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Abstract
Shubik’s (all-pay) dollar auction is a simple yet pow-
erful auction model that aims to shed light on the
motives and dynamics of conflict escalation. Com-
mon intuition and experimental results suggest that
the dollar auction is a trap, inducing conflict by its
very design. However, O’Neill [1986] proved the
surprising fact that, contrary to the experimental
results and the intuition, the dollar auction has an
immediate solution in pure strategies, i.e., theoreti-
cally it should not lead to conflict escalation. In this
paper, inspired by the recent literature on spiteful
bidders, we ask whether the escalation in the dollar
auction can be induced by meanness. Our results
confirm this conjecture in various scenarios.

1 Introduction
On the surface, many social situations appear to be a trap,
where it seems a bad idea to invest further resources, but also
seems bad to retract and lose already-invested resources. Such
dilemmas are often faced by lobbyists who battle with each
other in a costly and seemingly endless process of acquiring
a public contract [Fang, 2002], by oligopolistic companies
pressured to invest in R&D only because the competitors have
done so [Dasgupta, 1986], or by many ready-to-marry people
who feel trapped in their relationships [Rhoades et al., 2010].

Mimicking human societies, conflicts also abound in AI
and in Multi-Agent Systems (MAS) [Müller and Dieng, 2000;
Vasconcelos et al., 2009; Castelfranchi, 2000]. While such
conflicts often used to be considered in the literature as fail-
ures or synchronisation problems [Weyns and Holvoet, 2003;
Tessier et al., 2002], it has been recently argued that there is a
need for more advanced studies, including analyses of conflict
generation, escalation, or detection in MAS [Campos et al.,
2013].

In this paper, we study Shubik’s [1971] dollar auction—a
simple yet powerful all-pay auction model that aims to shed
light on the motives and dynamics of conflict escalation. In
this auction, two bidders i and j compete for a dollar; the
highest bidder wins the prize, but both the winner and the

loser have to pay their bids to the auctioneer. One might argue
that it is best not to participate in this auction. However, this is
not always possible. Furthermore, the possibility that a player
may choose not to bid creates a clear incentive for the other
player to bid and get the prize. Matter-of-factly, this reasoning
is the centrepiece of the entire dollar auction mechanism that
ultimately pushes players towards conflict escalation.

The above dollar auction game has become an influential
abstraction of conflict escalation processes. It shows that con-
flicts may reach irrational levels despite the fact that, locally,
every single participant makes a rational decision. Similar
patterns of behaviour are observed in “clinical” experiments
with the dollar auction—more often than not, a dollar bill
is sold for considerably more than a dollar [Shubik, 1971;
Kagel and Levin, 2008]. One of the key reasons behind this
“paradox of escalation” is that a rational strategy to play this
game is far from obvious; it is difficult to make an optimal
choice between when “to quit” and when “to bid” (which is
also true in many real-life situations).

In his beautiful paper, O’Neill [1986] offered a surprising
solution to the dollar auction—he proved that, assuming finite
budgets of players, in all equilibria in pure strategies, only one
player bids and wins the prize. The exact amount of such a
“golden” bid is a non-trivial function of the stake, the budgets,
and the minimum allowable increment.

Does O’Neill’s result mean that the conflict in the dollar
auction does not escalate after all? The issue was revisited by
Leininger [1989], who showed that the escalation can be justi-
fied in this game because there exist equilibria with escalation
in mixed strategies. Later on, Demange [1992] proved that,
if there is some uncertainty about the strength of the players,
then the only stable equilibrium may entail escalation.

In this paper, we reconsider O’Neill’s results in pure equi-
libria from a different perspective. Following recent literature
on spiteful bidders (e.g. [Brandt et al., 2005]), we ask whether
the escalation in the dollar auction may actually be caused by
the meanness of some participants. Do some of us put others
in an inauspicious position simply because of spite, rather than
greed? Do we allow ourselves to be dragged along simply
because we do not expect a spiteful opponent? Our results
confirm this conjecture in various scenarios.
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2 Preliminaries
In this section, we formally introduce the notation and rules
of the dollar auction and the concept of spitefulness.

The Dollar Auction: The auction setting proposed by Shu-
bik [1971] consists of two players, N = {1, 2}. We will often
refer to one of them as i and the other as j. The players can
declare bids xi and xj , respectively, that are multiples of a unit
c ∈ N. The winner of the auction receives the stake s ∈ N.
Without loss of generality, unless stated otherwise, we assume
that c = 1. Some arbitrary mechanism chooses the player who
places the first bid (from this moment on we call him player
1). Player 1 can either place a bid or pass the turn to player
2. If player 2 does not want to bid either, the auction ends.
Otherwise, the turn moves back to player 1 and so on and so
forth. At any moment, if a player quits, he receives nothing,
while the other receives the stake s. After the auction, both
players must pay their bids to the auctioneer, regardless of
the identity of the winner. Players cannot make deals, form a
coalition or make threats.

O’Neill [1986] extended the above model by explicitly as-
suming that the players have finite budgets b1, b2 ∈ N, where
b1 > s > c and b2 > s > c. These budgets naturally constrain
the players, e.g., if xi ≥ bj then player j cannot outbid player
i, in which case i wins. Figure 2 presents an example of the
dollar auction where b1 = b2 = 7. Each node represents a
pair of bids (x1, x2). In the black nodes, player 1 chooses his
bid and each solid arrow corresponds to one of his possible de-
cisions. Analogically, the white nodes are the decision nodes
of player 2 and the dotted arrows represent his possible bids.
The nodes without an outgoing arrow represent situations in
which the corresponding player has spent his entire budget.
The auction ends either when one of the players chooses not to
make his move, or when a node is reached that has no outgoing
arrows.

O’Neill [1986] showed that in an auction with limited bud-
gets, the starting player has a winning strategy; he should
make a bid of (b− 1)mod(s− 1)+1 and his opponent should
pass, as he will never win the stake. We sketch a proof of this
result in the proof of Theorem 1.

Spitefulness: Following, e.g. Brandt et al. [2005], we assume
that a spiteful agent is interested in increasing his own profit
while at the same time decreasing the profit of his opponent.
More formally, the utility of player i is:

ui = (1− αi)pi − αipj ,
where pi and pj are the profits of the respective players, and
αi ∈ [0, 1] is the spite coefficient of player i. This coefficient
indicates how important to player i is the loss of the opponent.
When αi = 0, player i simply maximizes his own profit,
in which case i is said to be a non-spiteful player. When
0 < αi ≤ 1, player i is said to be a spiteful player. Finally,
when αi = 1, player i is said to be a malicious player, since
he is solely interested in maximizing the loss of the opponent.

The concept of spitefulness is somewhat related to inequity
aversion [Fehr and Schmidt, 1999], since a spiteful player
suffers from any advantage of his opponent.

Let us define the profit of player i in the dollar auction as the
difference between his initial budget bi and his balance after

the auction. More formally, let us denote by (x1, x2) the final
bids of the players, where x1 + x2 > 0.1 Then, assuming that
xi > xj , the profit of the winner of the auction is pi = s− xi,
while the “profit” of the loser is pj = −xj . Formally, the
utility of player i in the dollar auction is:

ui =

{
αixj + (1− αi)(s− xi) if xi > xj ,
αi(xj − s)− (1− αi)xi if xi < xj .

3 Auction Settings
We studied various ways in which spitefulness can be intro-
duced to the dollar auction. In particular, we considered:

(a) auctions in which one player is non-spiteful (α = 0) and
the other is spiteful/malicious (α ∈ (0, 1]).

(b) auctions in which both players are spiteful/malicious;

Moreover, we considered two alternative assumptions about
knowledge/rationality of the players. First, for setting (a)
we assumed that the non-spiteful player does not suspect the
spitefulness of his opponent, and so uses a strategy that is
optimal against a non-spiteful opponent. After that, for both
settings (a) and (b) we considered the case in which both
players are aware of each others’ spite coefficients. Finally,
we considered all cases assuming both equal and unequal
budgets. For all of the aforementioned settings ,we consider
subgame perfect equilibria.

Due to space constraints we focus below on setting (a)
assuming limited knowledge of the non-spiteful player, results
of which we found most interesting. However, at the end we
briefly summarise the results for alternative settings.

4 An Auction with Equal Budgets
In this section, we analyze the dollar auction between players
with equal budgets, i.e., bi = bj = b where b > s. A spiteful
player has a spite coefficient ranging from 1, if he is malicious,
to (almost) 0. On the other hand, a non-spiteful player has a
spite coefficient of 0.

4.1 A Malicious Player (αj = 1)
If αi = 0 and αj = 1, then player i (whom we assume to
be non-spiteful and does not suspect the spitefulness of his
opponent), is challenged by player j who is actually malicious,
meaning that the goal of j is to maximize the loss of i, no
matter what the cost. In the theorem below, we show that the
optimal strategy of the malicious player is to lure the non-
spiteful player to continue bidding as long as possible. Still, it
is the malicious bidder who gets the stake at the end.

Theorem 1. Let i be a non-spiteful player (αi = 0) who
follows the strategy by O’Neill [1986], and let player j be
malicious (αj = 1). The optimal strategy of j is to bid:

xj =

{
xi + 1 if xi < b− (s− 1),
b otherwise.

1The assumption that x1 + x2 > 0 guarantees that the bidding
has actually started, i.e., at least one bid has been made.
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(a) At the end of the auction
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(b) Backtracking and expanding
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(c) At the beginning of the auction

Figure 1: Winning and losing areas during different moments of the auction.

Proof. We begin the proof by presenting the optimal strategy
of a non-spiteful player who does not suspect spitefulness from
the other player. This strategy was derived by O’Neill [1986].
To this end, consider the graph-based representation of the
dollar auction, an example of which was discussed earlier in
Section 2 and illustrated in Figure 2. Recall that every node
in this graph represents a pair of bids. We call node (x1, x2)
a winning node for player i if, by starting the game from this
node, player i is guaranteed to eventually win the stake s.
Importantly, while the bid of player i may exceed s, we note
that it would be irrational to do so (the only way to increase
a non-spiteful player’s utility is to win the auction and get
the stake s; increasing the bid by more than s outweighs any
possible profit). Finally, recall that the game ends if one player
exceeds his budget.

We will now analyze each node of the graph to determine
whether it is a winning node for player i. Figure 1a highlights
the parts of the graph that consist of winning nodes. Specif-
ically, the width of area Ci is one node, while the widths of
areas Bi, Di and Ei are s−1 nodes each. Any node in Cj is a
winning one for player i, since player j cannot bid more than
b and his only choice is to pass. Moreover, area Ei consists
of winning nodes for i, since by raising his bid by less than s,
he can move to area Cj , win the stake s and finish the auction.
Nodes in area Di are losing nodes for i, since by raising his
bid by less than s he can only move to area Ej , which is a
winning area for j. Thus, i’s optimal move in area Di is to
pass. Finally, in area Bi, the only valid bid increments are
those greater than, or equal to s, so it is also optimal for i to
pass. The analysis for areas Cj , Bj , Dj , Ej is identical.

We can now move on to the analysis of the areas of the graph
that are gradually closer to (0, 0), as illustrated in Figure 1b.
The areas that we have just analyzed now play the role of areas
C1 and C2. One could, of course, bid higher, but moving into
Ci always optimizes cost. All arguments previously stated for
areas Bi, Di, Ei still stand.

We can repeat this process until we reach an area whose
dimensions are less than s× s, as illustrated in Figure 1c. In
this case, areas C1 and C2 are winning areas for players 2 and
1, respectively. Consequently, area Ei is winning for player i,
where his optimal choice is to make the bid (b− 1)mod(s−
1)+1 and move to areaCj . As a result, the non-spiteful player

who makes the first move is always able to ensure his own
victory in the auction against the other non-spiteful player.

Figure 3 depicts the winning (shaded) areas for player 1 and
the winning moves for each such area, as well as the losing
(white) areas for player 1, where the optimal choice for him is
to pass.

Let us now assume that player i is non-spiteful and player j
is malicious. Recall that the utility of the malicious player is:
umalj = −pi. Naturally, the malicious player cannot make the
first move and arrive at an area that is outside of the winning
areas of the non-spiteful player. If he did so, then the non-
spiteful player would simply pass, leaving both players with
zero utility.

Next, we will show that the malicious player maximizes his
utility if he plays as the second player. Hence, given the chance
to move first, he will always pass the move to the opponent.
Thus, throughout the remainder of this proof, player 2 will be
the malicious one (i.e., i = 1 and j = 2).

Since the utility of the malicious player j is: umalj = −pi,
it is maximized when the game ends in area E1, or in the
adjacent nodes of area C1 in Figure 1a. However, player i will
not stay in area E1, but will rather make a move towards C2.
On the other hand, nodes from C1 can only be reached via a
move from B1 or D1. As visible in Figure 3, (b− (s− 1), b)
is the only node that player j is able to reach. His utility at
this node is b− s+ 1.

The next best group of nodes in terms of utility umalj are
those in C2 from Figure 1a; player i wins the stake, but is
forced to use all of his budget. The utility of player j is
therefore b−s, which is lower than in the node (b−(s−1), b).

A bid by a malicious player j that is always one unit higher
than the bid of a non-spiteful player i keeps the game in the
nodes that player i considers to be “winning” nodes. When
the bid of player i reaches b − (s − 1), player j should bid
b, thereby reaching the node in which he achieves his highest
possible utility.

4.2 A Spiteful Player (0 < αj < 1)
This subsection describes strategies for player j who is spiteful
but not malicious (i.e., 0 < αj < 1). His opponent is player
i, who is non-spiteful (i.e., αi = 0) and does not suspect the
spitefulness of his opponent, meaning that he is following the
strategy proposed by O’Neill [1986]. We divide our analysis
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Figure 2: The graph of the dollar auction
for b = 7.
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Figure 3: Winning areas (blue) & win-
ning moves of a non-spiteful player 1.
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Figure 4: Non-spiteful player 1, spiteful
player 2. End-nodes marked in red.

into three parts: weakly spiteful player with αj ∈ (0, 12 ), mod-
erately spiteful player with with αj = 1

2 and strongly spiteful
player with αj ∈ ( 12 , 1). First, let us start with the following
two lemmas, which hold for all of the aforementioned three
cases.

Lemma 1. Let i = 1 be a non-spiteful player (αi = 0) who
follows the strategy by O’Neill [1986], and let j = 2 be a
spiteful player (0 < αj < 1). Furthermore, let x be the
optimal initial bid of player i, and:

X0 = (0, x), Xk = (x+ (k − 1)(s− 1), x+ k(s− 1)),

Y0 = (x, 0), Yk = (x+ k(s− 1), x+ (k − 1)(s− 1) + 1),

where k ∈ {1, . . . , n} and n =
⌊

b
s−1

⌋
.

The optimal end-node for player j (that maximizes his util-
ity) is among nodes X0, ..., Xn, Y0, ..., Yn.

Proof. First, let us define areas marked in Figure 4 as:

Ak ={(xk,1, d) : d ∈ {xk,2, . . . , b}},
Bk ={(yk,1, d) : d ∈ {yk,2, . . . , yk,1 − 1}},

where (xk,1, xk,2) = Xk and (yk,1, yk,2) = Yk. These are
the only possible end nodes of the auction. In particular, the
auction cannot end in any of the unmarked nodes under the
diagonal, because they can only be reached by a move by
player i, but he will never make such a move (see the proof of
Theorem 1). The auction can end in the marked areas under
the diagonal, since player j can choose to pass at these nodes.

The auction cannot end in any of the areas marked E1.
This is because player i can make moves that he considers
winning from these nodes. Conversely, player i passes in
all other areas above the diagonal. Now, we observe that
the only difference between the nodes in marked areas is the
value of the bid made by player j. For any d ∈ N we have
uj((y, x+ d)) ≤ uj((y, x)).

Lemma 2. Let i = 1 be a non-spiteful player following the
strategy by O’Neill [1986], and let j = 2 be a spiteful player.
The end-nodesX1, ..., Xn and Y0, ..., Yn (defined in Lemma 1)
can be reached by player j regardless of who starts the game,
while X0 can be reached by player j if he starts the game.

Proof. Player j can reach any node Y0, ..., Yn by bidding al-
ways one unit more than the non-spiteful player i. This way,
in every move player i will make his optimal bid to enter Yk.
Now, player j can pass in node Yk, or bid x+ s− 1 in node
Yk−1 = (x, y) to reach Xk (for k > 0). Moreover, if player j
starts, he can reachX0 by making the bid (b−1)mod(s−1)+1.
As shown in Theorem 1, in every node Xk it is optimal for a
non-spiteful player to pass.

Weakly-spiteful player with αj ∈ (0, 12 ): As it turns out, a
player with a small (i.e., below 1

2 ) spite coefficient behaves
like a non-spiteful player if he starts the bidding. Otherwise,
after his opponent’s move, he passes or forces his opponent
to pass. Figure 5a presents an example of a utility map for a
weakly-spiteful player.
Theorem 2. Let i be a non-spiteful player following the strat-
egy by O’Neill [1986], and let j be a weakly-spiteful player
(i.e., αj ∈ (0, 12 )). If j starts the bidding, it is optimal for him
to bid like a non-spiteful player. If i moves first and makes
bid x, then the optimal strategy for player j is to make the bid
x+ s− 1 when x < αjs

1−αj
+ 1, and pass otherwise.

Proof. Let x be the optimal initial move of a non-spiteful
player, i.e., x = (b−1)mod(s−1)+1. Note that x ∈ [1, s−1].
Based on Lemma 1, the optimal end of an auction for player j
is one of the nodes from the set {X0, ..., Xn, Y0, ..., Yn}.
Moreover, Lemma 2 states that all of these nodes can be
reached by player j. Consider the utility function of player
j in nodes Xk and Xk+1 for k ≥ 1. If Xk = (a, b), then
Xk+1 = (a+ (s− 1), b+ (s− 1)). Hence,

uj(Xk+1)− uj(Xk) = (s− 1)(2αj − 1) < 0.

Analogously, the utility function of player j is lower in Yk+1

than in Yk. Thus, the optimal solution that can be reached by
player j is in one of the nodes: X0 = (0, x), X1 = (x, x +
s− 1), Y0 = (x, 0), Y1 = (x+ s− 1, x+ 1). Now, we have:

uj(X0)− uj(X1) = (s− 1)(1− αj)− αjx > 0,

uj(X0)− uj(Y0) = s− x > 0,

uj(X1)− uj(Y1) = 2− αj > 0.

Thus, if player j starts the bidding, he prefers to bid x and end
the game in X0. By comparing X1 and Y0 we have:

uj(X1)− uj(Y0) = x(αj − 1) + αjs+ 1− αj .
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(a) Weakly-spiteful player (αj = 0.25)
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(b) Moderately-spiteful player (αj = 0.5)
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(c) Strongly-spiteful player (αj = 0.75)

Note: Blue lines represent the same utility, red lines represents zero utility. The darker the color, the higher the utility.

Figure 5: Utility maps for a spiteful player j = 2 with different values of spite coefficient.

Thus, if x < αjs
1−αj

+ 1, then it is better for player j to bid and
end the game in the state X1; otherwise, player j passes.

Moderately-spiteful player with αj = 1
2 : The following

theorem implies that a moderately-spiteful player, whose spite
coefficient is 1

2 , acts like a non-spiteful player if he starts
the auction, but can act like a malicious player otherwise. A
sample utility map for such a player is depicted in Figure 5b.

Theorem 3. Let i be a non-spiteful player (i.e., αi = 0) who
is following the strategy by O’Neill [1986], and let j be a
moderately-spiteful player, i.e., αj = 1

2 . If j starts the bidding,
it is optimal for him to bid like a non-spiteful player. On the
other hand, if i starts the bidding, the optimal strategy for j is
to outbid i by 1 for any number of turns and finally raise his
bid by s− 1.

Proof. Let us denote by x the optimal initial move of a non-
spiteful player, i.e., x = (b−1)mod(s−1)+1. Note, that x ∈
[1, s− 1]. Now, based on Lemmas 1 and 2, we can consider
only nodes X1, ..., Xn, Y0, ..., Yn as the optimal end points
of the auction. Since uj(Xk+1) = uj(Xk) and uj(Yk+1) =
uj(Yk) for k ≥ 1, the optimal reachable solution can be found
by considering the nodes X0 = (0, x), X1 = (x, x + s −
1), Y0 = (x, 0), Y1 = (x+ s− 1, x+ 1).

Now, we have: uj(X0) = s−x
2 , uj(X1) = 1

2 , uj(Y0) =
x−s
2 , uj(Y1) = −1. Therefore, the following three in-

equalities hold: uj(X0) ≥ uj(X1), uj(X1) > uj(Y1),
uj(X1) > uj(Y0). Thus, if player j starts, it is optimal for
him to end the auction in the state X0; otherwise, he should
end in any of the nodes Xk.

Strongly-spiteful player with αj ∈ ( 12 , 1): A player with a
high (i.e., > 1

2 ) spite coefficient can act like a non-spiteful
player if he starts the auction for very specific values of b and
s. However, in most cases he acts like a malicious player; he
forces a non-spiteful player to raise his bids and then wins the
stake in the end. Figure 5c presents an example of a utility
map for such a strongly-spiteful player.

Theorem 4. Let i be a non-spiteful player (i.e., αi = 0) who
is following the strategy by O’Neill [1986], and let j be a
strongly-spiteful player (i.e., αj ∈ ( 12 , 1)). Furthermore, let x
be the optimal initial bid of a non-spiteful player. If j starts

the bidding and x < αj

1−αj
(s− 1)− 2αj−1

1−αj
b, then the optimal

strategy for him is to make the bid x. Otherwise, if i starts the
bidding, then it is optimal for j to follow the optimal strategy
of a malicious player, described in Theorem 1.

Proof. Let us denote by x the optimal initial move of a non-
spiteful player, i.e., x = (b − 1)mod(s − 1) + 1. Note, that
x ∈ [1, s− 1]. Again, we will limit our analysis to nodes from
the set {X1, ..., Xn, Y0, ..., Yn} based on Lemmas 1 and 2.

Consider the utility function of player j in nodes Xk and
Xk+1 for k ≥ 1. If Xk = (a, b), then Xk+1 = (a + (s −
1), b+ (s− 1)). Here, unlike the previous cases, we have:

uj(Xk+1)− uj(Xk) = (s− 1)(2αj − 1) > 0.

An analogous analysis can be obtained for nodes Yk and Yk+1,
Thus, the optimal reachable solution is one of the follow-
ing four nodes: X0 = (0, x), Xn = (b − (s − 1), b), Y0 =
(x, 0), Yn = (b, b− (s− 2)). Now, we have:
uj(X0)− uj(Y0) = s− x > 0,

uj(Xn)− uj(Yn) = 2− αj > 0,

uj(Xn)− uj(Y0) = αj(2b− s− x+ 1) + s− b > 0.

Thus, it is always better for player j to end the game in node
X0 or in node Xn, rather than in node Y0 or in node Yn.
Moreover,
uj(Xn)− uj(X0) = (2αj − 1)b+ (1− αj)x+ αj(1− s).
Therefore, if x < αj

1−αj
(s−1)− 2αj−1

1−αj
b holds, then it is better

for player 1 to end the game with the first bid (if player j starts).
Otherwise, Xn is the optimal solution.

4.3 Alternative Settings
Here, we report results for the alternative auction settings in
which both players know each others’ spite coefficients, αi
and αj . We omit proofs due to space constraints.
Theorem 5. Let i be a non-spiteful, weakly-spiteful or
moderately-spiteful player (i.e., αi ≤ 1

2 ) and let j be a spiteful
player with αj ∈ (0, 1]. The optimal strategy for player i is
to either follow the strategy proposed by O’Neill (if αj ≤ 1

2 )
or pass (if αj > 1

2 ). The optimal strategy for player j when
αj ≤ 1

2 is the same as for player i, and when αj > 1
2 is to bid

1 and continue with overbidding if player i bids.
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Theorem 6. Let i be a strongly-spiteful or malicious player
(αi > 1

2 ) and let j be a spiteful player with αj ∈ (0, 1].
The optimal strategy for player i is to follow the strategy of
a malicious player, described in Theorem 1. The optimal
strategy for player j when αj > 1

2 is the same as for player i,
and when αj ≤ 1

2 is to pass.

5 An Auction with Unequal Budgets
We now consider auctions where player budgets are unequal.

5.1 Strategies of a non-spiteful player
As shown by O’Neill [1986], a non-spiteful player has a certain
strategy for an auction with unequal budgets. If he starts the
game with a higher budget, he makes a bid of just one unit
and expects a non-spiteful player to pass. If he starts the game
with a lower budget, he makes a bid of s − 1 and expects a
non-spiteful player to pass.

5.2 Strategies of a malicious player
Now let us consider an auction with a malicious player j and a
non-spiteful player i (who does not suspect the spitefulness of
his opponent). As it turns out, a malicious player with a higher
budget can force a non-spiteful opponent to pay s − 1 and
then force him to lose the stake; in this case the utility of j is
umalj = s− 1. On the other hand, if a malicious player starts
an auction with a lower budget bj , he can force a non-spiteful
opponent to pay bj + 1 in order to win the stake; in this case
the utility of j is umalj = bj + 1− s. Counter-intuitively, this
means that a malicious player with lower budget can actually
be more powerful than with higher budget; this is the case
when: bj > 2s− 2.

Surprisingly, if a malicious player starts an auction with a
lower budget bj , he can force a non-spiteful opponent to pay
bj + 1 and then force him to lose. In other words, counter-
intuitively, a malicious player with lower budget can actually
be more powerful than a malicious one with higher budget.

Theorem 7. Let i be non-spiteful, and j be malicious. If
bj > bi, and j moves second, his optimal strategy is to bid s
as an answer to i’s bid of s − 1. Player i then passes. If j
starts the auction, it is better for him to let i move first.

Proof. (Sketch) Player i makes the bid s − 1 because it is
an optimal bid against a non-spiteful player. He can gain the
utility of 1, when player j passes. If player j bids s or higher,
then player i passes, as he cannot win due to having a smaller
budget. This yields his minimal utility of −(s − 1), and the
maximal utility of a malicious player j.

Suppose j starts the auction and bids at least 1. Since i has
a smaller budget, he knows he cannot win. To cut his losses,
he passes at the very beginning, giving malicious player j zero
utility. On the other hand, if player j lets his opponent move
first, he gets positive utility, as shown above.

Theorem 8. Consider the dollar auction with a malicious
player j, a non-spiteful player i and budgets bj < bi. Player j
can force player i to pay bj + 1 in order to acquire the stake.

Proof. (Sketch) Player j prefers to continue the auction, as
his utility rises as the auction progresses. The optimal strategy
for player j is to always outbid his opponent by 1. Since
player i can always win, he can make a minimum raise of
1 to minimize his losses. When the bid of player i exceeds
bj − (s− 2), player j should raise his bid to bj . Player i can
then get the stake s by raising his bid by s− 1 to bj +1. Since
it is never rational for player i to bid more than bj + 1, this
strategy of player j grants him maximal utility.

5.3 Alternative Settings
Here, we report again results for the alternative auction settings
in which both players know each others’ spiteful coefficients,
αi and αj . We omit proofs due to space constraints.

Theorem 9. Let i be a non-spiteful, weakly-spiteful, or
moderately-spiteful player (i.e., αi ≤ 1

2 ) and let j be a spiteful
player with αj ∈ (0, 1]. The optimal strategy for player i is
to either follow the strategy of O’Neill (if αj ≤ 1

2 ) or pass (if
αj >

1
2 ). The optimal strategy for player j when αj ≤ 1

2 is
the same as for player i, and when αj > 1

2 is to bid 1 and then
to continue overbidding if player i bids.

Theorem 10. Let i be a strongly-spiteful or malicious player
(αi > 1

2 ) and let j be a spiteful player with αj ∈ (0, 1]. When
αj ≥ 1

2 and bi < bj the optimal strategy for i is to bid bi
(regardless of whether he starts). When αj ≥ 1

2 and bi > bj
the optimal strategy for i is to start bidding with bj − 1 and
answer with bj + 1 to the opponent’s bid of bj . When αj < 1

2
player j will not enter the auction, so player i should simply
bid 1. The optimal strategy for player j when αj > 1

2 is the
same as for player i, and when αj ≤ 1

2 is to pass.

6 Related work
In this section we comment on the bodies of literature related
to the key characteristics of our auction setting: spitefulness,
all-pay format, and the assumption of the finite budget.

Spitefulness in auctions: On top of some work in game
theory [Baye et al., 1996], and experimental game theory
[Bolle et al., 2013] in particular, the analysis of spitefulness
in simple types of auctions can be found, among others, in
the works by Morgan et al. [2003], Brandt and Weiß [2002],
Brandt et al. [2005], Babaioff et al. [2007], and Sharma
and Sandholm [2010]. An interesting study of vindictive
bahaviours in auction-like settings (where rivals engage in
aggressive retaliatory behaviors) can be found in [Bolle et al.,
2013]. Similarly, vindictive bidding in keyword auctions was
studied by Zhou and Lukose [2007].

All pay auctions: While all-pay auctions are a relatively
rare auction format, they have been extensively studied [Di-
Palantino and Vojnovic, 2009; Lewenberg et al., 2013] as they
model various realistic settings in which the prize is awarded,
often implicitly, on the basis of contestants’ efforts. These
include lobbying, job-promotion competitions, political cam-
paigns, and R&D competitions, to name a few [Lev et al.,
2013]. For an overview of experimental research on all-pay
auctions see [Dechenaux et al., 2012].
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The finite budget: While in many studies on auctions the
existence of the budget can be neglected, this is not necessar-
ily so in all-pay auctions. The budget constrains in all-pay
auctions were studied by Che and Gale [1996].

7 Conclusions
Our results suggest that the escalation in real-life experiments
with the dollar auction could be related not only to the desire
to win but also (at least to some extent) to human meanness.
In various scenarios in which a non-spiteful bidder unwittingly
bids against a spiteful one, the conflict escalates. Not only
can the spiteful bidder force the non-spiteful opponent to
spend most of the budget but he also often wins the prize.
Surprisingly, a malicious player with a smaller budget is likely
to plunge the opponent more than a malicious player with a
bigger budget. Thus, a malicious player should not only hide
his real preferences but also the real amount of his budget.
Intuitively, a weak, easy-to-overcome bait may seem more
attractive than a stronger one.

For future work, it would be interesting to study how the
results of the dollar auction change if bidders are not spiteful
but rather altruistic [Chen et al., 2011], to model auctions with
communication between players, or to model players with
bounded rationality.

Acknowledgements
This work was supported by the Polish National Science Cen-
tre grant 2012/05/B/ST6/03364. Tomasz Michalak was sup-
ported by the European Research Council under Advanced
Grant 291528 (“RACE”).

References
[Babaioff et al., 2007] M. Babaioff, R. Kleinberg, and C. H. Pa-

padimitriou. Congestion games with malicious players. In EC’07,
pages 103–112. ACM, 2007.

[Baye et al., 1996] M. R. Baye, D. Kovenock, and C. G. De Vries.
The all-pay auction with complete information. Economic Theory,
8(2):291–305, 1996.

[Bolle et al., 2013] F. Bolle, J. Tan, and D. Zizzo. Vendettas. Amer-
ican Economic Journal: Microeconomics, 2013.

[Brandt and Weiß, 2002] F. Brandt and G. Weiß. Antisocial agents
and vickrey auctions. In Intelligent Agents VIII, volume 2333
of Lecture Notes in Computer Science, pages 335–347. Springer
Berlin Heidelberg, 2002.

[Brandt et al., 2005] F. Brandt, T. Sandholm, and Y. Shoham. Spite-
ful bidding in sealed-bid auctions. In Computing and Markets,
2005.

[Campos et al., 2013] J. Campos, C. Martinho, and A. Paiva. Con-
flict inside out: A theoretical approach to conflict from an agent
point of view. AAMAS ’13, pages 761–768. International Foun-
dation for Autonomous Agents and Multiagent Systems, 2013.

[Castelfranchi, 2000] C. Castelfranchi. Conflict ontology. In Com-
putational Conflicts, pages 21–40. Springer, 2000.

[Che and Gale, 1996] Y. Che and I. Gale. Expected revenue of all-
pay auctions and first-price sealed-bid auctions with budget con-
straints. Economics Letters, 50(3):373–379, 1996.

[Chen et al., 2011] P. A. Chen, B. de Keijzer, D. Kempe, and
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