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Abstract
The recently proposed Gaussian process dynami-
cal models (GPDMs) have been successfully ap-
plied to time series modeling. There are four learn-
ing algorithms for GPDMs: maximizing a pos-
terior (MAP), fixing the kernel hyperparameters
ᾱ (Fix.ᾱ), balanced GPDM (B-GPDM) and two-
stage MAP (T.MAP), which are designed for model
training with complete data. When data are incom-
plete, GPDMs reconstruct the missing data using
a function of the latent variables before parame-
ter updates, which, however, may cause cumula-
tive errors. In this paper, we present four new algo-
rithms (MAP+, Fix.ᾱ+, B-GPDM+ and T.MAP+)
for learning GPDMs with incomplete training data
and a new conditional model (CM+) for recover-
ing incomplete test data. Our methods adopt the
Bayesian framework and can fully and properly use
the partially observed data. We conduct experi-
ments on incomplete motion capture data (walk,
run, swing and multiple-walker) and make compar-
isons with the existing four algorithms as well as k-
NN, spline interpolation and VGPDS. Our methods
perform much better on both training with incom-
plete data and recovering incomplete test data.

1 Introduction
The Gaussian process dynamical model (GPDM) was re-
cently proposed by augmenting the Gaussian process latent
variable model with a GP prior to model sequential motion
data and predict the latent positions [Wang et al., 2006]. It
provides a nonlinear probabilistic mapping from latent posi-
tions to human poses and a nonlinear dynamical mapping on
the latent space. Wang et al. [2008b] described and compared
four algorithms for learning GPDMs: maximizing a poste-
rior (MAP), fixing the kernel hyperparameters ᾱ (Fix.ᾱ), bal-
anced GPDM (B-GPDM) and two-stage MAP (T.MAP).

GPDMs are widely applicable to sequential data analysis
such as people tracking, motion data recognition and syn-
thesis and computer animation. For example, Urtasun et al.
[2006] introduced the balanced GPDM method for learning
smooth prior models of human poses and motions for 3D
people tracking. Park and Yoo [2011] used the GPDM for

phoneme classification. Gamage et al. [2011] employed the
GPDM as an alternative to hidden Markov models and ar-
tificial neural networks for hand gesture recognition in the
context of sign language translation. Henter et al. [2012]
introduced the GPDM for speech representation and synthe-
sis. An et al. [2012] presented an online method for grasping
motion learning using the GPDM.

Some variants and extensions of GPDMs have also been
developed to adapt to specific applications. For human track-
ing, the particle filter GPDM was proposed, which can im-
prove the stability and robustness of tracking [Raskin et
al., 2008] and deal with multi-target tracking [Wang et al.,
2008a]. For trajectory prediction, GPDMs were adapted to
learn effective representations of the environment dynam-
ics in continuous partially observable Markov decision pro-
cesses [Dallaire et al., 2009]. For modeling multiple activi-
ties, back constraints and topological constraints were incor-
porated within the local linear GPDM [Urtasun et al., 2007;
2008]. In order to account for multiple types of dynamics,
Chen et al. [2009] proposed to combine switching models
with GPDMs to produce a switching GPDM, which has a
switching layer on top of the latent variables. Similarly, the
switching shared GPDM (SSGPDM) which is a nonparamet-
ric switching state-space model was proposed by Chen et al.
[2009]. It is an extension of the shared GPDM [Deena and
Galata, 2009], where multiple shared GPDMs are indexed
by switching states. Later, Deena et al. [2013] used SSG-
PDM with a variable-order Markov model on phonemes for
visual speech synthesis. In order to learn the interactions be-
tween pairs of actors, a hierarchical model based on GPDMs
referred as HGPDM was devised by Taubert et al. [2012].
Similarly, Wang [2013] incorporated the exogenous variables
in GPDMs, resulting in an HGPDM which achieves improved
interpretation, analysis, and prediction of human movements.
Recently, Velychko et al. [2014] presented an approach to
coupling GPDMs based on a product-of-experts, which is ca-
pable to learn different motion styles of body parts for move-
ment design and recombine previously learned component
dynamics for complex coordinated movements.

As introduced above, GPDMs and their variants are widely
used in practical applications. But unfortunately, data ob-
tained from the real world are often incomplete. For example,
in medical problems, not all patients have the needed mea-
surements. In the optical motion capture problem, parts of
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data can get lost as a result of some factors such as occlu-
sions, limited field of view, errors in the capturing process
or faults in the capturing equipment. Therefore, addressing
missing data in GPDMs has great significance and practical
value. The existing methods for learning GPDMs were al-
most all designed for complete training data. When the train-
ing data are incomplete, a simple reconstruction was usu-
ally adopted before parameter updates [Wang et al., 2006],
which is likely to bring cumulative errors. What’s more,
most literatures about GPDMs [Wang et al., 2006; 2008b;
Li et al., 2013] only dealt with the situation in which some
data subsequences are totally missing. This is just one spe-
cific situation of data incompleteness. In practice, there are
different situations of data incompleteness. For example, if
we use a matrix to represent multiple-output sequential data,
the situations include row missing, column missing and block
missing. Our work is to address missing data in GPDMs
where the data incompleteness can be in any situation and the
missing data can occur in the training or (and) test set. In this
paper, the Bayesian framework is adopted. No matter which
situation of data incompleteness, for training, Bayesian meth-
ods can be used to maximize the posterior of unknown vari-
ables conditional on the observed data. Similarly, if the test
data are incomplete, the lost data can be recovered by max-
imizing the posterior distribution of the conditional model
given the observed test data and the learned model. This
idea was employed before, e.g., in reconstructing the parts
of motion capture data with the variational Gaussian process
dynamical system (VGPDS) [Damianou et al., 2011].

In this paper, we revisit GPDMs in different situations of
data incompleteness and develop four algorithms (MAP+,
Fix.ᾱ+, B-GPDM+ and T.MAP+) for training GPDMs with
incomplete data and a conditional model (CM+) for recover-
ing the incomplete test data. The highlights of our work are
summarized as follows. Firstly, the proposed approaches can
fully and properly use the partially observed data while the
existing work reconstructs the missing data using a function
of the latent variables, which may cause cumulative errors.
Therefore, the proposed approaches are promising to provide
significant improvements. In our experiments on the human
motion data, the lost parts of the body in the sequences are
recovered more accurately, as expected. Secondly, the pro-
posed approaches for GPDMs can handle various complex
situations of data incompleteness while most exiting work on
GPDMs can only deal with very simple situations. In view
of all the different situations of data incompleteness, our ap-
proaches show advantages for recovering missing data.

2 Review of GPDMs
GPDMs were proposed to analyze sequential data. Let Y =
[y1, ...,yN ]> be the data in the observation space and X =
[x1, ...,xN ]> be the variables in the latent space where yi ∈
RD and xi ∈ Rd. The likelihood of Y given X is expressed
as a product of GPs (one for each of the D data dimensions)

p(Y |X, β̄,W )

=
|W |N√

(2π)ND|KY |D
exp(−1

2
tr(K−1

Y YW 2Y >)),
(1)

where W is a scaling diagonal matrix and KY is an N × N
kernel matrix constructed by a kernel function κY with pa-
rameters β̄ = {βi}3i=1: κY (x,x′) = β1exp(−β2

2 ||x −
x′||2) + β−1

3 δx,x′ . The distribution of X is given by a first-
order Markov Gaussian process

p(X|ᾱ)

=
p(x1)√

(2π)(N−1)d|KX |d
exp(−1

2
tr(K−1

X X2:NX
>
2:N )),

(2)

where X2:N = [x2, ...,xN ]>, KX is a kernel matrix
constructed from [x1, ...,xN−1]>, and x1 has an isotropic
Gaussian prior. The GPDM uses a “linear+RBF” kernel
for KX with parameters ᾱ = {αi}4i=1: κX(x,x′) =
α1exp(−α2

2 ||x − x′||2) + α3x
>x′ + α−1

4 δx,x′ . The priors
of the kernel hyperparamters are placed with p(ᾱ) ∝

∏
i α
−1
i

and p(β̄) ∝
∏
i β
−1
i . Parameter W has a broad half-normal

prior, p(W ) =
∏D
m=1

2
σ
√

2π
exp(−w2

m

2σ2 ), where wm > 0 cor-
responds to the diagonal elements of W and σ is often fixed1.

Then, the joint probability distribution of latent variables,
observations, and parameters is given by

p(X,Y, ᾱ, β̄,W ) = p(Y |X, β̄,W )p(X|ᾱ)p(ᾱ)p(β̄)p(W ).

Note that, Y can represent multiple sequences Y (1), ..., Y (P ),
with lengths N1, ..., NP . Then X2:N is composed of
the associated latent variables X(1), ..., X(P ) as X2:N =

[X
(1)>
2:N1

, ..., X
(P )>
2:NP

]> and X1:N−1 is given by X1:N−1 =

[X
(1)>
1:N1−1, ..., X

(P )>
1:NP−1]>.

2.1 GPDM Learning
The existing learning algorithms for GPDMs include MAP,
Fix.ᾱ, B-GPDM and T.MAP [Wang et al., 2008b]. The
first three algorithms are based on MAP and the fourth uses
Monte Carlo EM (MCEM). MAP based methods require
minimizing the joint negative log-posterior of the unknowns
− ln p(X, ᾱ, β̄,W |Y ) expressed as L + const, where const
represents a constant and

L = LY + LX +
∑

j
lnβj +

∑
j

lnαj +
tr(W 2)

2σ2
, (3)

with

LY =
D

2
ln |KY |+

1

2
tr(K−1

Y YW 2Y >)−N ln |W |, (4)

LX =
d

2
ln |KX |+

1

2
tr(K−1

X X2:NX
>
2:N ) +

1

2
x>1 x1. (5)

MAP Parameters and latent variables are optimized through
minimizing (3) with respect to W in a closed form and with
respect to {X, ᾱ, β̄} alternately using the scaled conjugate
gradient method (SCG).
Fix.ᾱ Hyperparamters ᾱ are fixed as [0.009, 0.2, 0.001,106]>

instead of being optimized to ensure that p(X|ᾱ) represents
a strong preference for smooth observation sequences.
B-GPDM B-GPDM was introduced by multiplying LX in

1It is set to 103 in our experiments as in Wang et al. [2008b].
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(a) S1 (b) S2 (c) S3 (d) S3.1 (e) S3.2

Figure 1: Illustration of data incompleteness.

Algorithm 1 MAP+ estimation of {X, ᾱ, β̄,W}.
Require: Data {Y:,cd, Ycn,md}, integers {d, I, J}.

Initialize Xcn with PCA on Ycn,: with d dimensions.
Initialize Xmn using the NN2 or cubic spline3 method.
Initialize ᾱ← (0.9, 1, 0.1, e), β̄ ← (1, 1, e), {wk} ← 1.

1: for i =1 to I do
2: for j in cd do
3: w2

j ← N(Y >:,jK
−1
Y Y:,j + 1

σ2 )−1

4: end for
5: for j in md do
6: w2

j ← Nc(Y
>
cn,jK

−1
Ycn

Ycn,j + 1
σ2 )−1

7: end for
8: {X, ᾱ, β̄} ← optimize (7) using SCG for J iterations.
9: end for

(3) by a coefficient Dd to balance the influences of the obser-
vation reconstruction error in the high dimensional space and
the prediction error in the low dimensional latent space be-
fore optimization. As a result, B-GPDM adapts the objective
function (3) to favor smooth latent variable sequences.
T.MAP Unlike the previous learning algorithms, T.MAP uses
MCEM to optimize Θ = {ᾱ, β̄,W} and MAP to optimize
X . In the E-step of MCEM, the expected complete negative
log likelihood − ln p(Y,X|Θ) under p(X|Y,Θi) is approx-
imately computed by LE(Θ) ≈ − 1

R

∑R
r=1 ln p(Y,Xr|Θ),

where {Xr}Rr=1 ∼ p(X|Y,Θi) are sampled using hybrid
Monte Carlo (HMC). In the M-step, the hyperparameters
Θi+1 are optimized by minimizing LE(Θ). As the second
stage, given the optimized Θi+1, X is optimized through
maximizing ln p(X,Θi+1|Y ) with SCG.

2.2 Conditional GPDM
Given the learned GPDM Γ = {Y,X, ᾱ, β̄,W}, which in-
cludes the observations, learned latent variables and param-
eters, one can optimize the latent variables corresponding to
a new observation sequence with a conditional GPDM (CM).
In addition, one can predict or generate a new sequence only
with an initial value x1.

In the CM, the distribution over a new sequence Y ∗ ∈
RM×D and its associated latent variable X∗ ∈ RM×d condi-
tional on Γ is given by

p(Y ∗, X∗|Γ) = p(Y ∗|X∗,Γ)p(X∗|Γ). (6)

2NN is short for 1-nearest neighbor where for each frame the
values of known dimensions are compared to each example in the
present data to find the closest match, which is used in S2 and S3.

3Cubic spline [Wang et al., 2008b] is a kind of interpolation
method relying on the data before and after the missing data, which
is used in S1.

Algorithm 2 T.MAP+ estimation of {X, ᾱ, β̄,W}.
Require: Data {Y:,cd, Ycn,md}. Integers {d,R, I, J,K}.

Initialize Xcn with PCA on Ycn,: with d dimensions.
Initialize Xmn using the NN or cubic spline method.
Initialize ᾱ← (0.9, 1, 0.1, e), β̄ ← (1, 1, e), {wk} ← 1.

1: for i =1 to I do
2: Generate {Xr}Rr=1 ∼ p(X|Y:,cd, Ycn,md, ᾱ, β̄,W ) using

HMC sampling.
3: Construct {Kr

Y ,K
r
Ycn

,Kr
X} from {Xr}Rr=1.

4: for j = 1 to J do
5: for k in cd do
6: w2

j ← N(Y >:,k
1
R

∑R
r=1(Kr

Y )−1Y:,k + 1
σ2 )−1

7: end for
8: for k in md do
9: w2

j ← Nc(Y
>
cn,k

1
R

∑R
r=1(Kr

Ycn
)−1Ycn,k+ 1

σ2 )−1

10: end for
11: {ᾱ, β̄} ← optimize L̃E(Θ) using SCG forK iterations.
12: end for
13: X ← maximize ln p(X, ᾱ, β̄,W |Y:,cd, Ycn,md).
14: end for

Here, p(X∗|Γ) is calculated as

p(X∗|Γ) =
p(x∗1)√

(2π)(M−1)d|KX∗ |
exp(−1

2
tr(KX∗ZXZ

>
X)),

where ZX = X∗2:N − C>K−1
X X2:N and KX∗ = D −

C>K−1
X C. (C)ij = κX(xi,x

∗
j ) and (D)ij = κX(x∗i ,x

∗
j )

are the elements of the (N−P )×(M−1) and (M−1)×(M−
1) kernel matrices, respectively. p(Y ∗|X∗,Γ) is calculated as

p(Y ∗|X∗,Γ)

=
|W |M√

(2π)MD|KY ∗ |
exp(−1

2
tr(K−1

Y ∗ZYW
2Z>Y )),

where ZY = Y ∗ − A>K−1
Y Y and KY ∗ = B − A>K−1

Y A.
(A)ij = κY (xi,x

∗
j ) and (B)ij = κY (x∗i ,x

∗
j ) are the ele-

ments of theN×M andM×M kernel matrices, respectively.
To optimize the latent variables associated with new se-

quences, one can obtain X∗ by maximizing (6). To pre-
dict or generate a new sequence given x1, one can first
set the latent variable at each time step to be the most
likely (mean) value given the previous set as µX(xt−1) =
kX(xt−1)>K−1

X X2:N . Then reconstruct the new data in
the observation space by the mean function µY (x∗) =
kY (x∗)>K−1

Y Y .

2.3 GPDM with Incomplete Data
It is indeed possible for GPDMs to deal with missing data
[Wang et al., 2008b]. However, no matter for incomplete
training or test data, these methods use the mean function
µY (X) introduced above to reconstruct the missing data.
This reconstruction procedure would be performed before op-
timizing (3) or (6), respectively. Moreover, the reconstruction
uses the latent variables obtained by some initialization meth-
ods. Thus the performance of these methods is quite limited
and large cumulative errors may be incurred.

3 Our Methods
We summarize data incompleteness into three situations, i.e.,
row missing (S1), column missing (S2) and block missing
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07 01 35 01 35 18 64 01 four-walker
NN 15.72 / · 7.24 / · 40.70 / · 24.06 / · 14.00 / ·
MAP 15.72 / 59.89 6.57 / 2.50 33.87 / 3.00 20.76 / 0.66 17.34 / 9.59
Fix.ᾱ 15.34 / 88.70 6.42 / 2.00 35.17 / 3.32 19.48 / 0.48 17.81 / 6.13
B-GPDM 14.45 / 5.42 5.97 / 0.57 27.01 / 0.31 17.07 / 0.22 13.47 / 0.24
T.MAP 14.91 / 19.79 6.89 / 2.57 23.15 / 1.74 14.90 / 1.74 12.15 / 10.19
MAP+ 14.33 / 3.71 6.26 / 0.07 24.99 / 0.27 12.80 / 0.14 13.91 / 2.72
Fix.ᾱ+ 15.34 / 2.49 6.08 / 0.10 28.92 / 0.42 15.27 / 0.16 16.69 / 2.07
B-GPDM+ 14.38 / 1.47 6.51 / 0.27 26.68 / 0.26 16.06 / 0.17 15.43 / 0.19
T.MAP+ 15.37 / 4.38 6.62 / 0.37 18.00 / 0.20 14.68 / 0.34 10.77 / 2.44

Table 1: Averaged RMSE / −LP of recovering missing training data (in S3).

(S3) in Figures 1(a), 1(b) and 1(c), where the gray nodes
are observed and the white are unobserved. We first give
the definitions of some symbols: mn with length Nm rep-
resents the time indices of missing data, and md with length
Dm represents the dimension indices of missing data. Cor-
respondingly, cn and cd with lengths Nc and Dc are the
complements of mn and md in the whole indices [1 : N ]
and [1 : D], respectively. Thus, the missing data can be ex-
pressed as Ymn,md and the present data can be expressed as
Ycn,md, Y:,cd. In particular, Figure 1(a) can be expressed as
row missing; Figure 1(b) can be expressed as column miss-
ing; Figure 1(c) can be expressed as block missing in which
mn = [2, 3], md = [2, 3], cn = [1, 4] and cd = [1, 4].

It is worth noting that Figures 1(a) and 1(b) are two specific
cases of Figure 1(c), and Figure 1(c) can be extended to any
situations of data incompleteness. A complex situation is that
the missing data are non-contiguous over time or dimensions.
We divide this case of data incompleteness into two situations
as in Figures 1(d) and 1(e), and note that a) if the missing
data can be formed into a matrix, the methods for reconstruc-
tion are the same as the methods for addressing missing data
that are contiguous over time and dimensions; b) otherwise,
the missing data should be divided into blocks. We first give
methods for both training and testing with incomplete data in
the case of S3. After that, we will explain how to adapt our
methods to the situation of non-contiguously missing.

3.1 GPDM with Incomplete Training Data
The GPDMs are defined as before, and now suppose the train-
ing data are incomplete as in Figure 1(c). According to the
Bayesian framework, the joint distribution of the latent vari-
ables, the observed data and the parameters are given by
p(X,Y:,cd,Ycn,md, ᾱ, β̄,W ) = p(Y:,cd|X, β̄,Wcd)

p(Ycn,md|Xcn, β̄,Wmd)p(X|ᾱ)p(ᾱ)p(β̄)p(W ),

where Xcn means the cnth rows of X and Wmd represents a
diagonal matrix whose diagonal elements are the mdth di-
agonal elements of W . In this case we propose four new
learning methods for GPDM training, which are denoted
MAP+, Fix.ᾱ+, B-GPDM+ and T.MAP+. In MAP based
methods, the GPDM with incomplete data is learned through
minimizing the joint negative log-posterior of the unknowns
− ln p(X, ᾱ, β̄,W |Y:,cd, Ycn,md) which is given, up to an ad-
ditive constant, by

L̃ =LY:,cd
+ LYcn,md

+ LX +
∑

j
lnβj

+
tr(W 2)

2σ2
+
∑

j
lnαj ,

(7)

with

LY:,cd
=
Dc

2
ln |KY |+

1

2
tr(K−1

Y Y:,cdW
2
cdY

>
:,cd)

−N ln |Wcd|,
(8)

LYcn,md
=

1

2
tr(K−1

Ycn
Ycn,mdW

2
mdY

>
cn,md)

+
Dm

2
ln |KYcn | −Nc ln |Wmd|.

(9)

Here, LX has the same formulation as (5). We give the
details for MAP+, Fix.ᾱ+, B-GPDM+ and T.MAP+ below.
MAP+ Parameters are optimized through minimizing (7)
with respect to W in a closed form and with respect to
{X, ᾱ, β̄} alternately using SCG. The detailed procedure
is described in Algorithm 1. We set d = 3, I = 100 and
J = 10 in our experiments.
Fix.ᾱ+ Hyperparamters ᾱ in (7) are fixed as
[0.009, 0.2, 0.001, 106]> instead of being optimized.
B-GPDM+ Similar to B-GPDM, LX in (7) is multiplied by
a coefficient Dd to balance the objective terms in the GPDM.
T.MAP+ T.MAP+ has the same principle as T.MAP, which
uses MCEM to optimize Θ = {ᾱ, β̄,W} and MAP to
optimize X . Since the data are now incomplete, some calcu-
lations are different. In the E-step of MCEM, the expected
joint negative log-likelihood − ln p(Y:,cd, Ycn,md, X|Θ)
under p(X|Y:,cd, Ycn,md,Θ

i) is approximately computed
by L̃E(Θ) ≈ − 1

R

∑R
r=1 ln p(Y:,cd, Ycn,md, X

r|Θ), where
{Xr}Rr=1 ∼ p(X|Y:,cd, Ycn,md,Θ

i) are sampled using
HMC. In the M-step, the hyperparameters Θi+1 are opti-
mized by minimizing L̃E(Θ). As the second stage, given
the optimized Θi+1, X is optimized through maximizing
ln p(X,Θi+1|Y:,cd, Ycn,md) by SCG. The detailed proce-
dure is given in Algorithm 2. We set d = 3, R = 50, I = 10,
J = 10 and K = 10 in our experiments.

Comparing Algorithms 1 and 2 with the existing algo-
rithms [Wang et al., 2008b], we find that the proposed meth-
ods only double the computational complexities in the worst
case. Moreover, reconstructions for missing data before pa-
rameter updates disappear in the proposed methods, which
will reduce the time cost. Further, when data are incomplete
as in S1, the proposed methods would be more efficient.

3.2 GPDM with Incomplete Test Data
We present a new conditional model (CM+) to recover the
missing test data Y ∗mn,md ∈ RMm×Dm. In the CM+, defin-
ing Ỹ = [Y >, Y ∗>cn,:]

>, Ỹ ∗ = Y ∗mn,:, X̃ = [X>, X∗>cn ]> and
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Figure 2: 3D trajectories in the latent space by training
GPDMs with incomplete data. (Best viewed in color).

X̃∗ = X∗mn, the posterior density of Y ∗mn,md is

p(Y ∗mn,md|X∗, Y ∗:,cd, Y ∗cn,md,Γ)

=
|W |Mm√

(2π)MmDm |KỸ ∗ |Dm
exp(−1

2
tr(K−1

Ỹ ∗
ZỸW

2Z>
Ỹ

)),

where Z̃Y = Y ∗mn,md − Ã>K−1

Ỹ
Ỹ:,md and KỸ ∗ = B̃ −

Ã>K−1

Ỹ
Ã. (Ã)ij = κY (x̃i, x̃

∗
j ) and (B̃)ij = κY (x̃∗i , x̃

∗
j ) are

the elements of the (N + Mc)×Mm and Mm×Mm kernel
matrices, respectively. Different from the previous CM, the
optimal value of X∗ is obtained by maximizing the joint con-
ditional distribution of observed test data Y ∗:,cd, Y

∗
cn,md and

the associated latent variable X∗ given the learned model Γ

p(Y ∗:,cd, Y
∗
cn,md, X

∗|Γ) = p(Y ∗:,cd, X
∗|Y:,cd, X, β̄,W )

p(Y ∗cn,md, X
∗
cn|Y:,md, X, β̄,W )p(X∗|ᾱ). (10)

With X∗ optimized, the mean function µỸ (X̃∗) =

kỸ (X̃∗)>K−1

Ỹ
Ỹ is used for recovering the lost test data.

3.3 Non-contiguously Missing
Recall that Figure 1(c) can be extended to more complex sit-
uations in which the missing data are non-contiguous over
time or dimensions as exhibited in Figures 1(d) and 1(e). Our
approaches can be applied to these situations with some refor-
mulations or minor modifications. Specifically, for S3.1 the
approaches presented above do not require modifications but
with md = [2, 4], mn = [2, 4], cd = [1, 3] and cn = [1, 3].
For S3.2, the missing data can be expressed as md1 = [2],
mn1 = [3, 4], md2 = [4] and mn2 = [2, 3]. The comple-
ment indices are: cn1 = [1, 2], cn2 = [1, 4] and cd = [1, 3].
Note that cd includes the complements of the union set of
md1 and md2 in the whole indices [1 : D]. Since data on
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Figure 3: Recovered skeletons of run and swing with MAP
and MAP+.

different dimensions are conditionally independent, the cor-
responding likelihood of Ycn,md is replaced by the product
of the likelihoods of Ycn1,md1

and Ycn2,md2
. We then only

need to adjust (7) and (10) accordingly.

4 Experiments
The benchmark data used for experiments are human mo-
tion capture data from the Carnegie Mellon University motion
capture database. As in Wang et al. [2008b], we use a spe-
cific version of the default skeleton in the database for which
each pose is 50-dimensional. To evaluate the effectiveness
of the proposed methods, two different types of experiments
have been performed: training with incomplete data and re-
covering incomplete test data.

4.1 Training with Incomplete Data
We evaluate the proposed four learning algorithms for han-
dling incomplete training data. The data used include two
single-walker sequences 07 01.amc (1-2-260/50-100/1-38)4

and 35 01.amc (55-4-338/41-60/7-31), a single-runner se-
quence 35 18.amc (1-2-160/21-50/23-48), a single-swinger
sequence 64 01.amc (120-4-400/16-40/7-31) and a four-
walker sequence spliced by 35 02.amc (55-4-338/16-40/1-
38), 10 04.amc (222-4-499/16-40/1-38), 12 01.amc (22-4-
328/16-40/1-38) and 16 15.amc (62-4-342/16-40/1-38). In a
word, these incomplete data are all in S3. Note that, the miss-
ing data in the four-walker sequence are non-contiguous over
time. For each kind of motion data, we perform the four pro-
posed learning algorithms MAP+, Fix.ᾱ+, B-GPDM+ and
T.MAP+ compared with MAP, Fix.ᾱ, B-GPDM and T.MAP,
as well as NN. Moreover, we repeat all the experiments on
each motion data for nine times with different missing data.
That is, mn and md slide on three different windows, respec-
tively. For example, for 07 01, mn = [50 : 100], [51 : 101]
or [52 : 102] and md = [1 : 38], [2 : 39] or [3 : 40].

Table 1 shows the averaged root mean square error
(RMSE) per missing frame and the averaged negative log-

4“1-2-260/50-100/1-38” means that the data are downsampled
from frames 1 to 260 by a factor of 2, with mn = [50 : 100] and
md = [1 : 38].

1051



35 03 12 02 16 21 12 03 07 01 07 02 08 01 08 02 AVG.
k-NN 40.64 / · 40.36 / · 49.91 / · 50.45 / · 78.81 / · 64.40 / · 76.48 / · 77.06 / · 59.76 / ·
VGPDS 49.92 / 12.29 45.72 / 10.84 36.00 / 7.47 43.20 / 10.32 75.74 / 24.24 73.23 / 23.37 88.78 / 14.75 71.92 / 12.29 60.56 / 14.45
MAP+CM 37.26 / 3.06 43.42 / 78.44 36.18 / 6.11 46.55 / 3.46 74.33 / 5.41 68.05 / 2.87 85.61 / 4.95 64.77 / 17.88 57.02 / 15.27
Fix.ᾱ+CM 51.58 / 4.98 50.24 / 5.31 39.96 / 2.77 56.69 / 7.24 82.55 / 7.75 80.32 / 7.01 96.20 / 10.79 65.65 / 8.12 65.40 / 6.75
B-GPDM+CM 46.72 / 4.71 50.15 / 7.74 42.33 / 3.83 53.57 / 8.14 83.02 / 13.40 76.08 / 12.02 90.04 / 14.66 65.40 / 7.45 63.41 / 8.99
T.MAP+CM 57.04 / 2.26 59.60 / 2.62 46.96 / 8.13 58.59 / 3.19 86.81 / 6.97 88.56 / 6.44 93.93 / 8.25 66.20 / 19.59 69.71 / 7.18
MAP+CM+ 34.56 / 1.10 43.34 / 1.45 36.32 / 1.85 42.92 / 1.65 71.51 / 2.50 66.53 / 1.16 81.18 / 2.19 67.75 / 6.12 55.52 / 2.25
Fix.ᾱ+CM+ 50.08 / 5.02 49.99 / 5.35 40.17 / 2.79 56.82 / 7.22 82.66 / 7.58 79.49 / 7.15 95.63 / 11.05 65.77 / 8.16 65.08 / 6.79
B-GPDM+CM+ 46.72 / 4.71 50.15 / 7.74 42.33 / 3.83 53.57 / 8.14 83.02 / 13.40 76.08 / 12.02 90.04 / 14.66 65.40 / 7.45 63.41 / 8.99
T.MAP+CM+ 56.86 / 1.06 57.88 / 1.60 48.77 / 2.90 60.24 / 1.92 85.03 / 1.87 83.29 / 2.00 94.88 / 4.74 70.05 / 7.45 69.63 / 2.94

Table 2: Averaged RMSE / −LP of recovering missing test data (in S2).

posterior (−LP) over the missing data. All the shown −LPs
in this paper are the actual−LPs divided by 100. The best re-
sults are marked in bold for each motion sequence. Through
the table, we see that the lowest RMSE and −LP are almost
all obtained by the proposed algorithms. Further, the four
proposed algorithms outperform MAP, Fix.ᾱ, B-GPDM and
T.MAP on most sequences, respectively. Note that, since the
data in some frames are not completely lost, the present data
on some known dimensions will help to learn the model. In
this case, the dynamics of the model are not the unique factor
to influence the performance of the model. This explains why
Fix.ᾱ+, B-GPDM+ and T.MAP+ which favor smooth latent
trajectories do not always perform best.

Figure 2 shows the 3D latent trajectories learned from in-
complete data, in which from (a) to (j), the couples of figures
with the same name are the 3D trajectories of the same data
learned by MAP on the left and MAP+ on the right, respec-
tively. Figures 2(k) and 2(l) are the 3D trajectories of the
four-walker motion data learned by T.MAP and T.MAP+, re-
spectively. The red line corresponds to the missing frames
and the blue line corresponds to the present frames. From the
figure we can find that the latent trajectories learned through
MAP+ are much smoother than those through MAP. This is
because MAP+ makes full use of the data on the known di-
mensions while learning the dynamics of the latent trajecto-
ries. However, the simple reconstruction approach in MAP
makes it rely on the old latent variables too much, which
leads to cumulative errors. In Figures 2(i) and 2(j), the motion
data combining four walkers are not well learned by MAP or
MAP+, which is consistent to the conclusions in Wang et al.
[2008b]. In addition, Wang et al. [2008b] showed that for
complete data the walk cycles from the four subjects learned
with T.MAP are smooth and separated in the latent space.
However, when the data are incomplete (as shown in Figures
2(k) and 2(l)), T.MAP cannot achieve the same effects while
T.MAP+ can.

In order to show the correctness of the recovery more in-
tuitively, we exhibit the recovered skeletons of run and swing
on a certain frame with MAP and MAP+ in Figure 3. Obvi-
ously, the legs of the runner and the right arm of the swinger
are not recovered well by MAP. But, the skeletons recovered
by MAP+ and the ground truth are almost the same.

4.2 Recovering Incomplete Test Data
Now we consider the tasks of filling in lost parts of new data
in two situations (S1 and S2) of data incompleteness. We per-
form the proposed conditional model CM+ and the existing

Complete training data Incomplete training data
Methods AVG. Methods AVG.
k-NN 50.46 / · k-NN 70.01 / ·
spline 122.24 / · spline 122.24 / ·
MAP+CM 53.69 / 230.73 MAP+CM 57.13 / 847.46
Fix.ᾱ+CM 46.55 / 3.54 Fix.ᾱ+CM 56.72 / 3.43
B-GPDM+CM 51.52 / 4.50 B-GPDM+CM 52.63 / 6.42
T.MAP+CM 50.90 / 158.17 T.MAP+CM 51.26 / 505.02
MAP+CM+ 51.73 / 186.19 MAP++CM+ 51.83 / 229.88
Fix.ᾱ+CM+ 46.54 / 3.53 Fix.ᾱ++CM+ 50.87 / 2.66
B-GPDM+CM+ 51.42 / 4.41 B-GPDM++CM+ 52.91 / 3.69
T.MAP+CM+ 51.04 / 70.56 T.MAP++CM+ 49.05 / 107.96

Table 3: Averaged RMSE / −LP of recovering missing test
data (in S1).

conditional model CM to recover the missing test data. The
learned GPDMs on the four-walker motion data using differ-
ent learning algorithms are employed. For clarity, we define
the approaches as “learning algorithm + CM+” and “learning
algorithm + CM”.

First we consider the column missing case. Eight 50-frame
sequences with 40 dimensions removed are taken to be re-
covered. The training data used here are complete so that the
learning algorithms for GPDMs combined with CM+ are the
same to those for GPDMs combined with CM. The experi-
ments are performed for three times with the same setting but
with md = [1 : 40], [2 : 41] and [3 : 42] for each time,
respectively. Table 2 gives the averaged results in terms of
the RMSE of recovering and −LP of missing data over three
experiments. Besides GPDM based methods, VGPDS and k-
NN are also employed for comparisons. Here, k is set to 15
as in Wang et al. [2008b] where they tried k=[3, 6, 9, 15, 20],
with 15 giving the lowest average error. We do not include
spline which is only suitable in S1. The VGPDS which as-
sumes that sequences are independent cannot get as good per-
formance as GPDMs on the current data. The proposed CM+

recovers the missing parts more accurately than the existing
CM. Moreover, MAP+CM+ performs best because the cur-
rent situation of data incompleteness is that data on some di-
mensions are missing from the start to the end of a sequence:
Other algorithms relying too much on the dynamics of the
model cannot help to recover missing data well in this situa-
tion.

In order to verify the versatility of our methods, we also
conduct experiments on recovering test data with some inter-
val frames missing. In this situation, we consider two cases in
which the training data are complete and incomplete, respec-
tively. For incomplete training data, GPDMs are learned by
the existing and proposed algorithms, respectively. VGPDS
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which doesn’t handle this situation is not compared. Exper-
iments on the same sequences as Table 2 are performed, in
which missing frames are [5 : 35]. Due to the limited space,
the averaged RMSE and −LP over all the test sequences are
presented in Table 3. Fix.ᾱ+CM+ and T.MAP++CM+ per-
form best with complete and incomplete training data, respec-
tively. The methods which favor the dynamics perform better
than MAP+CM+ because data in all dimensions before and
after the missing frames are given in these experiments.

5 Conclusions
In this paper, we have proposed four learning algorithms
(MAP+, Fix.ᾱ+, B-GPDM+ and T.MAP+) for training
GPDMs with incomplete training data and a condition model
(CM+) for recovering incomplete test data. The approaches
were developed under the Bayesian framework [Sun, 2013].
The advantages of the proposed approaches have been
demonstrated for different situations of data incompleteness.
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