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Abstract

In this paper, we formulate a sparse optimization
framework for extractive document summarization.
The proposed framework has a decomposable con-
vex objective function. We derive an efficient
ADMM algorithm to solve it. To encourage di-
versity in the summaries, we explicitly introduce
an additional sentence dissimilarity term in the op-
timization framework. We achieve significant im-
provement over previous related work under sim-
ilar data reconstruction framework. We then gen-
eralize our formulation to the case of compressive
summarization and derive a block coordinate de-
scent algorithm to optimize the objective function.
Performance on DUC 2006 and DUC 2007 datasets
shows that our compressive summarization results
are competitive against the state-of-the-art results
while maintaining reasonable readability.

1 Introduction
Automatic document summarization is a seminal task in the
field of text mining and information retrieval. Approaches
of modern automatic summarization can be roughly divided
into two categories: extractive summarization and abstractive
summarization. Extractive summarization formulates sum-
maries by selecting sentences from the original documents.
Abstractive approaches allow more complex operations on
sentences, including deletion, substitution, and reordering.
Extractive approaches are rather limited in terms of the fi-
nal summaries they can produce. However, abstractive sum-
marization is far more difficult than extractive summarization
that does not need to ensure structural and semantic coher-
ence within a sentence. Up to now, extractive methods are
still the most popular in summarization tasks.

Almost all the existing extractive summarization ap-
proaches use ranking models to score and select sentences.
To overcome the problem of redundancy that has not been
well-addressed in previous approaches, summarization based
on data reconstruction has recently been proposed [He et al.,
2012]. The intuition is that a good summary should consist

∗ Corresponding author

of those sentences that can best reconstruct the original doc-
ument. Unfortunately, although the mathematical idea be-
hind this framework is reasonable, it fails to achieve satis-
factory performance. Meanwhile, the accompanying gradient
descent algorithm turns out to be slow in practice, which may
further limit the generalizability of this paradigm.

In this paper, we formulate document summarization prob-
lem as convex sparse optimization with similar idea of data
reconstruction but different methodology. The proposed ob-
jective function has a decomposable form, which is suitable
to be efficiently solved by modern convex optimization algo-
rithms.

With some direct but nontrivial modifications, we can also
generalize the proposed formulation to the case of compres-
sive summarization. Under the similar essence of sparse opti-
mization, we explore a framework that jointly optimizes sen-
tence selection and word selection. Grammaticality of com-
pressed sentences is ensured by considering dependency re-
lations during a final generation step. Our methods do not
even need full constituent parse trees to generate grammati-
cal compressions.

The major contributions of this work include:
• We formulate document summarization as a decompos-

able row-sparsity regularized optimization problem, and
then present an efficient alternating direction method of
multipliers to solve it.
• Inspired by recent research on exemplar-based data rep-

resentation, we introduce an additional sentence dissimi-
larity term to encourage diversity in summary sentences.
• We generalize our proposed extractive framework to

compressive summarization. The resulting sparse op-
timization problem is jointly non-convex, so we derive
a block coordinate descent algorithm to solve it, fol-
lowed by a recursive sentence compression phase to
impose grammatical constraints. Merely an additional
lightweight dependency parser is needed to conduct this
step and less efficient constituent parsing is avoided.
• We conduct experiments on DUC 2006 and DUC 2007

datasets to show the improvements of our methods over
previous work of unsupervised document summariza-
tion based on data reconstruction. Our models achieve
fairly competitive results against the state-of-the-art ap-
proaches while maintaining reasonable readability.
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2 Our Proposed Framework
2.1 Sentence Selection via `2,1 Regularization
Assume that the documents are represented as a weighted
term-frequency matrix, denoted as D = [D1, D2, ..., Dn] ∈
Rd×n 1, where d is the size of vocabulary and n is the total
number of sentences. Each column Di ∈ Rd×1 stands for a
sentence vector.

We are aiming at selecting sentences having both good cov-
erage and low redundancy. Once we have a summary set of
sentences taken from the original document, we would like to
represent most sentences in the original document well, only
with these summary sentences. Therefore a natural goal is to
minimize

n∑
j=1

‖Dj −DAj‖22,

where each Aj = [a1j , ..., anj ]
T is a vector of coefficients

used for representing the original sentence vector Dj with
other sentence vectors from the document D. This is similar
to the intuition behind He et al. [2012]’s formulation from a
data reconstruction perspective.

We are trying to represent the whole document by selecting
only a few sentences. Then the goal is to establish sentence
level sparsity on sentence selection coefficients (the Ais),
while retaining low reconstruction error. If we concatenate
these column vectors as a matrix A = {A1, ..., An} ∈ Rn×n,
the sentence level sparsity will obviously correspond to row
sparsity in A. Hence the desired selection sparseness could
be induced by performing `1-regularization on rows, or more
compactly, an `2,1 regularization on matrix A:

‖A‖2,1 =
n∑
i=1

‖Ai‖2

The document summarization problem can now be suc-
cinctly formulated as:

min
A

‖D −DA‖2 + λ‖A‖2,1 (1)

s.t. aij ≥ 0, ∀i, j (2)
diag(A) = 0. (3)

Here an additional constraint (3) is introduced to avoid the
numerically trivial solution (A ≈ I) in practice, by forcing
the diagonal elements to be zeros. This formulation resem-
bles the problem of subspace clustering that has been studied
in the community of computer vision [Elhamifar and Vidal,
2013], trying to learn a self-representation matrix under cer-
tain constraints 2.

Meanwhile, our convex objective function can be decom-
posed into two separated convex functions. In recent years,
much attention has been paid upon this type of decomposable
objectives, especially in the context of sparse optimization. In
the next section we present an alternating direction method of
multipliers (ADMM) for our optimization problem.

1In this paper we follow the convention to use uppercase letters
to denote matrices. We place a subscript k when addressing the k-
th column. Corresponding lowercase letters are used for elements
(scalars) in matrices/vectors.

2The major difference between (1) and sparse subspace cluster-
ing is in the regularization terms.

2.2 An ADMM Solver
Problem (1) can be equivalently expressed as:

min
X,Z

‖D −DX‖2 + λ‖Z‖2,1 (4)

s.t. X = Z, diag(X) = 0, xij ≥ 0, ∀i, j. (5)

By expressing the original A separately as X and Z, the ob-
jective function has been factorized into two independently
convex parts. ADMM tries to solve such decomposed prob-
lems by iteratively updating X and Z, as well as Lagrangian
multipliers (denoted as a matrix U ) on the constraint X = Z.
We omit details of our mathematical derivations due to space
limit and point interested readers to Section 6.4 of Boyd et
al. [2011], where a similar problem is presented.

The entire ADMM algorithm is listed in Algorithm 1.

Algorithm 1 An ADMM solver for Problem (1)
1: for k = 0, 1, 2, ... do
2: // update every column Xj of X:
3: Xk+1

j ← (DTD + ρI)−1(DTDj + ρ(Zkj − Ukj ))

4: Xk+1 ← Xk+1 − diag(Xk+1), xk+1
ij ← max{xk+1

ij , 0}
5: // update every row Zi of Z:
6: Zk+1

i ← Sλ/ρ(Xk+1
i + Uki )

7: Zk+1 ← Zk+1 − diag(Zk+1), zk+1
ij ← max{zk+1

ij , 0}
8: // update dual variables U :
9: Uk+1 ← Uk + ρ(Xk+1 − Zk+1)

10: if ‖Xk+1 − Zk+1‖ < ε then return Z
11: end if
12: end for

where ρ is a constant parameter and the shrinkage operator
S in Line 6 is defined as:

Sγ(x) = max{1− γ

‖x‖2
, 0}x.

Note that the implementation of theX−update step (Line 3
in Algorithm 1) does not require matrix inversion. It suffices
to solve a bunch of related linear systems to get the closed-
form solution 3. In our experiments, this ADMM process con-
verges significantly faster than the gradient descent solution
used in He et al. [2012]’s data reconstruction framework.

After solving the optimization problem, summaries can be
generated via a typical greedy sentence selection process, ac-
cording to the magnitude of row vectors inZ that corresponds
to the selection coefficients of each sentence.

2.3 Diversity from Sentence Dissimilarity
The data reconstruction and sparse optimization formulations
tend to select sentences that can cover the documents. How-
ever, there is no explicit tendency to select diverse sentences
capturing different but also important information described
in the documents. A very recent work [Liu et al., 2015] also
address this diversity problem. They explicitly add the cor-
relation coefficients between sentence pairs in the objective

3The matrix DTD + ρI is unchanged during iterations. Thus
we may pre-compute the required Cholesky factorization to avoid
redundant computations for solving those linear systems.
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function of He et al. [2012]’s data reconstruction formulation.
This makes their objective function difficult to optimize.

Inspired by recent work on exemplar-based sparse selec-
tion of representative points [Elhamifar et al., 2012], we in-
troduce an additional dissimilarity term

tr(∆TX) =
n∑
i=1

n∑
j=1

δijxij ,

into our optimization problem (4), weighted by a constant pa-
rameter µ:

min
X,Z

‖D −DX‖2 + µ tr(∆TX) + λ‖Z‖2,1 (6)

s.t. X = Z, diag(X) = 0, xij ≥ 0, ∀i, j. (7)

where the matrix ∆ denotes pairwise dissimilarity δij
between sentence i and sentence j, measured by an
information-theory based criterion as described by Frey and
Dueck [2007]: For each word in sentence j, if it is also in
sentence i, then set the encoding cost for the word to the loga-
rithm of sentence i’s length; Otherwise, set the encoding cost
for the word to the logarithm of the vocabulary size. The dis-
similarity δij is just the sum of these costs. Note that this
dissimilarity is asymmetric. We would like to explore other
dissimilarity measurements in our future work.

The term tr(∆TX) is linear. Involvement of this term is
implemented by simply changing Line 3 of Algorithm 1 into:

Xk+1
j ← (DTD+ ρI)−1(DTDj + ρ(Zkj −Ukj )− µ(∆T )j)

The matrix ∆ is pre-computed before the ADMM procedure.
Without loss of generality, we temporarily omit the addi-

tional dissimilarity term tr(∆TX) and go back to the com-
pact form (1) in the next section for clarity of description.

3 Compressive Document Summarization
The above sparse optimization problems encode a process
of sentence selection. Keeping the same spirit of selection
sparseness, we can naturally generalize this sentence selec-
tion process to word selection and perform compressive sum-
marization. This can be achieved after some nontrivial modi-
fications of (1):

min
R,A

‖D −RA‖2 + λ1‖A‖2,1 + λ2
∑n
i=1 ‖Ri‖1 (8)

s.t. rij , aij ≥ 0, ∀i, j; grammatical(Ri). (9)

The matrixR ∈ Rd×n can be regarded as a sparse approxima-
tion of the original document D: each column Ri is a com-
pressed version of original sentence vector Di with several
unimportant word dimensions shrinkage to zero by a `1 regu-
larizer. Some additional constraints (grammatical(Ri)) on
word selection should be added to ensure grammaticality of
compressed sentences. For example, if a verb is selected, then
the subject of this verb should also be selected. These con-
straints are typically induced by dependency relations from
dependency parse trees.

The problem (8) jointly optimize over sentence selection
coefficients A as well as sparse sentence representation vec-
tors R. Since directly involving the grammaticality con-
straints might be inconvenient, we leave them to a final step
of sentence generation after performing joint optimization.

3.1 Joint Sparse Optimization
The product RA in (8) makes the problem nonconvex. Since
the objective function decomposes naturally forR andA, it is
straightforward to conduct a block coordinate descent process
for this joint sparse problem.

If we have R fixed, the resulting problem for A is:

min
A

‖D −RA‖2 + λ1‖A‖2,1 (10)

s.t. aij ≥ 0, ∀i, j. (11)

This is a problem we are able to solve by calling the same
ADMM procedure derived in section 2.2.

If we have A fixed, the resulting problem for R is:

min
R

‖D −RA‖2 + λ2
∑n
i=1 ‖Ri‖1 (12)

s.t. rij ≥ 0, ∀i, j. (13)

This is essentially a sparse dictionary learning problem
[Donoho and Elad, 2003]. We can get a solution by itera-
tively solving LASSO problems defined over columns Ri.

After iteratively solving these two problems, we will get
sparse sentence vectors as columns in R.

3.2 Generation of Compressed Sentences
Once the values of each reconstructed sentence vector Ri
are ready, we can recover compressed sentences accord-
ingly, considering the previously ignored grammaticality con-
straints.

Most of modern sentence compression techniques require
global constrained optimization, such as integer linear pro-
gramming [Clarke and Lapata, 2008] and first-order Markov
Logic Networks [Huang et al., 2012]. The inference process
is far less efficient for our purpose of compressive summa-
rization. Moreover, currently available sentence compression
datasets are typically in small scale. Therefore, we only con-
sider unsupervised method with simplest but effective form
in this final step. We generate a compressed sentence by se-
lecting a subtree from the full dependency tree of the original
sentence.

Suppose for all sentences we have dependency parses la-
beled with grammatical relations. As the grammatical con-
straints are usually defined on word-to-word dependency re-
lations, we can treat the dependency arcs locally and perform
local inclusion-deletion decisions on dependency trees. We
use an efficient recursive algorithm that utilizes the word-
level weights and subtree structural constraints. The goal
of this algorithm is to extract a subtree with maximum score
while satisfying grammatical constraints.

The constraints are expressed in the form of two sets
of grammatical relations. The first one is denoted as
KEEP HEAD. It includes dependency relations for cases
when the inclusion of a modifier should always imply the
inclusion of its direct head. An example relation in this set
is noun modifiers (NMOD): if we select the word nice in
nice book, then the head noun book should also be selected.
The second one is denoted as SIMUL DEL. It includes de-
pendency relations that should force simultaneous inclusion
or deletion of the head and the modifier. For example, sub-
ject and object relations (SBJ and OBJ) should be included
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in this set since dropping any word in a subject-verb-object
path will often result in an ungrammatical sentence. We triv-
ially derive the complete list of the two sets from Clarke and
Lapata [2008], where these constraints were described in the
form of linear constraints in integer linear programs.

The whole process for sentence compression along with
subtree scoring is listed in Algorithm 2 in a recursive style.
Scores and costs (number of words actually kept) of a sub-
tree will be accumulated from bottom up at each node. The
score at each node (subtree) is initialized to be the value of
the corresponding word dimension in vector Ri, described in
the last section, for the i-th sentence. The cost at each node
is initialized to be 1, for the word at this node only. The algo-
rithm decide whether to delete a subtree at Line 5, where we
also consider bigram scores (e.g. document frequency of bi-
grams) to locally ensure grammatical smoothness. At Line 11
the algorithm picks the subtree with maximum score by com-
paring with the current best subtree cmax (short for current
maximum). Note that this comparison is only made when the
root is an indicator verb of a grammatical partial sentence 4.

Algorithm 2 A recursive procedure for sentence compression
1: Init: node scores← Ri, node costs← 1, cmax← NULL
2: function GET MAXSCORE SUBTREE(V )
3: for each child C in V .children do
4: TC ← GET MAXSCORE SUBTREE(C)
5: if C.label 6∈ SIMUL DEL and TC .score/TC .cost < ε

and deletion of TC does not decrease local bigram score then
6: Delete TC from C
7: end if
8: V .score + = TC .score
9: V .cost + = TC .cost

10: end for
11: if V is an indicator verb and V .label 6∈ KEEP HEAD and

V .score > cmax.score then
12: cmax← V
13: end if
14: if V .score > cmax.score then return V
15: else return cmax
16: end if
17: end function

Here we illustrate the algorithm with an example from bot-
tom up after initialization, with special attention on cases that
make Line 5 or Line 11 active. The example is also depicted
in Figuire 1, where on each node we use a shorthand notation
l, s and c to represent the label of grammatical relation, the
score and the cost at current node respectively. Underscored
values are initial values at each node. Shadowed nodes will
be dropped along with all their subnodes, while bold nodes
will be kept. The original sentence is: ”He said the Corps
has toughened regulations since 1996, requiring the damage
as small as possible.” and ε = 0.02. At the very bottom,
dropping the leaf possible from as will decrease the bigram
score, hence it should be kept. Two subnodes of small have
score-cost ratio < ε and deleting them will not hurt local
smoothness in terms of the bigram score, then they will be
dropped along with their subnodes. Moving above, the phrase

4We simply treat non-VBG verbs as such indicator verbs.

said
l=ROOT

s=0+3.5=3.5

c=1+1+9=11

He
l=SBJ

s=0

c=1
has

l=OBJ

s=0+1.5+2=3.5

c=1+2+6=9

Corps
l=SBJ

s=1.5+0=1.5

c=1+1=2

the
l=NMOD

s=0

c=1

toughened
l=VC

s=.1+.9+.1+.9=2

c=1+1+4=6

regulations
l=OBJ

s=.9

c=1

//////since
l=TMP

s=0+.02=.02

c=1+1=2

1996
l=PMOD

s=.02

c=1

requiring
l=ADV

s=.5+.3+.1=.9

c=1+2+1=4

damage
l=VC

s=.3+0=.3

c=1+1=2

the
l=NMOD

s=0

c=1

small
l=OPRD

s=.1

c=1

///as
l=AMOD
s=0

c=1
///as

l=AMOD
s=0+0=0

c=1+1=2

bg(as)<bg(as possible)

possible
l=PMOD

s=0

c=1

.

Figure 1: An example of sentence compression

the damage should be kept as a whole to avoid bigram score
decrease. Meanwhile, the score of subtree the damage (0.3)
plus the score of small (0.1) will be added onto their head
node requiring (Line 8) and so are the costs. On the other
hand, the subtree since 1996 will be dropped since its score-
cost ratio is 0.02/2 = 0.01 < ε. Keep going upwards like
this, when we reach the node has, we have a verb suggesting
a grammatical subtree so Line 11 will assign this subtree to
cmax. The algorithm will ultimately find that the full tree
rooted at said will have a score not larger than cmax.score.
Thus cmax will not be updated and the final compressed sen-
tence we get is ”the Corps has toughened regulations, requir-
ing the damage small.”

This is a linear time algorithm since every node in the de-
pendency tree will be visited for only once.

4 Experiments

4.1 Data Preparation

There exist several benchmark datasets for the task of multi-
document summarization. To form direct comparisons with
original formulations of data reconstruction based summa-
rization [He et al., 2012], we run our experiments on exactly
the same DUC 2006 and DUC 2007 datasets. The main task
requires each system to generate a summary less than 250
words for each document cluster, given a short description
of topical query. The ε for sentence compression is set as
0.01‖Ri‖ for sentence i. All other parameters involved in the
optimization problems are tuned on a fraction of earlier DUC
2005 dataset for convenience.

The dependency relations needed by the compressive sum-
marization part are generated using the MATE tool 5, a fast
and accurate dependency parser with the state-of-the-art per-
formance [Bohnet, 2010].

5http://code.google.com/p/mate-tools/
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4.2 Compared Methods
As our framework is fully unsupervised, we do not compare
it with supervised methods. Document summarization based
on data reconstruction, along with the gradient descent algo-
rithm in He et al. [2012]’s work, naturally becomes the direct
baseline for comparison, denoted as DSDR. We denote our
sparse optimization formulation of `2,1 regularization (1) as
SpOpt-`2,1 (the version with diversity term denoted as SpOpt-
∆), and the compressive solution as SpOpt-comp. We also
report experimental results on the same datasets (if reported
in their paper) given by several recent state-of-the-art unsu-
pervised systems, including matrix-factorization [Wang et al.,
2008], the document-sensitive graph model DsR-Q [Wei et
al., 2010], the bi-mixture probabilistic latent semantic analy-
sis method (BI-PLSA) [Shen et al., 2011], graph based multi-
modality learning [Wan and Xiao, 2009], and a very recent
work on two-level sparse representation [Liu et al., 2015].

We denote a weeker baseline that extract the leading sen-
tence from each document as LEAD. This baseline is in-
cluded in the official evaluation. PEER 24 and PEER 15 are
the DUC 2006/2007 participants with highest ROUGE per-
formance respectively. For DUC 2007 main task, there is an
extractive baseline named CLASSY04 that ignores topic nar-
rative but achieved the highest performance in general multi-
document summarization task of DUC 2004.

4.3 Evaluation and Results
We run the commonly used ROUGE (Recall-Oriented Un-
derstudy for Gisting Evaluation) 6 metrics for summariza-
tion tasks [Lin and Hovy, 2003; Lin, 2004]. The ROUGE
metric automatically scores a candidate summary by measur-
ing the amount of ngram overlap between this candidate and
manually-created reference summaries. ROUGE-k uses k-
gram overlap.

We report ROUGE recall of summaries generated by all
systems in comparison. These results are listed in Table 1.

SpOpt-`2,1 is still superior to DSDR, even though the mo-
tivations are similar and the optimization problems are both
convex. One probable reason is that the `2,1 form is di-
rectly optimizing coefficient matrix with row sparsity, while
the original formulation tries to guide this sparsity indirectly
with another group of variables.

Our unsupervised compressive framework outperforms all
other unsupervised systems in comparison and achieves very
competitive results against the best peer system in DUC
2006/2007. We also observe that adding the sentence dis-
similarity term (-∆) can indeed improve performance.

We also ask three annotators (who are not among the au-
thors of this paper and are fluent in English) to carry out hu-
man evaluation for the generated summarization in terms of
different aspects of quality, including Grammaticality (GR),
Non-Redundancy (NR), Referential Clarity (RC), Topic Fo-
cus (TF) and Structural Coherence (SC), similar to the eval-
uation in DUC 2006 [Dang, 2006]. Each aspect is rated with
scores from 1 (poor) to 5 (good). This evaluation is performed
on the same random sample of 10 topics in DUC 2006.

6Parameter options of ROUGE are set to be consistent with offi-
cial evaluation of corresponding tasks at DUC 2006 and DUC 2007.

Table 1: Results of ROUGE evaluation on DUC 2006/2007
DUC 2006 ROUGE-1 ROUGE-2 ROUGE-SU4
LEAD 0.30217 0.04947 0.09788
MatrixFacto. 0.39551 0.08549 N/A
DsR-Q 0.39550 0.08990 N/A
BI-PLSA 0.39384 0.08497 N/A
MultiModal. 0.40503 0.08545 N/A
[Liu et al., 2015] 0.34034 0.05233 0.10730
DSDR 0.37695 0.07312 0.11678
SpOpt-`2,1 0.39069 0.08336 0.13791
SpOpt-∆ 0.39962 0.08682 0.14227
SpOpt-comp 0.41331 0.09136 0.15046
SpOpt-comp-∆ 0.41534 0.09455 0.15310
PEER 24 0.41095 0.09551 0.15523

DUC 2007 ROUGE-1 ROUGE-2 ROUGE-SU4
LEAD 0.31250 0.06039 0.10507
CLASSY04 0.40562 0.09382 0.14641
DsR-Q 0.42190 0.11230 N/A
MultiModal. 0.42609 0.10438 N/A
[Liu et al., 2015] 0.35399 0.06448 0.11669
DSDR 0.39765 0.08679 0.13732
SpOpt-`2,1 0.41833 0.10627 0.16304
SpOpt-∆ 0.42360 0.11109 0.16474
SpOpt-comp 0.44517 0.12025 0.17072
SpOpt-comp-∆ 0.44607 0.12454 0.17429
PEER 15 0.44515 0.12448 0.17715

The evaluated summaries include the summaries produced
by the compressive framework and those from their extrac-
tive counterpart, i.e. SpOpt-`2,1 that only involves sentence
selection and extraction. Also one of the official reference
summaries generated by human is also in comparison and
can be treated as an upper bound for all aspects. The average
score and standard deviation for each metric are displayed in
Table 2.

From the comparison between compressive summarization
and the extractive version, there exist slight improvements
of non-redundancy. This exactly matches what we can ex-
pect from sentence compression that keeps only important
part and drop redundancy. We also observe certain amount
of improvements on structural coherence. This may be a re-
sult of iterative joint optimization of sentence and word se-
lection that simultaneously considers more global and local
coherence.

There may be multiple reasons behind the loss of gram-
maticality, such as errors of dependency outputs given by the
dependency parser, the incompleteness of constraint sets, etc.

Table 3 shows an example summary produced by our com-
pressive system. Words in grey are not selected in the final
compressed summaries. In most cases, the removed phrases
do not hurt the overall readability of the summary.

In the experiments, the time consumption of our methods is
significantly less than the original reconstruction formulation
with gradient descent algorithm. Even for the compressive
case, the acceleration ratio achieves more than 60 under the
same single machine computing environment.
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Table 2: Human evaluation results
Written GR NR RC TF SC
SpOpt-∆ 4.20±0.70 3.53±0.62 3.93±0.93 3.80±0.87 3.40±0.66
SpOpt-comp-∆ 3.43±0.84 3.97±0.60 4.00±0.86 3.90±0.79 3.73±0.68
Human 4.97±0.18 4.93±0.25 5.00±0.00 4.93±0.25 4.93±0.25

Table 3: Example compressive summary from DUC 2006
SYSTEM OUTPUT
For many parts of the Americas and Asia, the occasional warming and cooling cycles in the
tropical Pacific Ocean known as El Nino and La Nina are unwelcome visitors barging in,
usually with little warning, then staying for months or sometimes a year or two, bringing
all kinds of baggage in the form of distorted patterns of storms and droughts, heat and
cold. Although La Nina is already affecting rainfall in Southeast Asia, it hasn’t noticeably
influenced North America’s weather yet, Leetmaa said Instead, it may be that warm water
left over from El Nino is contributing to the formation of more tropical storms than normal
in the eastern Pacific. Scientists cautioned that like its warm counterpart, El Nino, a La Nina
condition will influence global climate and weather until it has completely subsided. La
Nina, the assertive sister of last year’s hellacious El Nino, has already contributed to freakish
weather around the globe and will continue to bring colder than normal temperatures to the
West Coast well into spring, according to government forecasters. With no El Nino or La
Nina, there is no sheep dog driving the sheep, no strong organizing force giving shape to the
otherwise chaotic flow of weather across the seas and continents. La Nina and El Nino form
the opposite ends of the same climatic cycle, with El Nino fueled by unusually warm water
in the eastern Pacific and La Nina driven by cold. The pool of cold Pacific water that is the
heart of La Nina has shrunk to one-fourth the size it was in May, even as warm water left
over from El Nino remains, said Bill Patzert, a researcher at the National Aeronautics and
Space Administration laboratory in suburban Pasadena.
REFERENCE SUMMARY
El Nino is a disruptive weather phenomenon that usually occurs every three to four years
on the average. It involves a surface warming of the eastern and central Pacific Ocean
around the equator when trade winds weaken. It can disrupt climate around the world,
producing extra rain in the southeastern U.S., Peru and Ecuador during the winter, while
causing drought in the western Pacific as well as the slowing of trade winds and changes
in sea levels. Basically, it reverses normal weather patterns, resulting in drought in usually
wet locations and flooding in arid areas. It also helps trigger some man-made disasters,
such as forest fires, and enhances conditions that cause viral disease among humans and
livestock. La Nina is the phenomenon of rapidly cooling equatorial waters in the central
Pacific. It develops every several years and works in reverse of El Nino. It can last for
one year causing cooler conditions in central North America and dry warm conditions in
the southern states that can be just as disruptive as El Nino. On the positive side, El Nino
can be credited with saving lives that would have been lost in normal winter and hurricane
seasons. It may also help cut global warming by temporarily stemming release of carbon
dioxide from the Pacific Ocean. Computer module studies and satellite systems allow for a
better understanding of how El Nino and La Nina form but, unfortunately, when they will
develop or what they hold for the future still cannot be predicted.

5 Related Work
Our sparse optimization formulations are closely related to
data reconstruction for document summarization. The data
reconstruction paradigm for document summarization, origi-
nally proposed by He et al. [2012], was inspired by latent se-
mantic analysis (LSA) that utilizes singular value decomposi-
tion (SVD) to select highly ranked sentences [Gong and Liu,
2001]. Nonnegative matrix factorization has also been intro-
duced to group sentences into clusters [Wang et al., 2008].
Recently Liu et al. [2015] propose a two-level sparse repre-
sentation model. Their optimization problem is NP-hard so
heuristic methods such as simulated annealing has been used
to solve it approximately.

In recent years some research has made much progress be-
yond extractive summarization, especially in the context of
compressive summarization. An earlier attempt made by Za-
jic et al. [2006] tried a pipeline strategy with heuristics to
generate multiple candidate compressions and extract from
this compressed sentences. Berg-Kirkpatrik et al. [2011] cre-
ated linear models of weights learned by structural SVMs
for different components and tried to jointly do sentence se-
lection and syntax tree trimming in integer linear programs.

Woodsend and Lapata [2012] designed quasi tree substitution
grammars for multiple rewriting operations. All these meth-
ods involve integer linear programming solvers to generate
the final compressed summary, which is time-consuming for
multi-document summarization tasks.

Almeida and Martins [2013] formed the compressive sum-
marization problem in a more efficient dual decomposition
framework. Models for sentence compression and extractive
summarization are trained by multi-task learning techniques.
Wang et al. [2013] explored different types of compression on
constituent parse trees for query-focused summarization. In
these works, the best-performing systems require supervised
learning for different subtasks.

Our mathematical formulations are closely related to mod-
ern sparse optimization problems. Subspace clustering tech-
niques [Elhamifar and Vidal, 2013] try to learn proper coef-
ficients, aiming at a self-representation. The difference be-
tween general sparse subspace clustering problems and our
formulations will make key impact on the choice and design
of solving algorithms. The difference comes mainly from dif-
ferent motivations. The former expect for sparsity in sentence
selection, while the latter typically requires low-rankness in
matrix representations.

6 Conclusion and Future Work
In this paper we propose a new formulation for document
summarization via sparse optimization with decomposable
convex objective function and derive an efficient ADMM al-
gorithm to solve it. We also introduce a sentence dissimilarity
term to encourage diversity in summaries. Then we general-
ize the proposed method to compressive summarization and
derive a block coordinate descent procedure along with recur-
sive dependency tree compression to generate the final sen-
tences. Experimental study shows that our compressive sum-
marization framework significantly improves results from the
original extractive methods based on data reconstruction.

Structured sparsity has been studied for a while in ma-
chine learning community. However, its adaptation in natural
language processing and text mining is still at its beginning
[Martins et al., 2011; Yogatama and Smith, 2014]. We would
like to explore if structured sparsity can become useful for
compressive summarization tasks.

Our proposed methods are fully unsupervised. We would
like to extend it to supervised case for different optimization
problems described in this paper. It is reasonable to expect
for even better performance.
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