
Polynomial-Time Reformulations of LTL
Temporally Extended Goals into Final-State Goals

Jorge Torres and Jorge A. Baier
Departamento de Ciencia de la Computación

Pontificia Universidad Católica de Chile
Santiago, Chile

Abstract
Linear temporal logic (LTL) is an expressive lan-
guage that allows specifying temporally extended
goals and preferences. A general approach to deal-
ing with general LTL properties in planning is by
“compiling them away”; i.e., in a pre-processing
phase, all LTL formulas are converted into sim-
ple, non-temporal formulas that can be evaluated
in a planning state. This is accomplished by first
generating a finite-state automaton for the formula,
and then by introducing new fluents that are used to
capture all possible runs of the automaton. Unfor-
tunately, current translation approaches are worst-
case exponential on the size of the LTL formula.
In this paper, we present a polynomial approach
to compiling away LTL goals. Our method re-
lies on the exploitation of alternating automata.
Since alternating automata are different from non-
deterministic automata, our translation technique
does not capture all possible runs in a planning
state and thus is very different from previous ap-
proaches. We prove that our translation is sound
and complete, and evaluate it empirically showing
that it has strengths and weaknesses. Specifically,
we find classes of formulas in which it seems to
outperform significantly the current state of the art.

1 Introduction
Linear Temporal Logic (LTL) [Pnueli, 1977] is a compelling
language for the specification of goals in AI planning, be-
cause it allows defining constraints on state trajectories which
are more expressive than simple final-state goals, such as “de-
liver priority packages before non-priority ones”, or “while
moving from the office to the kitchen, make sure door D
becomes closed some time after it is opened”. It was first
proposed as the goal specification language of TLPlan sys-
tem [Bacchus and Kabanza, 1998]. Currently, a limited but
compelling subset of LTL has been incorporated into PDDL3
[Gerevini et al., 2009] for specifying hard and soft goals.

While there are some systems that natively support the
PDDL3 subset of LTL [e.g., Coles and Coles, 2011], when
planning for general LTL goals, there are two salient ap-
proaches: goal progression [Bacchus and Kabanza, 1998]

and compilation approaches [Rintanen, 2000; Cresswell and
Coddington, 2004; Edelkamp, Jabbar, and Naizih, 2006;
Baier and McIlraith, 2006]. Goal progression has been shown
to be extremely effective when the goal formula encodes
some domain-specific control knowledge that prunes large
portions of the search space [Bacchus and Kabanza, 2000].
In the absence of such expert knowledge, however, compila-
tion approaches are more effective at planning for LTL goals
since they produce an equivalent classical planning problem,
which can then be fed into optimized off-the-shelf planners.

State-of-the-art compilation approaches to planning for
LTL goals exploit the relationship between LTL and finite-
state automata (FSA) [Edelkamp, 2006; Baier and McIlraith,
2006]. As a result, the size of the output is worst-case expo-
nential in the size of the LTL goal. Since deciding plan exis-
tence for both LTL and classical goals is PSPACE-complete
[Bylander, 1994; De Giacomo and Vardi, 1999], none of these
approaches is optimal with respect to computational com-
plexity, since they rely on a potentially exponential compi-
lation. From a practical perspective, this worst case is also
problematic since the size of a planning instance has a direct
influence on planning runtime.

In this paper, we present a novel approach to compile away
general LTL goals into classical goals that runs in polyno-
mial time on the size of the input that is thus optimal with
respect to computational complexity. Like existing FSA ap-
proaches, our compilation exploits a relation between LTL
and automata, but instead of FSA, we exploit alternating au-
tomata (AA), a generalization of FSA that does not seem to
be efficiently compilable with techniques used in previous
approaches. Specifically, our compilation handles each non
deterministic choice of the AA with a specific action, hence
leaving non-deterministic choices to be decided at planning
time. This differs substantially from both Edelkamp’s and
Baier and McIlraith’s approaches, which represent all runs of
the automaton simultaneously in a single planning state.

We propose variants of our method that lead to perfor-
mance improvements of planning systems utilizing relaxed-
plan heuristics. Finally, we evaluate our compilation empir-
ically, comparing it against Baier and McIlraith’s—who be-
low we refer to as B&M. We conclude that our translation has
strengths and weaknesses: it outperforms B&M’s for classes
of formulas that require very large FSA, while B&M’s seems
stronger for shallower, simpler formulas.

Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence (IJCAI 2015)

1696

In the rest of the paper, we outline the required background,
we describe our AA construction for finite LTL logic, and
then show the details of our compilation approach. We con-
tinue describing the details of our empirical evaluation. We
finish with conclusions.

2 Preliminaries
The following sections describe the background necessary for
the rest of the paper.

2.1 Propositional Logic Preliminaries
Given a set of propositions F , the set of literals of F , Lit(F),
is defined as Lit(F) = F ∪ {¬p | p ∈ F}. The complement
of a literal ` is denoted by `, and is defined as ¬p if ` = p and
as p if ` = ¬p, for some p ∈ F . L denotes {` | ` ∈ L}.

Given a Boolean value function π : P → {false, true}, and
a Boolean formula ϕ over P , π |= ϕ denotes that π satisfies
ϕ, and we assume it defined in the standard way. To simplify
notation, we use s |= ϕ, for a set s of propositions, to abbre-
viate πs |= ϕ, where πs = {p→ true | p ∈ s}∪{p→ false |
p ∈ F \ s}. In addition, we say that s |= R, when R is a set
of Boolean formulas, iff s |= r, for every r ∈ R.

2.2 Deterministic Classical Planning
Deterministic classical planning attempts to model decision
making of an agent in a deterministic world. We use a stan-
dard planning language that allows so-called negative pre-
conditions and conditional effects. A planning problem is
a tuple 〈F,O, I,G〉, where F is a set of propositions, O is
a set of action operators, I ⊆ F defines an initial state, and
G ⊆ Lit(F) defines a goal condition.

Each action operator a is associated with the pair
(prec(a), eff (a)), where prec(a) ⊆ Lit(F) is the precon-
dition of a and eff (a) is a set of conditional effects, each of
the form C → `, where C ⊆ Lit(F) is a condition and literal
` is the effect. Sometimes we write ` as a shorthand for the
unconditional effect {} → `.

We say that an action a is applicable in a planning state s
iff s |= prec(a). We denote by ρ(s, a) the state that results
from applying a in s. Formally,

ρ(s, a) =(s \ {p | C → ¬p ∈ eff (a), s |= C})∪
{p | C → p ∈ eff (a), s |= C}

if s ∈ F and a is applicable in s; otherwise, δ(a, s) is un-
defined. If α is a sequence of actions and a is an action, we
define ρ(s, αa) as ρ(δ(s, α), a) if ρ(s, α) is defined. Further-
more, if α is the empty sequence, then ρ(s, α) = s.

An action sequence α is applicable in a state s iff ρ(s, α) is
defined. If an action sequence α = a1a2 . . . an is applicable
in s, it induces an execution trace σ = s1 . . . sn+1 in s, where
si = ρ(I, a1 . . . ai−1), for every i ∈ {1, . . . , n+ 1}.

An action sequence is a plan for problem 〈F,O, I,G〉 if α
is applicable in I and ρ(I, α) |= G.

2.3 Alternating Automata
Alternating automata (AA) are a natural generalization of
non-deterministic finite-state automata (NFA). At a defini-
tional level, the difference between an NFA and an AA is

the transition function. For example, if A is an NFA with
transition function δ, and we have that δ(q, a) = {p, r}, then
this intuitively means that A may end up in state p or in state
r as a result of reading symbol a when A was previously in
state q. With an AA, transitions are defined as formulas. For
example, if δ′ is the transition function for an AA A′, then
δ′(q, a) = p ∨ r means, as before, that A′ ends up in p or r
after reading an a in state q. Nevertheless, formulas provide
more expressive power. For example δ′(q, b) = (s ∧ t) ∨ r
can be intuitively understood as A′ will end up in both s and
t or (only) in r after reading a b in state q. In this model, only
positive Boolean formulas are allowed for defining δ.
Definition 1 (Positive Boolean Formula) The set of posi-
tive formulas over a set of propositions P—denoted by
B+(P)—is the set of all Boolean formulas over P and con-
stants ⊥ and > that do not use the connective “¬”.
The formal definition for AA that we use henceforth follows.
Definition 2 (Alternating Automata) An alternating au-
tomata (AA) over words is a tupleA = (Q,Σ, δ, I,F), where
Q is a finite set of states, Σ, the alphabet, is a finite set of sym-
bols, δ : Q × Σ → B+(Q) is the transition function, I ⊆ Q
are the initial states, and F ⊆ Q is a set of final states.
As suggested above, any NFA is also an AA. Indeed, given an
NFA with transition function δ, we can generate an equivalent
AA with transition function δ′ by simply defining δ′(q, a) =∨
p∈P p, when δ(q, a) = P . We observe that this means

δ′(q, a) = ⊥ when P is empty.
As with NFAs, an AA accepts a word w whenever there

exists a run of the AA over w that satisfies a certain prop-
erty. Here is the most important (computational) difference
between AAs and NFAs: a run of an AA is a sequence of
sets of states rather than a sequence of states. Before defin-
ing runs formally, for notational convenience, we extend δ for
any subset T of Q as δ(T, a) =

∧
q∈T δ(q, a) if T 6= ∅ and

δ(T, a) = > if T = ∅.
Definition 3 (Run of an AA over a Finite String) A run of
an AA A = (Q,Σ, δ, I,F) over word x1x2 . . . xn is a se-
quence Q0Q1 . . . Qn of subsets of Q, where Q0 = I, and
Qi |= δ(Qi−1, xi), for every i ∈ {1, . . . , n}.
Definition 4 A word w is accepted by an AA A iff there is a
run Q0 . . . Qn of A over w such that Qn ⊆ F .

For example, if the definition of an AA A is such that
δ′(q, b) = (s ∧ t) ∨ r, and I = {q}, then both {q}{s, t}
and {q}{r} are runs of A over word b.

2.4 Finite LTL
The focus of this paper is planning with LTL interpreted over
finite state sequences [Baier and McIlraith, 2006; De Gia-
como and Vardi, 2013]. At the syntax level, the finite LTL
we use in this paper is almost identical to regular LTL, except
for the addition of a “weak next” modality (ffl). The definition
follows.
Definition 5 (Finite LTL formulas) The set of finite LTL
formulas over a set of propositions P , fLTL(P), is induc-
tively defined as follows:

• p is in fLTL(P), for every p ∈ P .

1697

q1start q2

¬p

p

true

q ∧ ¬p

Figure 1: An NFA for formula Φ(p → ΩΨq) that expresses
the fact that every time p becomes true in a state, then q has
to be true in the state after or in the future. The input to the
automaton is a (finite) sequence s0 . . . sn of planning states.

• If ϕ and ψ are in fLTL(P) then so are ¬ϕ, (ϕ ∧ ψ),
(ϕ ∨ ψ), Ωϕ, fflϕ, (ϕUψ), and (ϕRψ).

The truth value of a finite LTL formula is evaluated over a
finite sequence of states. Below we assume that those states
are actually planning states.
Definition 6 Given a sequence of states σ = s0 . . . sn and
a formula ϕ ∈ fLTL(P), we say that σ satisfies ϕ, denoted
as σ |= ϕ, iff it holds that σ, 0 |= ϕ, where, for every i ∈
{0, . . . , n}:

1. σ, i |= p iff si |= p, when p ∈ P .
2. σ, i |= ¬ϕ iff σ, i 6|= ϕ

3. σ, i |= ψ ∧ χ iff σ, i |= ψ and σ, i |= χ

4. σ, i |= ψ ∨ χ iff σ, i |= ψ or σ, i |= χ

5. σ, i |= Ωψ iff i < n and σ, (i+ 1) |= ψ

6. σ, i |= fflψ iff i = n or σ, (i+ 1) |= ψ

7. σ, i |= ψUχ iff there exists k ∈ {i, ..., n} such that
σ, k |= χ and for each j ∈ {i, ..., k − 1}, it holds that
σ, j |= ψ

8. σ, i |= ψ Rχ iff for each k ∈ {i, ..., n} it holds that
σ, k |= χ or there exists a j ∈ {i, ..., k − 1} such that
σ, j |= ψ

We sometimes use the macros true def
= p∨¬p, false def

= ¬true,
and ϕ → ψ as ¬ϕ ∨ ψ. Additionally, Ψϕ, pronounced as
“eventually ϕ” is defined as trueUϕ, and Φϕ, pronounced as
“always ϕ” is defined as ¬Ψ¬ϕ.

2.5 Deterministic Planning with LTL goals
A planning problem with a finite LTL goal is a tuple P =
〈F,O, I,G〉, where F , O, and I are defined as in classical
planning problems, but where G is a formula in fLTL(F).
An action sequence α is a plan for P if α is applicable in I ,
and the execution trace σ induced by the execution of α in I
is such that σ |= G.

There are two approaches to compiling away LTL via non-
deterministic finite-state automata [Edelkamp, Jabbar, and
Naizih, 2006; Baier and McIlraith, 2006]. B&M’s approach
compiles away LTL formulas exploiting the fact that for ev-
ery finite LTL formula ϕ it is possible to build an NFA that
accepts the finite models of ϕ. To illustrate this, Figure 1
shows an NFA for Φ(p → ΩΨq). B&M represent the NFA
within the planning domain using one fluent per automaton
state. In the example of Figure 1, this means that the new
planning problem contains fluents Eq1 and Eq2 . The transla-
tion is such that if α is a sequence of actions that induces the

execution trace σ = s1 . . . sn, then Eq is true in sn iff there is
some run of the automaton over σ that ends in state q. B&M’s
translation has the following property.

Theorem 1 (Follows from [Baier, 2010]) Let P be a classi-
cal planning problem, ϕ be a finite LTL formula, and P ′ be
the instance that results from applying the B&M translation
to P . Moreover, let α be a sequence of actions applicable in
the initial state of P , and let σ be the sequence of (planning)
states induced by the execution of α in P ′. Finally, let Aϕ be
the NFA for ϕ. Then the following are equivalent statements.

1. There exists a run ρ of Aϕ ending in q.
2. Eq is true in the last state of σ.

As a corollary of the previous theorem, one obtains that satis-
faction of finite LTL formulas can be determined by checking
whether or not the disjunction

∨
f∈F Ef holds, where F de-

notes the set of final states of Aϕ.
Unfortunately, B&M’s translation is worst-case exponen-

tial [Baier, 2010]; for example, an NFA for ∧ni=1Ψpi has
2n states. Baier [2010] proposes a formula-partitioning tech-
nique that allows the method to generate more compact trans-
lations for certain formulas. The method, however, is not ap-
plicable to any formula.

Edelkamp’s approach is similar to B&M’s: it builds a
Büchi automaton (BA), whose states are represented via flu-
ents, compactly representing all runs of the automaton in a
single planning state. The main difference is that the state
of the automaton is updated via specific actions—a process
that they call synchronized update. We modify this idea in
the compilation we give below; however, our compilation is
significantly different since it does not represent all runs of
the automaton in the same planning state. It is important to
remark that the use of BA interpreted as NFA does not yield
a correct translation for general LTL goals, although it is cor-
rect for the PDDL3 subset of LTL [De Giacomo, Masellis,
and Montali, 2014].

3 Alternating Automata and Finite LTL
A central part of our approach is the generation of an AA
from an LTL formula. To do this we modify Muller, Saoudi,
and Schupp’s AA [1988] for infinite LTL formulas. Our AA
is equivalent to a recent proposal by De Giacomo, Masellis,
and Montali [2014]. The main difference between our con-
struction and De Giacomo, Masellis, and Montali’s is that we
do not assume a distinguished proposition becomes true only
in the final state. On the other hand, we require a special state
(qF) that indicates the sequence should finish. The use of
such a state is the main difference between our AA for finite
LTL and Muller, Saoudi, and Schupp’s AA for infinite LTL.

We require the LTL input formula to be written in negation
normal form (NNF); i.e., a form in which negations can be
applied only to atomic formula. This transformation can be
done in linear time [Gerth et al., 1995].

Let ϕ be in fLTL(S) and sub(ϕ) be the set of the
subformulas of ϕ, including ϕ. We define Aϕ =
(Q, 2S , δ, qϕ, {qF }), where Q = {qα | α ∈ sub(ϕ)} ∪ {qF }

1698

and:

δ(q`, s) =

{
>, if ` ∈ Lit(F) and s |= `

⊥, if ` ∈ Lit(F) and s 6|= `

δ(qF , s) = ⊥
δ(qα∨β , s) = δ(qα, s) ∨ δ(qβ , s)
δ(qα∧β , s) = δ(qα, s) ∧ δ(qβ , s)
δ(qΩα, s) = qα
δ(qfflα, s) = qF ∨ qα
δ(qαU β , s) = δ(qβ , s) ∨ (δ(qα, s) ∧ qαU β)

δ(qαR β , s) = δ(qβ , s) ∧ (qF ∨ δ(qα, s) ∨ qαR β)

Theorem 2 Given an LTL formula ϕ and a finite sequence of
states σ, Aϕ accepts σ iff σ |= ϕ.
Proof sketch: Suppose that σ = x1x2 . . . xn ∈ Σ∗, where
Σ = 2S . The proof of the theorem is straightforward from
the following lemma: ϕ: σ, i |= ϕ if and only if there exists
a sequence r = Qi−1Qi . . . Qn, such that: (1) Qi−1 = {qϕ},
(2) Qn ⊆ {qF }, (3) For each subset Qj in the sequence r it
holds that Qj ⊆ sub(ϕ) ∪ {qF } and (4) For each j ∈ {i, i+
1, . . . , n} it holds that Qj |= δ(Qj−1, xj). The proof for the
lemma follows. It is inductive on the construction of ϕ.
⇒) Suppose that σ, i |= ϕ. To prove this direction, it suf-
fices to provide a sequence r = Qi−1Qi . . . Qn satisfying the
aforementioned properties. Below we show each sequence.
We do not show that they satisfy the four properties; we leave
this as an exercise to the reader.
• ϕ = `, for any literal `. Then r = ({q`}, ∅, . . . , ∅).

Suppose that the lemma holds for any ϕ with less than m
operators and that for any α and β with less thanm operators,
their respective sequences are r′ = Q′i−1Q

′
iQ
′′
i+1 . . . Q

′
n and

r′′ = Q′′i−1Q
′′
iQ
′′
i+1 . . . Q

′′
n. Now, let ϕ be a formula with m

operators:
• ϕ = α ∨ β. Then σ, i |= α or σ, i |= β. Without

loss of generality, suppose that σ, i |= α. Then r =
({qϕ}, Q′i, Q′i+1, . . . , Q

′
n).

• ϕ = α ∧ β. Then r = ({qϕ}, (Q′i ∪ Q′′i), (Q′i+1 ∪
Q′′i+1), . . . , (Q′n ∪Q′′n).

• ϕ = Ωα. Then σ, (i+1) |= α. In this case, the sequence
for α is r′ = Q′iQ

′′
i+1 . . . Q

′
n. With this, the sequence r

for Ωα is r = ({qϕ}, {qα}, Q′′i+1, . . . , Q
′
n).

• ϕ = fflα. Then i = n or σ, (i + 1) |= α. If i = n, the
sequence r = (Qn−1, Qn) = ({qϕ}, {qF }). If i < n,
consider the same sequence r for the case Ωα.
• ϕ = αUβ. Then, there exists k ≥ i such that σ, k |= β

and for every j ∈ {i, . . . , k − 1} it holds that σ, j |= α.
For β, assume its sequence is rk = (Qkk−1, Q

k
k, . . . , Q

k
n)

and for each α that is satisfied by σ, j, assume its se-
quence is rj = (Qjj−1, Q

j
j , . . . , Q

j
n). The sequence

r = Qi−1Qi . . . Qn is given by:

Qj =


{qαU β}, if j = i− 1

{qαU β} ∪
⋃j
x=iQ

x
j , if i− 1 < j < k⋃k

x=iQ
x
j , if j ≥ k

• ϕ = αRβ. Then, for each k ∈ {i, . . . , n} it holds that
σ, k |= β or there exists a j ∈ {i, . . . , k − 1} such that
σ, j |= α. If there is no such j, then σ, k |= β for every
k ∈ {i, . . . , n} and for each one of them, assume their
sequence will correspond to rk = (Qkk−1, Q

k
k, . . . , Q

k
n).

The sequence r = Qi−1Qi . . . Qn is given by:

Qk =


{qαR β}, if k = i− 1

{qαR β} ∪
⋃k
x=iQ

x
k, if i− 1 < k < n

{qF }, if k = n

If there is a j ∈ {i, . . . , k − 1} such that σ, j |= α,
consider the minimum such j and assume its sequence
is r′ = (Aj−1, Aj , . . . , An). For k ∈ {i, . . . , j}, the
sequences for β will be rk = (Bkk−1, B

k
k , . . . , B

k
n). The

sequence r = Qi−1Qi . . . Qn is given by:

Qk =


{qαR β}, if k = i− 1

{qαR β} ∪
⋃k
x=iB

x
k , if i− 1 < k < j

Ak ∪
⋃j
x=iB

x
k , if k ≥ j

⇐) Suppose that there exists a sequence r = Qi−1Qi . . . Qn
for ϕ that satisfies the four properties. To prove that σ, i |= ϕ,
it should be straightforward for ϕ = `. For the inductive
steps, where α is a direct subformula of ϕ, the sequence r
must be used to create a new sequence r′ for α (ensuring
that r′ satisfies the four properties) and use the implication
of σ, i |= α. This finishes the proof for the lemma. �

4 Compiling Away finite LTL Properties
Now we propose an approach to compiling away finite LTL
properties using the AA construction described above.

First, we argue that the idea underlying both Edelkamp’s
and B&M’s translations would not yield an efficient trans-
lation if applied to AA. Recall in both approaches if
Eq1 , . . . , Eqn are true in a planning state s, then there are n
runs of the automaton, each of which ends in q1, . . . , qn (The-
orem 1). In other words, the planning state keeps track of all
of the runs of the automaton. To apply the same principle to
AA, we would need to introduce one fluent for each subset
of states of the AA, therefore generating a number of fluents
exponential on the size of the original formula. This is be-
cause runs of AA are sequences of sets of states, so we would
require states of the form ER, where R is a set of states.

To produce an efficient translation, we renounce the idea
of representing all runs of the automaton in a single planning
state. Our translation will then only keep track of a single run.

4.1 Translating LTL via LTL Synchronization
Our compilation approach takes as input an LTL planning
problem P and produces a new planning problem P ′, which
is is like P but contains additional fluents and actions. Like
previous compilations, AG is represented in P ′ with addi-
tional fluents, one for each state of the automaton for G. Like
in Edelkamp’s compilation P ′ contains specific actions—
below referred to as synchronization actions—whose only
purpose is to update the truth values of those additional flu-
ents. A plan for P ′ alternates one action from the original

1699

problem P with a number of synchronization actions. Un-
like any other previous compilation, P ′ does not represent all
possible runs of the automaton in a single planning state.

Synchronization actions update the state of the automa-
ton following the definition of the δ function. The most no-
table characteristic that distinguishes synchronization from
the Edelkamp’ s translation is that non-determinism inherent
to the AA is modeled using alternative actions, each of which
represents the different non-deterministic options of the AA.
As such if there are n possible non-deterministic choices, via
the applications of synchronization actions there will be n
reachable planning states, each representing a single run.

Given a planning problem P = 〈F,O, I,G〉, our transla-
tion generates a problem P ′ in which there is one (new) fluent
q for each state q of the AA AG. The compilation is such that
the following property holds: if α = a1a2 . . . an is applicable
in the initial state of P , then there exists a set Aα of action
sequences of the form α0a1α1a2α2 . . . anαn, where each αi
is a sequence of synchronization actions whose sole objective
is to update the fluents representing AG’s state.

Our theoretical result below says that our compilation can
represent all runs, but only one run at a time. Specifically,
each of the sequences of Aα corresponds to some run of AG
over the state sequence induced by α over P . Moreover, if
α′ ∈ Aα, Eq is true in the state resulting from performing
sequence α′ in P ′ iff q is contained in the last element of a
run that corresponds to α′.

We we are ready to define P ′. Assume the AA for G has
the form AG = (Q,Σ, δ, q0, {qf}).
Fluents P ′ has the same fluents as P plus fluents for the
representation of the states of the automaton (Q), flags for
controlling the different modes (copy, sync, world), and a
special fluent ok, which becomes false if the goal has been
falsified. Finally, it includes the set QS = {qS | q ∈ Q}
which are “copies” of the automata fluents, which we de-
scribe in detail below. Formally, F ′ = F ∪ Q ∪ QS ∪
{copy, sync,world,ok}.

The set of operators O′ is the union of the sets Ow and Os.
World Mode Set Ow contains the same actions in O, but
preconditions are modified to allow execution only in “world
mode”. Effects, on the other hand are modified to allow
the execution of the copy action, which initiates the syn-
chronization phase, and which is described below. Formally,
Ow = {a′ | a ∈ O}, and for all a′ in Ow:

prec(a′) = prec(a) ∪ {ok,world},
eff (a′) = eff (a) ∪ {copy,¬world}.

Synchronization Mode The synchronization mode can be
divided in three consecutive phases. In the first phase, we
execute the copy action which in the successor states adds a
copy qS for each fluent q that is currently true, deleting q.
Intuitively, during synchronization, each qS defines the state
of the automaton prior to synchronization. The precondition
of copy is simply {copy,ok}, while its effect is defined by:

eff (copy) = {q → qS , q → ¬q | q ∈ Q} ∪ {sync,¬copy}
As soon as the sync fluent becomes true, the second phase

of synchronization begins. Here the only executable actions

Sync Action Precondition Effect
trans(qS`) {sync,ok, qS` , `} {¬qS` }
trans(qSF) {sync,ok, qSF } {¬qSF ,¬ok}
trans(qSα∧β) {sync,ok, qSα∧β} {qSα , qSβ ,¬q

S
α∧β}

trans1(qSα∨β) {sync,ok, qSα∨β} {qSα ,¬qSα∨β}
trans2(qSα∨β) {sync,ok, qSα∨β} {qSβ ,¬q

S
α∨β}

trans(qSΩα) {sync,ok, qSΩα} {qα,¬qSΩα}
trans1(qSfflα) {sync,ok, qSfflα} {qF ,¬qSfflα}
trans2(qSfflα) {sync,ok, qSfflα} {qα,¬qSfflα}
trans1(qSαU β) {sync,ok, qSαU β} {qSβ ,¬q

S
αU β}

trans2(qSαU β) {sync,ok, qSαU β} {qSα , qαU β ,¬qSαU β}
trans1(qSα R β) {sync,ok, qSα R β} {qSβ , qF ,¬q

S
α R β}

trans2(qSα R β) {sync,ok, qSα R β} {qSβ , q
S
α ,¬qSα R β}

trans3(qSα R β) {sync,ok, qSα R β} {qSβ , qα R β ,¬qSα R β}

Table 1: The synchronization actions for LTL goalG in NNF.
Above `, αRβ, αUβ, and Ωα are assumed to be in the set
of subformulas of G. In addition, ` is assumed to be a literal.

are those that update the state of the automaton, which are
defined in Table 1. Note that one of the actions deletes the
ok fluent. This can happen, for example while synchroniz-
ing a formula that actually expresses the fact that the action
sequence has to conclude now.

When no more synchronization actions are possible, we
enter the third phase of synchronization. Here only action
world is executable; its only objective is to reestablish world
mode. The precondition of world is {sync,ok} ∪ QS , and
its effect is {world,¬sync}.

The set Os is defined as the one containing actions copy,
world, and all actions defined in Table 1.
New Initial State The initial state of the original problem
P intuitively needs to be “processed” by AG before starting
to plan. Therefore, we define I ′ as I ∪ {qG, copy,ok}.
New Goal Finally, the goal of the problem is to reach a state
in which no state fluent in Q is true, except for qf , which
may be true. Therefore, we define G′ = {world,ok} ∪
(Q \ {qF }).

4.2 Properties
There are two important properties that can be proven about
our translation. First, our translation is correct.
Theorem 3 (Correctness) Let P = 〈F,O, I,G〉 be a plan-
ning problem with an LTL goal and P ′ = 〈F ′, O′, I ′, G′〉
be the translated instance. Then P has a plan a1a2 . . . an
iff P ′ has a plan α0a1α1a2α2 . . . anαn, in which for each
i ∈ {0, . . . , n}, αi is a sequence of actions in Os.
Proof sketch: We show each sequence of actions αi simu-
lates the behavior of the automata, i.e., whenever t is a plan-
ning state whose next action must be copy and qβ ∈ t, then
ρ(t, αi) satisfies δ(qβ , t).
For this, let’s define tS as the subset of all the automata fluents
QS that are added during the execution of the sequence of ac-
tions αi. We will prove the following lemma by induction on
the construction of ϕ: If qSϕ ∈ tS , then ρ(t, αi) |= δ(qϕ, t):
Observe that if qSϕ ∈ tS , then there must be an action
trans(qSϕ) that was executed in αi. This is because ρ(t, αi) ∩
QS = ∅ and only trans(qSϕ) can delete qSϕ from the current

1700

state. The second observation is: If some action trans adds
qSα , then qSα ∈ tS . This is by definition of tS . If the ac-
tion adds qψ , then qψ ∈ ρ(t, αi), because the only action that
deletes fluents in Q is copy.

• ϕ = `. Assume ` is positive literal. Then there is
a planning state s in which trans(qS`) was executed.
Since the precondition requires ` ∈ s and ` can only be
added by an action from Ow, then ` ∈ t. By definition,
δ(q`, t) = >, and it is clear that ρ(t, αi) |= δ(qϕ, t). The
argument is analogous for a negative literal `.

We will not consider the case for qF . It is never desirable
to synchronize that state, because the special fluent ok is re-
moved, leading to a dead end. Now, assume that qSϕ ∈ tS

implies ρ(t, αi) |= δ(qϕ, t) for every ϕ with less than m op-
erators. The proof sketch for each case can be verified by the
reader as follows:

• For each ϕ, it is clear that a version of trans(qSϕ) is ex-
ecuted due to the first observation.

• If qψ is added by trans, then qψ ∈ ρ(t, αi) due to the
second observation. This implies that ρ(t, αi) |= qψ .

• If qSα is added by trans, then qSα ∈ tS . By induction hy-
pothesis, ρ(t, αi) |= δ(qα, t), because α is a strict sub-
formula of ϕ and has less than m operators.

• Finally, using entailment (for positive boolean formulae)
and the definition of the transitions for the alternating
automata Aϕ, it can be verified that ρ(t, αi) |= δ(qϕ, t).

• The argument is similar for the other versions of trans.

To conclude our theorem, note that if t is a planning state,
qβ ∈ t and the next action to execute is copy, then qSβ ∈ tS .
Using the lemma, this implies ρ(t, αi) |= δ(qϕ, t). �

Second, the size of the plan for P ′ is linear on the size of
the plan for P .
Theorem 4 (Bounded synchronizations) If T is a reach-
able planning state from I ′ and T ∩ QS 6= ∅, then there is a
sequence of trans actions σ such that δ(T, copy ·σ)∩QS = ∅
and |σ| ∈ O(|G|).

Proof: Note that T is a state in world mode getting ready to
go into synchronization mode after the copy action has been
executed. The main idea of the proof is to choose the order
of the subformulae to be synchronized, where the first one
corresponds to the largest subformula of the current state, the
second one corresponds to the second largest subformula and
so on. Note that when an action trans(qSα) is executed, it
always happens that at most two fluents qSβ and qSγ are added,
and the formulae β and γ are strict subformulae of α. This
means that a subformula will never get synchronized twice
in a single synchronization phase σ. Since the number of
subformulae is linear on |G|, this means that the length of σ
must be O(|G|). �

4.3 Towards More Efficient Translations
The translation we have presented above can be modified
slightly for obtaining improved performance. The following
are modifications that we have considered.

An Order for Synchronization Actions Consider the goal
formula is α ∧ β and that currently both qα and qβ are
true. The planner has two equivalent ways of completing
the synchronization: by executing first trans(qα) and then
trans(qβ), or by inverting this sequence. By enforcing an
order between these synchronizations, we can reduce the
branching factor at synchronization phase. Such an order is
simple to enforce by modifying preconditions and effects of
synchronization actions so that states are synchronized fol-
lowing a topological order of the parse tree of G.
Positive Goals The goal condition of the translated instance
requires being in and every q ∈ Q to be false. On the other
hand, action copy, which has to be performed after each world
action, has precisely the effect of making every q ∈ Q false.
This may significantly hurt performance if search relies on
heuristics that relax negative effects of actions, like the FF
heuristic [Hoffmann and Nebel, 2001], which is key to the
performance of state-of-the-art planning systems [Richter and
Helmert, 2009]. To improve heuristic guidance, we define a
new fluent qD, for each q ∈ Q, with the intuitive meaning
that qD becomes true when trans(q) cannot be executed in
the future. For every action trans(qSα) that does not add qα,
we include the conditional effect {qβ | β ∈ super(α)} →
qDα , where super(α) is the set of subformulas of G that are
proper superformulas of α. Using a function f that takes a
fLTL(F) formula and generates a propositional formula, the
new goal f(G) can be recursively written as follows:

• If ϕ = p and p ∈ Lit(F), then f(p) = qDp .

• If ϕ = α ∧ β, then f(ϕ) = qDϕ ∧ f(α) ∧ f(β)

• If ϕ = α ∨ β, then f(ϕ) = qDϕ ∧ (f(α) ∨ f(β))

• If ϕ = Ωβ or ϕ = fflβ, then f(ϕ) = qDϕ ∧ f(β)

• If ϕ = α?β, where ? ∈ {U,R}, then f(ϕ) = qDϕ ∧f(β)

5 Empirical Evaluation
The objective of our evaluation was to compare our approach
with existing translation approaches, over a range of general
LTL goals, to understand when it is convenient to use one
or other approach. We chose to compare to B&M’s rather
than Edelkamp’s because the former seems to yield better per-
formance [Baier, Bacchus, and McIlraith, 2009]. We do not
compare against other existing systems that handle PDDL3
natively, such as LPRPG-P [Coles and Coles, 2011], be-
cause efficient translations for the (restricted) subset of LTL
of PDDL3 into NFA are known [Gerevini et al., 2009].

We considered both LAMA [Richter, Helmert, and West-
phal, 2008] and FFX [Thiébaux, Hoffmann, and Nebel,
2005], because both are modern planners supporting derived
predicates (required by B&M). We observed that LAMA’s
preprocessing times where high, sometimes exceeding plan-
ning time by 1 to 2 orders of magnitude, and thus decided to
report results we obtained with FFX . We used an 800MHz-
CPU machine running Linux. Processes were limited to 1 GB
of RAM and 15 min. runtime.

There are no planning benchmarks with general LTL goals,
so we chose two of the domains (rovers and openstacks) of
the 2006 International Planning Competition, which included

1701

Openstacks Domain
B&M’s translator Non-PG + Non-OSA Non-PG + OSA PG + Non-OSA PG + OSA

TT PL PT PS TT PL WPL PT PS TT PL WPL PT PS TT PL WPL PT PS TT PL WPL PT PS
a03 0.373 23 0.10 34 0.463 136 21 6.44 222245 0.486 309 21 10.86 203461 0.475 167 23 0.05 1413 0.501 319 22 0.25 3421
a04 1.594 0 NR NR 0.470 156 22 22.49 592081 0.504 392 22 24.04 417585 0.496 192 24 0.10 2763 0.527 405 23 0.52 6573
a05 21.852 0 NR NR 0.482 179 23 103.30 1573433 0.523 481 23 54.07 872446 0.525 213 24 0.23 5906 0.564 497 24 1.17 13074
e03 0.377 23 0.10 34 0.459 117 21 9.08 294097 0.481 287 21 10.57 202873 0.469 167 23 0.05 1413 0.491 297 22 0.23 3217
e04 1.599 0 NR NR 0.472 125 22 31.93 755539 0.498 369 22 23.41 418240 0.489 192 24 0.10 2763 0.517 382 23 0.48 6176
e05 22.390 0 NR NR 0.478 133 23 149.88 1958261 0.518 457 23 53.27 876816 0.513 213 24 0.22 5906 0.548 473 24 1.05 12292
f03 0.246 23 0.02 34 0.455 142 21 5.41 196938 0.474 265 21 8.78 179157 0.462 166 23 0.05 1412 0.483 274 22 0.21 3100
f05 0.268 25 0.02 36 0.477 199 23 78.71 1364638 0.503 433 23 48.62 834783 0.504 212 24 0.22 5905 0.536 448 24 1.01 12172
g02 0.256 24 0.10 214 0.466 166 21 20.15 533753 0.491 331 21 18.44 341998 0.484 197 22 0.41 10439 0.509 342 22 0.48 6498
g03 0.266 24 0.13 224 0.474 215 22 138.11 1892750 0.510 415 22 35.84 635715 0.506 231 22 1.53 35117 0.542 410 22 1.07 13364
h01 2.423 2 96.98 3 0.474 21 2 0.41 8907 0.504 49 2 0.95 14569 0.495 19 2 0.00 86 0.529 44 2 0.04 498
h02 4.567 2 0.00 3 0.477 20 2 2.58 51965 0.510 52 2 0.67 10967 0.505 32 2 0.07 1634 0.535 48 2 0.07 1002

Rovers Domain
e03 0.407 10 0.05 16 0.481 62 10 68.39 1173227 0.507 144 10 46.04 544034 0.498 67 10 0.02 453 0.517 140 10 0.02 448
e04 1.639 0 NR NR 0.494 0 0 NR NR 0.539 1 0 NR NR 0.517 106 15 0.05 1324 0.545 252 15 0.07 1201
f01 0.242 4 0.00 5 0.460 25 4 0.03 1757 0.471 31 4 0.04 1353 0.462 22 4 0.00 64 0.469 28 4 0.00 62
f02 0.255 7 0.00 10 0.468 45 7 0.55 25490 0.487 73 7 1.84 44002 0.475 42 7 0.01 316 0.489 69 7 0.01 181
f03 0.270 10 0.01 15 0.481 68 10 7.67 264568 0.501 133 10 41.78 522432 0.490 66 10 0.02 452 0.505 129 10 0.03 425
i04 0.299 3 0.01 4 0.499 19 2 0.04 1522 0.528 49 2 0.04 847 0.525 17 3 0.00 43 0.548 47 3 0.02 301
j04 0.301 3 0.01 4 0.501 19 2 0.03 1290 0.537 49 2 0.05 962 0.522 26 5 0.01 148 0.554 78 5 0.20 3494

Blocksworld Domain
a03 1.627 2 0.02 3 0.448 22 2 0.12 4115 0.472 46 2 0.04 792 0.464 19 2 0.00 32 0.490 41 2 0.01 146
a04 22.220 0 NR NR 0.458 25 2 1.94 45113 0.492 55 2 0.31 4692 0.486 22 2 0.00 50 0.523 50 2 0.01 228
a05 471.574 0 NR NR 0.471 28 2 38.99 474906 0.514 64 2 2.52 24761 0.522 25 2 0.01 77 0.559 59 2 0.04 330
b03 9.801 1 0.00 2 0.446 11 1 0.00 88 0.473 31 1 0.01 122 0.464 8 1 0.00 12 0.494 25 1 0.00 85
b04 423.327 1 0.00 2 0.463 11 1 0.01 172 0.494 37 1 0.02 248 0.490 8 1 0.00 16 0.523 31 1 0.01 147
b05 NR NR NR NR 0.473 11 1 0.02 285 0.519 43 1 0.05 492 0.527 8 1 0.00 22 0.566 37 1 0.02 269
c03 0.383 2 0.58 4 0.443 24 2 0.09 3607 0.470 46 2 0.01 357 0.465 22 2 0.00 101 0.489 41 2 0.01 97
c04 1.809 0 NR NR 0.456 27 2 1.80 44666 0.490 55 2 0.06 1067 0.487 25 2 0.00 194 0.519 50 2 0.02 162
c05 25.655 0 NR NR 0.470 30 2 48.30 610049 0.509 64 2 0.31 3325 0.520 28 2 0.04 514 0.558 59 2 0.04 287
d03 0.234 2 0.00 3 0.452 24 2 0.11 3451 0.481 49 2 0.07 1612 0.470 21 2 0.00 34 0.502 43 2 0.00 106
d04 0.243 2 0.01 3 0.467 28 2 2.66 48436 0.508 61 2 1.08 14118 0.513 25 2 0.00 53 0.550 55 2 0.02 172
d05 0.251 2 0.01 3 0.486 32 2 84.40 637178 0.535 73 2 17.99 104398 0.566 29 2 0.01 81 0.609 67 2 0.04 256
e03 3.813 0 NR NR 0.457 25 2 0.16 5680 0.489 52 2 0.09 1700 0.483 22 2 0.00 35 0.517 46 2 0.00 150
e04 182.181 0 NR NR 0.476 29 2 6.16 122233 0.517 64 2 1.15 14576 0.532 26 2 0.01 54 0.567 58 2 0.03 257
e05 NR NR NR NR 0.495 0 0 NR NR 0.547 76 2 19.13 106729 0.584 30 2 0.01 82 0.638 70 2 0.06 396

Table 2: Experimental results for a variety of LTL planning tasks.

LTL preferences (but not goals), and generated our own prob-
lems, with some of our goals inspired by the preferences. In
addition, we considered the blocksworld domain.

Our translator was implemented in SWI-Prolog. It takes
a domain and a problem in PDDL with an LTL goal as in-
put and generates PDDL domain and problem files. It also
receives an additional parameter specifying the translation
mode which can be any of the following: simple, OSA, PG,
and OSA+PG, where simple is the translation of Section 4,
and OSA, PG are the optimizations described in Section 4.3.
OSA+PG is the combination of OSA and PG.

Table 2 shows a representative selection of the results we
obtained. It shows translation time (TT), plan length (PL),
planning time (PT), the number of planning states that were
evaluated before the goal was reached (PS). Times are dis-
played in seconds. For our translators we also include the
length of the plan without synchronization actions (WPL).
NR means the planner/translator did not return a plan. For
each problem, a special name of the form x0n was assigned,
where x corresponds to a specific family of formula and n
its parameter (i.e. For the problem a04, the goal formula
α ∪

∧n
i=1 βi was used, with n = 4).

Each family of formulae corresponds to: a: α ∪
∧n
i=1 βi,

b:
∨n
i=1 Ψpi UΨq, c: Ψ(α ∧

∧n
i=1 Ψβi), d:

∧n
i=1(αUβi),

e: Ψ(
∧n
i=1 Ψβi), f :

∧n
i=1 Ψpi, g:

∧3
i=1 Ψpi ∧

∧n−3
i=1 qi U ri,

h: αUβ, where α or β has n nested operators U or R, i:
Ψ(
∨n
i=1 Ψβi) and j: Ψ(

∨n
i=1 Φβi).

We observe mixed results. B&M yields superior results
on some problems; e.g., f03 and f05 of openstacks (of the
form

∧n
i=1 Ψpi). The performance gap is probably due to

the fact that (1) the B&M problem requires fewer actions in
the plan and (2) B&M’s output for these goals is quite com-

pact on the size of the formula. On the other hand, there
are other goal formulas in which our approach outperforms
B&M. For example, problems of the form a0n in openstacks
and blocksworld, and of the form b0n in blocksworld. In
those cases, the B&M translator is forced to generate the
whole automaton, because it has to deal with nested subfor-
mulae in which the distributive property does not hold. As
a consequence, B&M generates an output exponential in n,
which results in higher translation time and eventually in the
the planner running out of memory.

By observing the rest of the data, we conclude that
B&M returns an output that is significantly larger than
our approaches for the following classes of formulas:
αU(

∧n
i=1 Ψβi), αU(

∧n
i=1 βi U γi), (

∨n
i=1 Φαi)Uβ, and

(
∨n
i=1 αi Rβi)Uβ, with n ≥ 4, yielding finally an “NR”.

Being polynomial, our translation handles these formulas rea-
sonably well: low translation times, and a compact output. In
many cases, this allows the planner to return a solution.

The use of positive goals has an important influence in
performance possibly because the heuristic is more accurate,
leading to fewer expansions. OSA, on the other hand, seems
to negatively affect planning performance in FFX . The reason
is the following: FFX will frequently choose the wrong syn-
chronization action and therefore its enforced hill climbing
algorithm will often fail. This behavior may not be observed
in planners that use complete search algorithms.

6 Conclusions
We proposed polynomial-time translations of LTL into final-
state goals, which, unlike existing translations are optimal
with respect to computational complexity. The main differ-
ence between our approach and state-of-the-art NFA-based

1702

translations is that we use AA, and represent a single run
of the AA in the planning state. We conclude from our ex-
perimental data that it seems more convenient to use an our
AA translation precisely when the output generated by the
NFA-based translation is exponentially large in the size of
the formula. Otherwise, it seems that NFA-based translations
are more efficient because they do not require synchroniza-
tion actions, which require longer plans, and possibly higher
planning times. Obviously, a combination of both translation
approaches into one single translator should be possible. In-
vestigating such a combination is left for future work.

Acknowledgements
We thank the anonymous reviewers and acknowledge fund-
ing from the Millennium Nucleus Center for Semantic Web
Research under Grant NC120004, and from Fondecyt Grant
1150328, both from the Republic of Chile.

References
[Bacchus and Kabanza, 1998] Bacchus, F., and Kabanza, F.

1998. Planning for temporally extended goals. Annals of
Mathematics and Artificial Intelligence 22(1-2):5–27.

[Bacchus and Kabanza, 2000] Bacchus, F., and Kabanza, F.
2000. Using temporal logics to express search control
knowledge for planning. Artificial Intelligence 116(1-
2):123–191.

[Baier and McIlraith, 2006] Baier, J. A., and McIlraith, S. A.
2006. Planning with first-order temporally extended goals
using heuristic search. In Proceedings of the 21st National
Conference on Artificial Intelligence, 788–795.

[Baier, Bacchus, and McIlraith, 2009] Baier, J. A.; Bacchus,
F.; and McIlraith, S. A. 2009. A heuristic search approach
to planning with temporally extended preferences. Artifi-
cial Intelligence 173(5-6):593–618.

[Baier, 2010] Baier, J. A. 2010. Effective Search Techniques
for Non-Classical Planning via Reformulation. Ph.D. in
Computer Science, University of Toronto.

[Bylander, 1994] Bylander, T. 1994. The computational
complexity of propositional STRIPS planning. Artificial
Intelligence 69(1-2):165–204.

[Coles and Coles, 2011] Coles, A. J., and Coles, A. 2011.
LPRPG-P: relaxed plan heuristics for planning with pref-
erences. In Proceedings of the 21th International Confer-
ence on Automated Planning and Scheduling.

[Cresswell and Coddington, 2004] Cresswell, S., and Cod-
dington, A. M. 2004. Compilation of LTL goal formu-
las into PDDL. In de Mántaras, R. L., and Saitta, L., eds.,
Proceedings of the 16th European Conference on Artificial
Intelligence, 985–986. Valencia, Spain: IOS Press.

[De Giacomo and Vardi, 1999] De Giacomo, G., and Vardi,
M. Y. 1999. Automata-theoretic approach to planning for
temporally extended goals. In Biundo, S., and Fox, M.,
eds., ECP, volume 1809 of LNCS, 226–238. Durham, UK:
Springer.

[De Giacomo and Vardi, 2013] De Giacomo, G., and Vardi,
M. Y. 2013. Linear temporal logic and linear dynamic
logic on finite traces.

[De Giacomo, Masellis, and Montali, 2014] De Giacomo,
G.; Masellis, R. D.; and Montali, M. 2014. Reasoning
on LTL on finite traces: Insensitivity to infiniteness. In
Proceedings of the 28th AAAI Conference on Artificial
Intelligence, 1027–1033.

[Edelkamp, Jabbar, and Naizih, 2006] Edelkamp, S.; Jabbar,
S.; and Naizih, M. 2006. Large-scale optimal PDDL3
planning with MIPS-XXL. In 5th International Planning
Competition Booklet, 28–30.

[Edelkamp, 2006] Edelkamp, S. 2006. On the compilation
of plan constraints and preferences. In Proceedings of
the 16th International Conference on Automated Planning
and Scheduling.

[Gerevini et al., 2009] Gerevini, A.; Haslum, P.; Long, D.;
Saetti, A.; and Dimopoulos, Y. 2009. Deterministic
planning in the fifth international planning competition:
PDDL3 and experimental evaluation of the planners. Arti-
ficial Intelligence 173(5-6):619–668.

[Gerth et al., 1995] Gerth, R.; Peled, D.; Vardi, M. Y.; and
Wolper, P. 1995. Simple on-the-fly automatic verification
of linear temporal logic. In Proceedings of the 15th In-
ternational Symposium on Protocol Specification, Testing
and Verification, 3–18.

[Hoffmann and Nebel, 2001] Hoffmann, J., and Nebel, B.
2001. The FF planning system: Fast plan generation
through heuristic search. Journal of Artificial Intelligence
Research 14:253–302.

[Muller, Saoudi, and Schupp, 1988] Muller, D. E.; Saoudi,
A.; and Schupp, P. E. 1988. Weak Alternating Automata
Give a Simple Explanation of Why Most Temporal and
Dynamic Logics are Decidable in Exponential Time. In
Proceedings of the 3rd Annual Symposium on Logic in
Computer Science, 422–427.

[Pnueli, 1977] Pnueli, A. 1977. The temporal logic of pro-
grams. In Proceedings of the 18th IEEE Symposium on
Foundations of Computer Science, 46–57.

[Richter and Helmert, 2009] Richter, S., and Helmert, M.
2009. Preferred operators and deferred evaluation in satis-
ficing planning. In Proceedings of the 19th International
Conference on Automated Planning and Scheduling.

[Richter, Helmert, and Westphal, 2008] Richter, S.;
Helmert, M.; and Westphal, M. 2008. Landmarks
revisited. In Proceedings of the 23rd AAAI Conference on
Artificial Intelligence, 975–982.

[Rintanen, 2000] Rintanen, J. 2000. Incorporation of tem-
poral logic control into plan operators. In Horn, W., ed.,
Proceedings of the 14th European Conference on Artificial
Intelligence, 526–530. Berlin, Germany: IOS Press.

[Thiébaux, Hoffmann, and Nebel, 2005] Thiébaux, S.; Hoff-
mann, J.; and Nebel, B. 2005. In defense of PDDL axioms.
Artificial Intelligence 168(1-2):38–69.

1703

