇑ ∅, where:

B(Π, I) = {p← keep subsets(Πp, I) | p ∈ V}. (11)

Definition 7 (S-stable model). A total interpretation I is an
S-stable model of a DLPBF Π if I = T I

S(Π,I) ⇑ ∅, where:

S(Π, I) = {p← keep supsets(Πp, I) | p ∈ V}. (12)

Definition 8 (P-stable model). A total interpretation I is a
P-stable model of a DLPBF Π if I = T I

P (Π,I) ⇑ ∅, where:

P (Π, I) = {p← keep all(Πp, I) | p ∈ V}. (13)

2686

Definition 9 (G-stable model). A total interpretation I is a
G-stable model of a DLPBF Π if I = T I

G(Π,I) ⇑ ∅, where:

G(Π, I) = {p← keep equal(Πp, I) | p ∈ V}. (14)

Example 6. Program Π1from Example 4 is definitorial. Pro-
gram B(Π1, {a}) contains the following functions:

• keep subsets(g, {a}), assigning T only to ∅ and {a};
• keep subsets(h, {a}), always assigning F.

It can be checked that {a} is a B-stable model. Program
S(Π1, {a}) contains the following functions:

• keep supsets(g, {a}), assigning T only to {a} and
{a, b};
• keep supsets(h, {a}), always assigning F.

It can be checked that {a} is not an S-stable model. Program
P (Π1, {a}) contains the following functions:

• keep all(g, {a}), assigning T only to ∅, {a} and {a, b};
• keep all(h, {a}), always assigning F.

It can be checked that {a} is a P-stable model. Program
G(Π1, {a}) contains the following functions:

• keep equal(g, {a}), assigning T only to {a};
• keep equal(h, {a}), always assigning F.

It can be checked that {a} is not a G-stable model. Moreover,
it can be checked that there is no other stable model. �

Example 7. Program Π2 from Example 5 is definitorial. In-
terpretation {a} is a B-, S-, P- and G-stable model. Interpre-
tation {b, c} is a B- and P-stable model. The program has no
other stable model according to the previous definitions. �

4 Equivalences
Examples 6–7 suggest that Definitions 4 and 8 are equivalent
to Definitions 5 and 9, respectively.

Theorem 1. Let Π be a DLPBF, S be the set of stable models
of Π according to Son and Pontelli (2007), and S′ be the set
of P-stable models of Π, then S ≡At(Π) S

′.

Theorem 2. Let Π be a DLPBF, S be the set of stable models
of Π according to Gelfond and Zhang (2014), and S′ be the
set of G-stable models of Π, then S ≡At(Π) S

′.

DLPBFs can model ADFs under B- and S-stable model se-
mantics. In fact, an ADF F = 〈S, E, C〉 can be transformed
into a DLPBF def (F) comprising the following rules:

• s← Cs, for all s ∈ S;

• p ← ⊥, where ⊥ is such that dom(⊥) = ∅ and ⊥(∅) =
F, for all p ∈ V \ S .

Example 8. Consider the ADFs F1, F2 from Examples 2–
3, and the DLPBFs Π1,Π2 from Examples 4–5. Note that
def (F1) = Π1 and def (F2) = Π2 (if rules of the form p ←
⊥ are added for all p not occurring in F1, F2). �

Equivalence of Definitions 2 and 6, and of Definitions 3
and 7, can now be established.

Theorem 3. Let F = 〈S, E, C〉 be an ADF, S be the set of
stable models of F according to Brewka et al. (2013), and S′

be the set of B-stable models of def (F), then S ≡S S′.

Theorem 4. Let F = 〈S, E, C〉 be an ADF, S be the set of
stable models of F according to Strass (2013), and S′ be the
set of S-stable models of def (F), then S ≡S S′.

The unifying framework also provides a better overview of
the four stable model semantics, which may also help to better
understand their similarities and differences. The examples
in the previous sections already gave hints to relationships
between the various stable model semantics. In the following,
we motivate and state the general results.

The reducts used by B- and P-stable models replace
each Boolean function f with keep subsets(f, I) and
keep all(f, I), respectively. The immediate consequence op-
erator is then applied on the reducts, with the upper bound
fixed to I . Hence, the image of keep all(f, I) on any V ⊃
dom(f) is irrelevant for the fixpoint computation.

Theorem 5. A total interpretation I is a B-stable model of a
DLPBF Π if and only if I is a P-stable model of Π.

Similarly, the reducts used by S- and G-stable models
replace each Boolean function f with keep supsets(f, I)
and keep equal(f, I), respectively. Again, the image of
keep supsets(f, I) on any V ⊃ dom(f) is irrelevant for the
fixpoint computation.

Theorem 6. A total interpretation I is an S-stable model of
a DLPBF Π if and only if I is a G-stable model of Π.

Concerning P- and G-stable models, their reducts use
keep all(f, I) and keep equal(f, I), respectively. Any atom
inferred by the immediate consequence operator on the reduct
using keep equal(f, I) is also inferred when keep all(f, I) is
used, while the converse does not hold in general.

Theorem 7. If a total interpretation I is a G-stable model of
a DLPBF Π then I is a P-stable model of Π.

The following is a corollary of the previous theorems, and
can also be obtained by combining results in approximation
fixpoint theory [Denecker et al., 2004; Pelov et al., 2007;
Strass and Wallner, 2014].

Corollary 1. If a total interpretation I is an S-stable model
of a DLPBF Π then I is a B-stable model of Π.

5 Compilations
S- or G-stable models of a DLPBF Π can be obtained
by means of B- or P-stable models of a rewritten DLPBF
s2b(Π). In more detail, At(s2b(Π)) = {p, pF , p= | p ∈
At(Π)} ∪ {⊥}, and s2b(Π) consists of the following rules:

• p ← fp, where dom(fp) = {pF }, fp(∅) = T and
fp({pF }) = F;

• pF ← gp, where dom(gp) = {p}, gp(∅) = T and
gp({p}) = F;

• p= ← hp, where dom(hp) = {pF } ∪ {q= | q ∈
dom(Πp)}, and hp(I) = T if and only if either pF ∈ I ,
or both Πp(I) = T and {q= | q ∈ dom(Πp)} ⊆ I;

2687

• ⊥ ← o, where dom(o) = At(s2b(Π)), and s2b(I) = T
if and only if ⊥ /∈ I and there is p ← f ∈ Π such that
either p= /∈ I , or both f(I) = T and pF ∈ I .

Intuitively, atoms p, pF are used to guess an interpretation
I ∩ At(Π) for Π. Since atom ⊥ must be false in all B-stable
models of s2b(Π), I∩At(Π) must actually represent a model
of Π if I is a B-stable model of s2b(Π). Moreover, the falsity
of ⊥ also implies that all atoms of the form p= must be true.
However, each p= can be derived by the immediate conse-
quence operator only if either p /∈ I , or if all atoms q= such
that q ∈ dom(Πp) are already derived in a previous applica-
tion of the operator.
Theorem 8. Let Π be a DLPBF, S be the set of S- or G-
stable models of Π, and S′ be the set of B- or P-stable models
of s2b(Π), then S ≡At(Π) S

′.

An ASP encoding based on the rewriting s2b(·) and allow-
ing for computing S- or G-stable models of an ADF encoded
according to the DIAMOND format is available online.

Further compilations are possible. For example, for sta-
ble models by Son and Pontelli (2007), an LPBF Π can be
transformed into a DLPBF def (Π) comprising the following
rules:
• aux f ← f , where aux f ∈ V \ At(Π) is an auxiliary

atom associated with function f , for all p← f ∈ Π;
• p←

∨
p←f∈Π aux f , for all p ∈ At(Π).

Example 9. Let g, h, o be Boolean functions such that:
dom(g) = {b}, g(∅) = T, g({b}) = F; dom(h) = {b},
h({b}) = T, h(∅) = F; dom(o) = {a}, o({a}) = T,
o(∅) = F. Let Π3 = {a ← g, a ← h}. Essentially, pro-
gram Π3 is {a ← not b, a ← b}, where not is the negation
as failure symbol under stable model semantics [Gelfond and
Lifschitz, 1988; 1991]. Program def (Π3) comprises the fol-
lowing rules: {a ← fa, aux g ← g, auxh ← h}, where fa is
the disjunction aux g ∨ auxh, i.e., dom(fa) = {aux g, auxh}
and fa assigns F only to ∅. It can be noted that {a} is the
unique stable model of Π3 according to Definition 4. Sim-
ilarly, {a} ∪ {aux g} is the unique stable model of def (Π3)
according to Definition 8.

Consider now Π4 = Π3 ∪{b← o}, i.e., {a← not b, a←
b, b ← a}. Program def (Π4) comprises the following rules:
{a← fa, aux g ← g, auxh ← h, b← fb, aux o ← o}, where
fb is the disjunction aux o, i.e., dom(fb) = {aux o} and fo
assigns F only to ∅. It can be noted that Π4 and def (Π4)
have no stable model according to Definitions 6–9.

Note that a rewriting introducing rules of the form

p←
∨

p←f∈Π

f (15)

would possibly change the semantics of the program. In fact,
the rewriting of program Π4 would be {a ← g ∨ h, b ← o},
where dom(g ∨ h) = {b} and g ∨ h assigns T to both ∅ and
{b}. Interpretation {a, b} is now a B- and P-stable model. �

Theorem 1 can thus be extended to LPBFs in general.
Theorem 9. Let Π be an LPBF, S be the set of stable models
of Π according to Son and Pontelli (2007), and S′ be the set
of P-stable models of def (Π), then S ≡At(Π) S

′.

Concerning stable models by Gelfond and Zhang (2014),
rewriting s2b(·) can be extended to LPBFs by replacing each
function hp occurring in rules of the form p= ← hp as fol-
lows: dom(hp) = {pF }∪{q= | ∃p← f ∈ Π, q ∈ dom(f)},
and hp(I) = T if and only if either pF ∈ I , or there is p ←
f ∈ Π such that both f(I) = T and {q= | q ∈ dom(f)} ⊆ I .
Theorem 10. Let Π be an LPBF, S be the set of stable models
of Π according to Gelfond and Zhang (2014), and S′ be the
set of B- or P-stable models of s2b(Π), then S ≡At(Π) S

′.
It is also true that a DLPBF Π can be transformed into an

ADF adf (Π) = 〈At(Π), E, C〉, where E = {(p, q) | q ∈
At(Π), p ∈ dom(Πq)}, and C = {Πp | p ∈ At(Π)}.
Example 10. Consider again the ADFs F1, F2 from Exam-
ples 2–3, and the DLPBFs Π1,Π2 from Examples 4–5. Note
that adf (Π1) = F1 and adf (Π2) = F2. �

As done before, equivalence of Definitions 2 and 6, and of
Definitions 3 and 7, can be established.
Theorem 11. Let Π be a DLPBF, S be the set of B-stable
models of Π, and S′ be the set of stable models of adf (Π)
according to Brewka et al., then S ≡S S′.

Theorem 12. Let Π be a DLPBF, S be the set of S-stable
models of Π, and S′ be the set of stable models of adf (Π)
according to Strass, then S ≡S S′.

By combining the previous transformations, an LPBF Π
can be transformed into an ADF adf (def (Π)).
Corollary 2. Let Π be an LPBF, S be the set of stable mod-
els of Π according to Brewka et al., and S′ be the set of sta-
ble models of adf (def (Π)) according to Brewka et al., then
S ≡At(Π) S

′.

Corollary 3. Let Π be an LPBF, S be the set of stable models
of Π according to Strass, and S′ be the set of stable models of
adf (s2b(Π)) according to Brewka et al., then S ≡At(Π) S

′.
Example 11. Consider program Π4 from Example 9. The
ADF adf (def (Π4)) = 〈S, E, C〉 is such that: S =
{a, aux g, auxh, b, aux o}; E = {(aux g, a), (auxh, a),
(b, aux g), (b, auxh), (aux o, b), (a, aux o)}; Ca = Πa,
Cauxg

= g, Cauxh
= h, Cb = Πb, Cauxo

= o. Note
that adf (def (Π4)) has no stable model according to all
definitions. As observed in Example 9, transforming Π4

into an ADF 〈{a, b}, {(b, a), (a, b)}, C〉 such that Ca(∅) =
Ca({b}) = T, Cb({a}) = T, and Cb(∅) = F, would make
{a} a stable model according to Brewka et al. �

6 F-Stable Models
There are cases in which the previously considered semantics
may be considered too restrictive.
Example 12. The lazy programmers example in the introduc-
tion can be represented by the DLPBF Π5 = {a ← g, b ←
h, c ← o}, where: dom(g) = {b, c}, dom(h) = {a, c},
dom(o) = {b}; g(∅) = g({b, c}) = T, g({b}) = g({c}) =
F; h({a}) = h({c}) = h({a, c}) = T, h(∅) = F;
o({b}) = T, o(∅) = F. There are no stable models ac-
cording to all previous definitions. As an example, consider
the reducts for I = {a, b, c}: B(Π5, I) = P (Π5, I) = Π5;

2688

S(Π5, I) = G(Π5, I) = {a ← fa, b ← fb, c ← o}, where
fa and fb are equivalent to b∧ c and a∧ c, respectively. In all
cases, the least fixpoints are equal to the empty set. �

Other semantics for LPBFs were proposed and analyzed
in the previous decade. Two of them, known as FLP [Faber
et al., 2011] and Ferraris stable models [Ferraris, 2005], are
implemented by current ASP solvers [Faber et al., 2008;
Gebser et al., 2009]. These two semantics are equivalent for
negation-free programs, and are thus equivalent for DLPBFs.
The following is a restatement of the original definitions of
stable models by Faber et al. and by Ferraris.

Definition 10 (F-stable model). A total interpretation I is an
F-stable model of a DLPBF Π if I |= Π and there is no J ⊂ I
such that J |= F (Π, I), where:

F (Π, I) = {p← keep all(Πp, I) | p ∈ V}. (16)

The following link follows from Theorem 5 in [Shen and
Wang, 2012], Definition 3 in [Son et al., 2007] and Theorem 2
in [Son and Pontelli, 2007].

Corollary 4. Let Π be a DLPBF, and I be a total interpre-
tation. If I is a G-, S-, P- or B-stable model then I is an
F-stable model.

The other direction does not hold in general.

Example 13. Recall Π5, the lazy programmers example. As
shown in Example 12, there are no B-, S-, P- or G-stable
models. However, it does have an F-stable model, {a, b, c}.
Indeed, the reduct F (Π5, {a, b, c}) equals Π5, and it can be
checked that {a, b} and {b} do not satisfy the rule defining c,
while {a, c}, {a}, {c} do not satisfy the rule defining b, and
{b, c} and ∅ do not satisfy the rule defining a. �

It is instructive to examine Π5 a bit more closely. It illus-
trates the different underlying principles of F-stable and the
other notions of stable models. F-stable models also allow
for “jumping over gaps,” while the immediate consequence
operator is not allowed to make an inference if any interpre-
tation between the fixed upper bound and the current lower
bound evaluates to false. This is the case in Π5, as there are
total interpretations between ∅ and {a, b, c} for which g eval-
uates to false (these are {b}, {c}, {a, b}, and {a, c}). How-
ever, it is not clear why the presence of these interpretations
should inhibit {a, b, c} to be a stable model, as they are never
reached during the computation of the fixpoint. Brewka et
al. (2013) argue for a similar example that the justification is
cyclic. This depends on the point of view: in terms of Π5, the
cyclic justification claimed by Brewka et al. would be as fol-
lows: a is true because b and c are true, while b is true because
a is true, and c is true because b is true. However, one can ar-
gue as well that a does have also another, non-circular justi-
fication that grounds the cycle, namely ∅. Indeed, in terms of
the lazy programmer example, one could imagine a dynamic
process as follows: if initially nobody works, programmer a
will decide to work, which makes programmer b decide to
work, causing also programmer c to work. While the original
reason for programmer a has been invalidated by this, she still
finds herself in a situation that supports the initial decision.

7 Related Work
For ADFs, S-stable models [Strass, 2013] and B-stable mod-
els [Strass and Wallner, 2014] were characterized using ap-
proximation fixpoint theory [Denecker et al., 2004]. Approx-
imation fixpoint theory was also used to characterize some
stable model semantics for LPBFs [Pelov et al., 2007]. The
containment relation between stable models by Strass and by
Brewka et al., i.e., Corollary 1 in Section 4, can be obtained
from these results. However, the formalization given in this
paper is different, and closer to the original definition of sta-
ble models [Gelfond and Lifschitz, 1991], thus allowing to
cover stability conditions based on subset-minimality rather
than operator fixpoints. This is the case of F-stable models
[Faber et al., 2011; Ferraris, 2005], for which a characteriza-
tion using approximation fixpoint theory appears to be diffi-
cult.

This work is also related to ASP systems [Gebser et al.,
2009; Leone et al., 2006], where rule bodies clearly define
Boolean functions. Common constructs in ASP are negation
as failure and aggregate atoms. Other semantically similar
constructs are DL [Eiter et al., 2008] and HEX atoms [Eiter
et al., 2014], which extend ASP by allowing to interact with
external knowledge bases, possibly expressed in different lan-
guages. All of these constructs fit in the framework consid-
ered in this paper. For example, the interpretation of negated
literals in program reducts is fixed by many semantics [Pelov
et al., 2007; Son and Pontelli, 2007; Shen and Wang, 2012;
Gelfond and Zhang, 2014; Ferraris, 2005] but not in [Faber et
al., 2011]. Negation as failure must be also taken into account
in the definition of stable models by Gelfond and Zhang,
whose program reducts directly refer Boolean function do-
mains, and therefore do not allow to consider each rule body
as a unique Boolean function. By constraining rule bodies of
LPBFs to comprise exactly one, indivisible Boolean function,
all these technical differences disappear, and properties relat-
ing to the interpretation of Boolean functions emerge. Indeed,
Definitions 6–9 provide a uniform point of view of four differ-
ent notions of stable models introduced in the literature, and
clarify that they differ only minimally on program reducts.

8 Conclusion
Abstract dialectical frameworks and logic programs with
Boolean functions are linked here by means of definito-
rial logic programs with Boolean functions, a framework on
which several notions of stable models can be restated uni-
formly. Similarities and differences of the considered stable
model semantics easily emerge from the new characteriza-
tions, which are focused on Boolean functions and are not
distracted by other common constructs such as negation as
failure. This work can mark the beginning of a potentially
very fruitful research field that crosses over two research ar-
eas. Undoubtedly many more properties can be taken over
from either field to the other, and also differences might sur-
face. And, pragmatically perhaps most important, imple-
mented systems can be used profitably for both ADFs and
LPBFs. As an example, the ASP encoding mentioned in Sec-
tion 4 for computing S-stable models of ADFs can be adapted
to compute G-stable models of LPBFs.

2689

References
[Alviano and Faber, 2013] Mario Alviano and Wolfgang Faber.

Properties of answer set programming with convex generalized
atoms. In Michael Fink and Yuliya Lierler, editors, Sixth Inter-
national Workshop on Answer Set Programming and Other Com-
puting Paradigms (ASPOCP 2013), pages 3–16, 2013.

[Alviano et al., 2011] Mario Alviano, Wolfgang Faber, Nicola
Leone, Simona Perri, Gerald Pfeifer, and Giorgio Terracina.
The disjunctive datalog system DLV. In Georg Gottlob, editor,
Datalog 2.0, volume 6702 of LNCS, pages 282–301. Springer
Berlin/Heidelberg, 2011.

[Alviano et al., 2013] Mario Alviano, Carmine Dodaro, Wolfgang
Faber, Nicola Leone, and Francesco Ricca. WASP: A native
ASP solver based on constraint learning. In Pedro Cabalar
and Tran Cao Son, editors, Logic Programming and Nonmono-
tonic Reasoning, 12th International Conference, LPNMR 2013,
Corunna, Spain, September 15-19, 2013. Proceedings, volume
8148 of LNCS, pages 54–66. Springer, 2013.

[Alviano et al., 2014] Mario Alviano, Carmine Dodaro, and
Francesco Ricca. Anytime computation of cautious conse-
quences in answer set programming. TPLP, 14(4-5):755–770,
2014.

[Brewka and Woltran, 2010] Gerhard Brewka and Stefan Woltran.
Abstract dialectical frameworks. In Fangzhen Lin, Ulrike Sat-
tler, and Mirosław Truszczyński, editors, Principles of Knowl-
edge Representation and Reasoning: Proceedings of the Twelfth
International Conference, KR 2010, Toronto, Ontario, Canada,
May 9-13, 2010, pages 102–111. AAAI Press, 2010.

[Brewka et al., 2013] Gerhard Brewka, Hannes Strass, Stefan Ell-
mauthaler, Johannes Peter Wallner, and Stefan Woltran. Abstract
dialectical frameworks revisited. In Francesca Rossi, editor, IJ-
CAI 2013, Proceedings of the 23rd International Joint Confer-
ence on Artificial Intelligence, Beijing, China, August 3-9, 2013,
pages 803–809, 2013.

[Denecker et al., 2004] Marc Denecker, Victor W. Marek, and
Mirosław Truszczyński. Ultimate approximation and its appli-
cation in nonmonotonic knowledge representation systems. Inf.
Comput., 192(1):84–121, 2004.

[Dung, 1995] Phan Minh Dung. On the acceptability of arguments
and its fundamental role in nonmonotonic reasoning, logic pro-
gramming and n-person games. Artif. Intell., 77(2):321–358,
1995.

[Eiter et al., 2008] Thomas Eiter, Giovambattista Ianni, Thomas
Lukasiewicz, Roman Schindlauer, and Hans Tompits. Combining
answer set programming with description logics for the semantic
web. Artif. Intell., 172(12-13):1495–1539, 2008.

[Eiter et al., 2014] Thomas Eiter, Michael Fink, Thomas Kren-
nwallner, Christoph Redl, and Peter Schüller. Efficient hex-
program evaluation based on unfounded sets. J. Artif. Intell. Res.
(JAIR), 49:269–321, 2014.

[Ellmauthaler and Strass, 2014] Stefan Ellmauthaler and Hannes
Strass. The DIAMOND system for computing with abstract di-
alectical frameworks. In Simon Parsons, Nir Oren, Chris Reed,
and Federico Cerutti, editors, Computational Models of Argu-
ment - Proceedings of COMMA 2014, Atholl Palace Hotel, Scot-
tish Highlands, UK, September 9-12, 2014, volume 266 of Fron-
tiers in Artificial Intelligence and Applications, pages 233–240.
IOS Press, 2014.

[Faber et al., 2008] Wolfgang Faber, Gerald Pfeifer, Nicola Leone,
Tina Dell’Armi, and Giuseppe Ielpa. Design and implementation

of aggregate functions in the dlv system. TPLP, 8(5–6):545–580,
2008.

[Faber et al., 2011] Wolfgang Faber, Nicola Leone, and Gerald
Pfeifer. Semantics and complexity of recursive aggregates in an-
swer set programming. Artificial Intelligence, 175(1):278–298,
2011. Special Issue: John McCarthy’s Legacy.

[Ferraris, 2005] Paolo Ferraris. Answer Sets for Propositional The-
ories. In Chitta Baral, Gianluigi Greco, Nicola Leone, and
Giorgio Terracina, editors, Logic Programming and Nonmono-
tonic Reasoning — 8th International Conference, LPNMR’05,
Diamante, Italy, September 2005, Proceedings, volume 3662 of
LNCS, pages 119–131. Springer Verlag, September 2005.

[Gebser et al., 2009] Martin Gebser, Roland Kaminski, Benjamin
Kaufmann, and Torsten Schaub. On the implementation of
weight constraint rules in conflict-driven ASP solvers. In Pa-
tricia M. Hill and David Scott Warren, editors, Logic Program-
ming, 25th International Conference, ICLP 2009, Pasadena, CA,
USA, July 14-17, 2009. Proceedings, volume 5649, pages 250–
264. Springer, 2009.

[Gelfond and Lifschitz, 1988] Michael Gelfond and Vladimir Lif-
schitz. The stable model semantics for logic programming. In
Robert A. Kowalski and Kenneth A. Bowen, editors, Logic Pro-
gramming, Proceedings of the Fifth International Conference
and Symposium, pages 1070–1080. MIT Press, 1988.

[Gelfond and Lifschitz, 1991] Michael Gelfond and Vladimir Lif-
schitz. Classical negation in logic programs and disjunctive
databases. New Generation Comput., 9(3/4):365–386, 1991.

[Gelfond and Zhang, 2014] Michael Gelfond and Yuanlin Zhang.
Vicious circle principle and logic programs with aggregates.
TPLP, 14(4-5):587–601, 2014.

[Leone et al., 2006] Nicola Leone, Gerald Pfeifer, Wolfgang Faber,
Thomas Eiter, Georg Gottlob, Simona Perri, and Francesco Scar-
cello. The DLV system for knowledge representation and reason-
ing. ACM Trans. Comput. Log., 7(3):499–562, 2006.

[Pelov et al., 2007] Nikolay Pelov, Marc Denecker, and Maurice
Bruynooghe. Well-founded and Stable Semantics of Logic Pro-
grams with Aggregates. TPLP, 7(3):301–353, 2007.

[Shen and Wang, 2012] Yi-Dong Shen and Kewen Wang. FLP se-
mantics without circular justifications for general logic programs.
In Jörg Hoffmann and Bart Selman, editors, Proceedings of the
Twenty-Sixth AAAI Conference on Artificial Intelligence, July 22-
26, 2012, Toronto, Ontario, Canada., pages 576–591. AAAI
Press, 2012.

[Son and Pontelli, 2007] Tran Cao Son and Enrico Pontelli. A
Constructive Semantic Characterization of Aggregates in ASP.
TPLP, 7:355–375, May 2007.

[Son et al., 2007] Tran Cao Son, Enrico Pontelli, and Phan Huy Tu.
Answer sets for logic programs with arbitrary abstract constraint
atoms. J. Artif. Intell. Res. (JAIR), 29:353–389, 2007.

[Strass and Wallner, 2014] Hannes Strass and Johannes Peter Wall-
ner. Analyzing the computational complexity of abstract dialec-
tical frameworks via approximation fixpoint theory. In Chitta
Baral, Giuseppe De Giacomo, and Thomas Eiter, editors, Princi-
ples of Knowledge Representation and Reasoning: Proceedings
of the Fourteenth International Conference, KR 2014, Vienna,
Austria, July 20-24, 2014, pages 101–110, 2014.

[Strass, 2013] Hannes Strass. Approximating operators and seman-
tics for abstract dialectical frameworks. Artif. Intell., 205:39–70,
2013.

2690

