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Abstract
The use of expressive logical axioms to specify de-
rived predicates often allows planning domains to
be formulated more compactly and naturally. We
consider axioms in the form of a logic program
with recursively defined predicates and negation-
as-failure, as in PDDL 2.2. We show that prob-
lem formulations with axioms are not only more
elegant, but can also be easier to solve, because
specifying indirect action effects via axioms re-
moves unnecessary choices from the search space
of the planner. Despite their potential, however,
axioms are not widely supported, particularly by
cost-optimal planners. We draw on the connection
between planning axioms and answer set program-
ming to derive a consistency-based relaxation, from
which we obtain axiom-aware versions of several
admissible planning heuristics, such as hmax and
pattern database heuristics.

1 Introduction
In the classical planning model, state variables are modified
by applying actions, and retain their value (persist) when not
affected by an action. However, some properties of states are
more naturally modelled not as direct effects of actions but
instead as derived, in each state, from the basic state variables
via a background theory, expressed in some logic.

Properties defined by a background theory were sup-
ported in several early planning systems [e.g., Manna and
Waldinger, 1987; Barrett et al., 1995; Bonet and Geffner,
2001], but fell out of use as the emphasis in planning shifted
more towards efficiency than expressivity. Thiebaux et al.
[2005] tried to promote this feature once more, by (re-
)introducing it into PDDL and arguing that it allows many
planning problems to be modelled in a more elegant and con-
cise way. In their formulation, the theory that defines derived
predicates is given by a logic program, with negation as fail-
ure semantics, whose rules are referred to as axioms. Never-
theless, support for derived predicates in recently developed
planners is limited to a few systems (e.g., FFX , [Thiébaux
et al., 2005]; LPG [Gerevini et al., 2005]; Marvin [Coles
and Smith, 2007]; Fast Downward, [Helmert, 2006]; and
LAMA [Richter and Westphal, 2010]), none of which are

cost-optimal. In fact, few, and not very sophisticated, tech-
niques for cost-optimal planning with axioms exist. (We dis-
cuss these, and their shortcomings, in Section 4.)

The contribution of this paper is twofold: First, we show,
with examples both new and taken from existing literature,
that axioms enable not only more elegant modelling but
sometimes also more efficient solving of planning problems.
This occurs because a model that uses axioms to derive in-
direct action effects removes unnecessary choices from the
search space of the planner. Second, we apply our model of
planning with global state constraints [Ivankovic et al., 2014]
to planning with axioms, exploiting the correspondance be-
tween the semantics of axioms and their logical foundation in
answer set programming [Gelfond, 2008]. This enables us to
derive problem relaxations that take the constraints on plans
imposed by axioms into account. From the relaxations we can
derive axiom-aware versions of admissible heuristics such as
hmax, LM-Cut and pattern databases.

2 Planning with axioms
We define axioms and derived state variables in the context
of a finite-domain representation of planning problems (oft-
called SAS+), in a way that is consistent with the semantics
of PDDL axioms [Thiébaux et al., 2005] and the representa-
tion used in the Fast Downward planner [Helmert, 2009].

A planning problem consists of state variables, actions, ax-
ioms, an initial state and a goal condition. State variables are
partitioned into basic variables, which are directly affected
by actions and subject to persistence, and derived variables,
whose values are computed via axioms. We will also refer to
basic variables as primary and derived variables as secondary
[Ivankovic et al., 2014].

Each variable x has a finite domain D(x) of values. For
ease of presentation, we will assume that secondary variables
are Boolean, i.e., their domain is {F, T}. A state is an as-
signment of values to all primary variables. The semantics of
axioms (defined below) ensure that a complete valuation of
the primary variables entails a unique consistent valuation of
the secondary variables.

Conditions on states are built from atomic propositions of
the form x = v, for v ∈ D(x), and standard logic connec-
tives. For Boolean variables, we abbreviate x = T as x and
x = F as ¬x. Each action has a precondition (pre(a)) and an
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effect (eff(a)), which assigns new values to some subset of
primary state variables.

An axiom is a rule x← ϕ, where x is a secondary variable
(called the head of the rule) and ϕ a state condition (called
the body). The set of axioms with head x is said to define x.
ϕ must be in negation normal form, meaning that negation is
applied only to atomic propositions (primary or secondary).
Intuitively, the meaning of an axiom is that when ϕ is true
then the truth of x is inferred. The value of a secondary vari-
able is false “by default”, that is, unless implied by an axiom.
Thus, the negation of secondary variables is defined by the
“negation as failure” principle.

The set of axioms in a planning problem is required to be
stratified. A stratification maps each secondary variable x
to a “level”, l(x) ∈ {0, . . . ,m}, such that if y appears in
the body of an axiom defining x then l(y) ≤ l(x) and if ¬y
appears in the body of an axiom defining x, then l(y) < l(x).
In other words, stratification allows recursive definitions, but
not “recursion through negation”. The level mapping induces
a partitioning of the axioms into sets A0, . . . , Am such that
Ai contains the axioms defining all variables whose level is i.
Testing stratifiability and computing a level mapping can be
done in polynomial time [Thiébaux et al., 2005].

Primary variable facts in a state together with the axioms
form a logic program, and values of the secondary variables
are given by the stable model of this program [e.g., Gelfond,
2008]. Stratification ensures that this model is unique, and
can be computed by a stratified fixpoint procedure [as shown
by Apt et al., 1988]: Secondary variables are initialised to F
(the default). Axiom strata are then processed in sequence,
A0, . . . , Am. For each axiom x ← ϕ in stratum Ai, x set
to T if ϕ evaluates to true. This is repeated until no variable
changes anymore. The values of the secondary variables de-
fined in stratum i are then fixed, and computation proceeds to
the next stratum.

Example 1 We illustrate the formalism with a simple, ab-
stract example, which we will also use later in the paper.
Consider an undirected graph, with a designated source node
s and target node t. K “roadblocks” are located on the edges
of the graph, and can move between adjacent edges. (More
than one roadblock can occupy the same edge, and one can
pass another on the edge.) The goal is to move the roadblocks
so that there is no unblocked path from the source to the tar-
get node. In other words, a goal state identifies an s-t-cut of
size ≤ K. Hence, we call it the Min-Cut domain. Figure 1
shows a small instance, with two roadblocks A and B.

The primary state variables are the locations of the road-
blocks, atl, and their domains is the set of edges. The sec-
ondary variables and their defining axioms are:

blocked(i, j) ← atl = eij l = 1, . . . ,K
reachable(i) ← (i = s) (source node)
reachable(i) ← reachable(j) ∧ ¬blocked(i, j) j ∈ N(i)
isolated(i) ← ¬reachable(i),

where N(i) is the set of neighbouring nodes of i. Variables
that appear in the body of an axiom but not in the head are im-
plicitly existentially quantified. Note that reachable(i) means
that i is reachable from s by an unblocked path. The action,

1s = 2 3

4 5 6 = t

BA

Figure 1: An example problem from the Min-Cut domain.

move(l, eij , ejk), changes atl from eij to ejk as expected.
The goal is isolated(t).

In the state in Figure 1, atA = e1,5 and atB = e3,6, so we
can derive ¬blocked(1, 2) and ¬blocked(2, 6), and from this,
reachable(1), reachable(2) and reachable(6). To achieve the
goal, the two roadblocks must move to edges e1,2 and e5,6.

3 Modelling with axioms
Thiébaux et al. [2005] argue that recursion makes axioms a
natural way to express transitive closure properties, like the
existence of paths (reachability) or flows. However, they can
also express the negation of complex, including recursive,
properties. Although planning problems with axioms can be
reformulated without, the following examples show that their
use improves both problem modelling and solving.

The Sokoban domain
The Sokoban puzzle is a well-known single-agent search
benchmark, which has also been formulated as a planning
problem and used in the IPC. It features a man who can move
and push stones, one at a time, around a maze, with the goal
of pushing all stones to designated goal squares. The ob-
jective (in this variant) is to minimise the number of stone
pushes; moves of the man inbetween pushes do not count, as
long as he is able to reach the square next to the stone to be
pushed. (He cannot move through a square that contains a
stone.) The classical planning formulation models the step-
wise (non-pushing) moves of the man as actions with zero
cost. This forces the planner to make an irrelevant choice of
the exact path the man takes between each push action, in-
creasing the size of the state space and plan length.

Reachability, given the current arrangement of stones, is
straightforward to express as a recursively derived property.
Thus, with axioms, the problem can be formulated with push-
ing actions only, allowing the man to “jump” from one stone
to the next as long as a path between them exists.

Figure 2(a) shows the effect that this has on A? search.
The graph shows the number of node expansions needed to
prove optimality, i.e., for search to reach the f? value. (This
is a function of the size of the search space and the informed-
ness of the heuristic only, not subject to tie-breaking varia-
tions.) We compare the IPC 2008 STRIPS formulation with
one using axioms. The pattern database (PDB) heuristic is
the canonical additive combination of several PDBs [Haslum
et al., 2007]. The axiom-aware PDB heuristic is described in
Section 4. For the formulation with axioms, we use one PDB
per stone location variable. In the STRIPS formulation, the
location and “at-goal” status of each stone is split over two
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Figure 2: Node expansions required to prove optimality on
equivalent problem formulations with and without axioms:
(a) Sokoban problems; (b) controller verification problems
due to Ghosh et al. [2015]. The door controller problems are
marked with a dot (•) in (b).

variables, so we include both in each PDB to get an equiv-
alent heuristic. CPU time is limited to 1h and memory to
3Gb per problem. Blind search on the STRIPS formulation
expands, on average, 17 times more nodes than on the formu-
lation with axioms. However, node expansion with axioms is,
on average, an order of magnitude slower, so runtimes end up
within a factor 2.7 of each other. The precomputation time
for the axiom-aware PDB heuristic is also several orders of
magnitude larger.

Pseudo-adversarial domains
By adversarial planning we usually mean game-like planning
problems, where the planning agent faces an intelligent ad-
versary who actively opposes or disrupts the plan. In some
situations, however, the actions of the adversary are deter-
mined by a complex, but known and deterministic, procedure.
We may call such problems “pseudo-adversarial”.

Ghosh et al. [2015] encode verification of functional re-
quirements of distributed automotive control systems as such
a pseudo-adversarial planning problem. In their setting, the
planning agent is the “environment” and the adversary is the
control system, acting according to its specification (though
the environment may exploit any non-determinism in the con-
troller, by chosing the order of applicable control actions).
The environment may only take actions when the controller
is in a “stable” state, meaning no control action is applicable.
This reflects an assumption that controller reaction times are
faster than the pace of events in the environment.

Ghosh et al. term this “planning with action prioritization”,
and propose a compilation to classical planning. They add a
Boolean variable, ena, for each control action a, which in-
dicates that a may be applicable, and add

∧
a∈Actl

¬ena to
the precondition of every environment action and to the goal.
A “disabling” action dl for each literal l that appears in the
precondition of some control action, with pre(dl) = ¬l and
eff(dl) = {ena:=F | l ∈ pre(a)}, is used to mark control
actions inapplicable. Each (environment and control) action
that potentially contributes to making pre(a) true sets ena:=T,
so the plan must include disabling actions before each envi-
ronment action to verify its applicability. Because the com-
piled problems are hard, for the planners they tried, they also

propose an incremental, partial compilation coupled with a
plan repair approach. However, the requirement that no con-
trol action is applicable is easily formulated with axioms:

stable ←
∧

a∈Actl
¬ena

ena ← pre(a)

Although these rules mirror almost exactly the actions in the
compilation by Ghosh et al., making them axioms instead re-
moves from the planner the choice of when and which dis-
abling actions to apply, resulting in a smaller state space and
shorter plans.

This is clearly seen in Figure 2(b). We compare the two
compilations (plain STRIPS and with axioms) on two sets
of verification problems provided by Ghosh et al. [2015],
testing several safety properties of two control systems in
a car: a door lock system and an adaptive cruise controller
(ACC). Some of the problems have no plan: we count these
as “solved” when search is able to prove plan non-existence.
The door lock example is very simple, with only 6 control
and 8 environment actions. The ACC example is much more
complex, with 34 control and 691 environment actions. Nei-
ther blind nor heuristic search was able to solve any of the
ACC problems in the STRIPS formulation, even with up to
4h CPU time and 60Gb of memory. Using the formulation
with axioms, in contrast, all problems can be solved by blind
search, the most difficult taking less than a minute.

The trapping game
As an example of a pseudo-adversarial domain with a more
complex opponent strategy, we consider a game of two play-
ers, called the “blocker” and the “cat”. The cat moves from
node to node on a graph (G), always moving to a node on
a shortest unblocked path to one of a set of designated exit
nodes. (To ensure deterministic moves, ties are broken by
an arbitrary ordering of the nodes.) In between each move
of the cat, the blocker can permanently block a node in the
graph (though not the node the cat currently occupies). The
cat wins if it reaches an exit, and the blocker wins if the cat is
trapped (i.e., no longer able to reach an exit).

To formulate the cat’s strategy we need to determine which
of two neighbouring nodes is closer to an exit:

closer(n, n′)← dte(n, i) ∧ ¬dte(n′, i) 0 ≤ i ≤ |G|
dte(n, 0) ← is-exit(n) ∧ ¬blocked(n)
dte(n, i) ← ¬blocked(n) ∧ dte(n′, i− 1) n′ ∈ N(n)
dte(n, i) ← dte(n, i− 1)

The secondary variable dte(n, i) (“distance-to-exit”) is true
if the shortest distance, along an unblocked path, to an exit
from node n is i steps or less. Hence, node n is closer to
an exit than n′ iff dte(n, i) is true and dte(n′, i) is false, for
some i. The two nodes are at the same distance iff neither
closer(n, n′) nor closer(n′, n) holds. Note that shortest dis-
tances are bounded by the size of the graph (|G|). The cat’s
preference can be expressed as

prefer(n, n′) ← closer(n, n′)
prefer(n, n′) ← same(n, n′) ∧ n ≤lex n′

(where ≤lex is the arbitrary lexical ordering of the nodes).
Let cat-pos be the primary variable representing the cat’s cur-
rent node: the precondition of action cat-move-to(n) is n ∈
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N(cat-pos)∧
∧

n′∈N(cat-pos)\{n} blocked(n′)∨prefer(n, n′).
Since dte(n, i) is false for all i when there is no unblocked
path from n to an exit, the blocker’s goal that the cat is trapped
can be written trapped←

∧
0≤i≤|G| ¬dte(cat-pos, i).

Social and multi-agent planning
Interaction in a multi-agent setting is a more varied, and not
always adversarial, game, in which agents may influence oth-
ers to achive their own goals, drawing on their beliefs about
others’ behaviour in a given situation. Chang and Soo [2008]
term this “social planning”, and propose its use for auto-
mated narrative generation. Taking as their example Shake-
spear’s play Othello, they observe that much of the story can
be viewed as the execution of a plan by the villain of the
play, Iago, who manipulates the other characters into carry-
ing out his aims. In Chang and Soo’s formulation, agents
plan with actions of their own as well as actions performed
by other characters, but each action taken by another charac-
ter requires as a precondition that the character has a motive
for achieving the action’s effect. They propose that reasoning
about characters’ motives can be formalised with axioms. For
instance, the axioms

motive-has(c, c, i)← greedy(c) ∧ precious(i) ∧ sees(c, i)
motive-has(c, c, i)← motive-has(c, c′, i)

allow inferring that character c can be motivated to take action
to achieve has(c, i) if c is greedy and i is a precious item that
c has layed eyes on, or if c desires some other character c′ to
possess i.

Kominis and Geffner [2015] discuss planning in a multi-
agent setting with partial observability and nested beliefs,
meaning agents reason not only with what they know about
the world state, but also with what they know about what
other agents know. Agent’s actions may change the world
state, provide information about it (sensing) or provide infor-
mation about another agent’s knowledge (communication).
Kominis and Geffner propose a compilation of sequential
planning for this kind of problem to classical planning, which
uses axioms.

Chang and Soo’s and Kominis and Geffner’s problems are
still classical in the sense that the planning agent decides
which actions are taken. But they enable better modelling
of the conditions on when actions may, or must, be taken.

4 Relaxation of planning with axioms
A very simple approach to planning with axioms is to treat
each axiom as a zero-cost action, whose precondition is the
axiom body and effect the head. Initially assigning all de-
rived variables the default value (F), any admissible classical
planning heuristic computed on the relaxed problem yields
an admissible estimate for the problem with axioms. We call
this the naive relaxation. Because the naive relaxation does
not force axioms to be applied, the resulting heuristic is blind
to the difficulty of achieving the negation of a derived propo-
sition.1 Consider the Min-Cut domain from Example 1: in
any state of the relaxed problem, the goal is achievable at no

1The Fast Downward planner [Helmert, 2006] implements a
mechanism that tries to address this problem: For each derived vari-

cost by electing not to derive reachable(t) and applying the
axiom isolated(t)← ¬reachable(t).

We introduce two kinds of axiom-aware relaxations:
one is based on the monotonic (or “value accumulating”)
relaxation that generalises the delete relaxation to non-
propositional state variables [Gregory et al., 2012; Domsh-
lak and Nazarenko, 2013], and the other on abstraction, by
projecting on a subset of primary variables. In both we have
relaxed states, which can be viewed as representing sets of
actual assignments to the primary state variables. The key
question is how to evaluate conditions on secondary variables
in a relaxed state. Our approach [Ivankovic et al., 2014] treats
this as a question of consistency, which is delegated to an ap-
propriate external solver: In the case of planning with axioms,
that is an answer set programming (ASP) solver. Therefore,
we first briefly recap answer set programming.

Answer sets
Answer sets (also known as stable models) provide a declar-
ative semantics for logic programs with negation as failure2

and epistemic disjunction [e.g., Gelfond, 2008]. A (ground)
answer set program is a set of rules of the form H ← B,
where H , the head, is a disjunction of propositions and B,
the body, a conjunction of literals. The intuitive meaning of
the rule is that when all literals in B hold, then so does at least
one proposition in H . A rule with an empty body is called a
fact, and asserts that at least one proposition in the head holds.
A rule with an empty head is called a constraint, and asserts
that the literals in the body cannot all hold.

A model of a logic program is a set of true propositions that
satisfies all rules of the program (taking propositions not in
the set to be false). A stable model (answer set) is a model that
is minimal w.r.t. set inclusion. Hence, both negation (in the
body) and disjunction (in the head) are interpreted as a form
of defaults: p is false, and ¬p therefore true, unless p implied
by the set of rules. A disjunction, p ∨ q, is not exclusive, but
as long as there is no other justification to infer that both p
and q are true, the disjunction implies at most one of them.

4.1 Consistency-based monotonic relaxation
In the monotonic planning relaxation, primary state vari-
ables accumulate, rather than change, values [Domshlak and
Nazarenko, 2013]. (This specialises to the well-known delete
relaxation when all variables are Boolean; cf. Gregory et al.
[2012].) Thus, in a relaxed state s+ each primary variable xi

has a set of possible values, s+(xi) ⊆ D(xi), and s+ itself rep-
resents the set of states obtainable by assigning each variable
xi one value from its set s+(xi). That is,

states(s+) = {{x1 = v1, . . . , xn = vn} | ∀i : vi ∈ s+(xi)}

able, y, that occurs negatively in some condition, a set of axioms
defining ¬y are added to the problem. If Ay = {y ← ϕi |
i = 1, . . . , k} is the set of axioms that define y, A¬y = {¬y ←∧

i=1,...,k ¬ϕi}. Admissibility is preserved if the derived variable
default value is taken to be neither true nor false. However, as the
planner rewrites all axioms to DNF, this transformation often results
in an exponential blow-up of problem size.

2Answer set programs may use both negation as failure and clas-
sical logical negation. However, since we use only the former, we
omit the latter from discussion.
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Relaxed application of an action effect xi:=v adds v to the set
of possible values of xi.

This is an overapproximation of the set of reachable states,
since some conjunctions of variable values may be unreach-
able even when each value is separately achievable [Haslum,
2012; Francès and Geffner, 2015]. A formula ϕ is true
in a relaxed state s+ if ϕ is true in some state in the set
states(s+). Note that if ϕ is a conjunction of atomic propo-
sitions, xi = v, over primary variables, this is equivalent to
checking if v ∈ s+(xi) for each proposition (if ϕ does not
require any variable to have two values).

The set of all primary variable facts, (x = s(x)) ←, that
hold in state s together with the axioms forms an answer set
program, which we denote Π(s). Because Π(s) is stratified,
it is consistent and has a unique answer set [Apt et al., 1988];
the planning formalism defines the values of secondary vari-
ables in s as their values in this model. Hence, a secondary
literal y is true in s iff Π(s) ∪ {← ¬y} is consistent.

When viewed this way, the generalisation to evaluation in
a relaxed state s+ is immediate: For each primary variable, i,
we have instead a disjunctive fact, (

∨
v∈s+(x) x = v) ←, and

a set of mutual exclusion constraints, ← x = v, x = v′ for
all v, v′ ∈ s+(x) such that v 6= v′, to ensure the variable has
only one value. Again, we denote the answer set program that
is the union of these facts, constraints, and the axioms of the
planning problem by Π(s+).

Proposition 1 Let s+ be a relaxed state. Let y1, . . . , yn be
secondary literals. Π(s+) ∪ {← ¬y1, . . . ,← ¬yn} is con-
sistent if and only if y1 ∧ . . . ∧ yn is true in some state in
states(s+).

Example 2 Consider the Min-Cut domain from Example
1 and the problem instance in Figure 1. With actions
move(A, e15, e12) and move(A, e15, e56), we reach a relaxed
state such that s+(atA) = {e12, e15, e56} and s+(atB) =
{e36}. The program Π(s+) has three stable models (one
for each value of atA) and reachable(6) is true in all, since
no matter where roadblock A is placed the target node 6 is
reachable as long as B does not move. Hence, Π(s+) ∪ {←
¬isolated(6)} is not consistent.

We may add to Π(s+) further constraints, such as mutual
exclusions between primary variable assignments. This ex-
cludes from states(s+) certain states that are not reachable in
the original planning problem, thus strengthening the relax-
ation. It is the same idea as constrained abstraction, used to
improve pattern database heuristics [Haslum et al., 2005].

From relaxation to heuristics
Since relaxed action application can only add values, the set
of states represented by the resulting relaxed state can only
grow. This ensures monotonicity, in the sense that relaxed
action application can never make false a condition that was
previously true, and thus that the relaxation has the properties
of the classical delete relaxation: Every plan for the original
problem is also valid for the relaxed problem, which implies
that optimal relaxed plan cost is an admissible heuristic. Ap-
plying an action more than once is redundant in the relaxed

problem, which means that relaxed plan length is linearly
bounded and that the optimal relaxed plan can be constructed
as a minimum-cost hitting set over a collection of disjunctive
action landmarks [Bonet and Helmert, 2010].

As we have previously shown [Ivankovic et al., 2014], this
means we can use standard techniques, such as building a
relaxed planning graph, to compute relaxed reachability, in-
voking the consistency test each time we need to determine
the truth of a secondary condition in relaxed state (i.e., RPG
layer). Thus, we can compute the hmax heuristic.

We can also use the iterative landmark algorithm [Haslum
et al., 2012] to compute the optimal relaxed plan heuristic,
h+, or a weaker but less expensive heuristic, equivalent to the
LM-Cut heuristic when all actions have unit cost [Bonet and
Helmert, 2010]. However, our implementations of the axiom-
aware versions of these heuristics are too slow to be useful.

4.2 Consistency-based abstraction
A projection is a problem abstraction in which a subset
of (primary) state variables are treated normally, while re-
maining variables are ignored. Projections underlie pattern
database heuristics (PDBs), which precompute optimal plan
costs for all abstract states so that during search the heuristic
value of a state can be found by looking up in a table the value
of the corresponding abstract state [Culberson and Schaeffer,
1998; Edelkamp, 2001].

If A is the subset of primary variables projected on (the
pattern), we can view an abstract state sA as analogous to
a relaxed state in which variables in A have only a single
value and variables not in A have all possible values in their
domain. That is,

states(sA) = {{x1 = v1, . . . , xn = vn} |
vi = sA(xi) ifxi ∈ A; else vi ∈ D(xi)}.

Hence, we can formulate an answer set program Π(sA) in the
same way as described above, and use it to test the consis-
tency of secondary conditions in an abstract state.

Example 3 Consider again the Min-Cut problem in Figure
1, and a projection on the single-variable set A = {atA}.
The abstract state has sA(atA) = {e15} and sA(atB) =
{e12, e14, e15, e23, e26, e36, e45, e56}, i.e., the set of all edges.
Again, the program Π(sA)∪{← ¬isolated(6)} is not consis-
tent since node 6 remains reachable no matter where B is as
long as A stays on edge e15.

A standard PDB is efficiently constructed by an exhaustive
reverse exploration from the (abstract) goal states, but this
strategy is not easily adapted to problems with axioms. We
use a two-stage PDB computation, in which the first stage
builds an explicit graph of the reachable abstract space by
forward exploration, and the second computes optimal costs
over this graph. Hence, building an axiom-aware PDB takes
more time than standard PDB construction. An advantage of
PDB heuristics in this setting, however, is that the overhead
is limited to the precomputation phase only; state evaluation
is done by a table lookup, and takes no more time than in a
standard PDB heuristic.
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Figure 3: Total nodes expanded (above) and total planning
time (below) with different heuristics. Instances in each set
are sorted by increasing shortest plan length.

4.3 Exploring weaker relaxations
Invoking an answer set solver each time we need to test the
truth of a secondary condition is time consuming. Although
the heuristics we obtain are more informed, the time required
to compute them means that in most cases they are not effec-
tive. However, we can also make other trade-offs between
heuristic power and computational cost within our frame-
work. As long as the consistency test is sound and we treat a
secondary condition as false only when it is proven inconsis-
tent with the relaxed state, our relaxation, and the heuristics
we derive from it, remain admissible. (Francès and Geffner
[2015] demonstrate the same point in classical planning.)

We have tried one instantiation of this idea, treating atomic
propositions x = v in a relaxed state s+ as false if v 6∈ s+(x),
true if s+(x) = {v}, i.e., v is the only value in the set, and
unknown (U) otherwise. Compound formulas are evaluated
with the usual three-valued semantics (e.g., ¬U = U, F∧ U =
F, T ∧ U = U, etc). We then apply the stratified fixpoint
evaluation procedure to compute a value in {F, T, U} for each
secondary variable. A secondary literal y is considered true
if it evaluates to T or U. This is sound, in that y evaluates to
F only if y is false under every interpretation of the unknown
propositions, and thus only if Π(s+)∪{← ¬y} is inconsistent.
It is, however, not complete, making the relaxation weaker.

Example 4 Consider again the Min-Cut problem in Figure 1,
and the relaxed state s+(atA) = {e12, e15, e56} and s+(atB) =
{e36} from Example 2. Since atA = e12 and atA = e56 both
evaluate to U, we can derive that isolated(6) is also U. Thus,
the relaxation fails to prove that moving roadblock A alone is
insufficient to reach the goal, unlike the stronger relaxations
shown in Examples 2 and 3.

The impact of the different relaxations on search is shown in

Figure 3. We use five sets of problems: the verification prob-
lems from Ghosh et al. [2015], the PSR domain (middle-size
set from IPC 2004), compiled multi-agent planning problems
due to Kominis and Geffner [2015], instances of the trapping
game (cf. Section 3) played on graphs with 4–47 nodes, and
random instances of the Min-Cut domain, with graphs of size
12–20 and 3–4 roadblocks. Each planner was run with up to
1h CPU time and 3 Gb memory per problem.3

If there are no negative secondary literals, the naive version
of hmax coincides with 3-valued hmax (here, this happens
only in the verification problems). For all other problems,
the naive relaxation is as uninformed as blind search. The
ASP-based relaxation is more accurate than the 3-valued re-
laxation only when some secondary facts can be derived from
the disjunctions in a relaxed state. In our test set, this occurs
only in the PSR and Min-Cut domains. (Results for the ASP-
based hmax heuristic are omitted from the other domains, in
which it expands exactly the same number of nodes but takes
far more time to do so.) Although all heuristics except the
naive reduce the amount of search, blind search is still of-
ten the fastest. (This has also been demonstrated in STRIPS
planning, e.g., in the results of recent IPCs.) The 3-valued
hmax heuristic is faster than blind search on the hardest of
Kominis and Geffner’s problems, and results with the axiom-
aware PDB heuristic on the Min-Cut domain show that even
the ASP-based relaxation can be sufficiently informative to
compensate for the overhead of computing it. We did not try
the PDB heuristic on other problems since we do now know
which are good abstractions, if indeed any exist.

5 Conclusion
We have shown that the use of logical axioms to specify de-
rived variables allows formulations of planning domains that
are not only more compact and natural, but also more ef-
ficiently searchable. Although equivalent problems can be
formulated without axioms, using them removes unnecessary
choices from the search space of the planner.

Since axioms are essentially state constraints, our approach
to defining planning relaxations by checking consistency, and
using an external solver to perform the check [Ivankovic et
al., 2014], can be applied also to planning with axioms. This
provides some validation of the generality of this idea. The
relaxation defined here is potentially better since all informa-
tion in the relaxed state is used for the consistency check,
instead of selecting a subset of constraints through relaxed
evaluation of conditions on primary variables.

Although the admissible heuristics we derive in this way
are often informative, repeated consistency checking makes
them often too slow. As suggested by Francès and Geffner
[2015], sound but incomplete consistency tests based on
propagation may present a way to balance inference power
and computation time. The approach can work also with ab-
stractions other than projection, such as the merge-and-shrink
heuristics [Helmert et al., 2007].

3Our implementation is built on the Fast Downward planner
(fast-downward.org). The ASP solver is Clasp v2.1.3 (potassco.
sourceforge.net).
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