
Truthful Cake Cutting Mechanisms with Externalities:
Do Not Make Them Care for Others Too Much!

Minming Li
City University of Hong Kong

Hong Kong, China
minming.li@cityu.edu.hk

Jialin Zhang
Institute of Computing Technology

Beijing, China
zhangjl2002@gmail.com

Qiang Zhang
University of Warsaw

Warsaw, Poland
qzhang@mimuw.edu.pl

Abstract
We study truthful mechanisms in the context of
cake cutting when agents not only value their own
pieces of cake but also care for the pieces assigned
to other agents. In particular, agents derive benefits
or costs from the pieces of cake assigned to other
agents. This phenomenon is often referred to as
positive or negative externalities. We propose and
study the following model: given an allocation, ex-
ternalities of agents are modeled as percentages of
the reported values that other agents have for their
pieces. We show that even in this restricted class of
externalities, under some natural assumptions, no
truthful cake cutting mechanisms exist when exter-
nalities are either positive or negative. However,
when the percentages agents get from each other
are small, we show that there exists a truthful cake
cutting mechanism with other desired properties.

1 Introduction
Cake cutting, a fundamental resource allocation problem, has
been extensively studied by economists and mathematicians
in terms of fairness from the last century. Among the lit-
erature of cake cutting, envy-freeness and proportionality are
two most notable concepts to capture fairness. With respect to
an allocation, a mapping between pieces of cake and agents,
envy-freeness means agents weakly prefer their own pieces to
the ones assigned to other agents, and proportionality implies
that each agent among n agents has a piece of cake that is at
least 1/n of his value for the entire cake. With the increasing
attention across artificial intelligence and algorithmic mecha-
nism design [Nisan and Ronen, 1999], cake cutting has been
considered in multi-agent systems recently, particularly when
agents have private values for different pieces of cake. For in-
stance, Alice prefers the pieces with strawberries while Bob
prefers the ones with chocolates. Based on values declared
by agents, a cake is cut into pieces, which are then assigned
to agents. In most of the cases, we would like the allocation
to satisfy some good properties such as envy-freeness and/or
proportionality. However, it may motivate selfish agents to
benefit by misreporting their true values. A cake cutting
mechanism is truthful if it prevents agents from benefiting
by reporting false values in any circumstance. When agents’

values are formalized as so-called valuation functions, one
could expect that it is difficult to have truthful cake cutting
mechanisms with good properties if the domain of agents’
valuation functions is unrestricted. Existing works [Chen et
al., 2013] showed a truthful deterministic (resp. randomized)
mechanism exists if agents’ valuation functions are piecewise
uniform (resp. piecewise linear). In this paper, we restrict
our study within the domain of piecewise uniform valuation
functions.

This paper takes one step forward by studying the design
of truthful cake cutting mechanisms when externalities are
considered. In economics, externalities are defined as the
benefits or costs that affect a party which was not chosen to
incur [Baumol, 1972]. While externalities may often be ne-
glected, studies have shown their importance in a wide range
of settings. For example, revenues in auctions [Haghpanah et
al., 2013], or supply chain inventory management [Cachon,
1999; Netessine and Zhang, 2005]. In this paper, when exter-
nalities exist in the context of cake cutting, we consider that
agents derive benefits or costs from the pieces assigned to oth-
ers. Externalities make the values of agents for an allocation
depend on the social assignment rather than their individual
assignments.

1.1 Model and Truthfulness
There are different approaches to modeling externalities in
different settings. To the best of our knowledge, we are the
first to model externalities in the setting of cake cutting as fol-
lows. Agents could derive benefits or costs from each other,
which are certain percentages of the reported values of other
agents for their own pieces. That is, given an allocation where
each agent gets a piece of cake, the value an agent has for
the allocation is his valuation for his piece of cake plus (or
minus when externalities are negative) certain percentages of
other agents’ valuations for their pieces of cake. Although
this model is somehow restricted, it does capture some real-
life applications. For example, revenue-sharing contracts are
common in supply chains. Under a revenue-sharing contract,
a retailer pays a supplier a wholesale price, plus a percentage
of the revenue the retailer has. For more details on revenue-
sharing contracts we refer the reader to [Cachon and Lariv-
iere, 2005]. Negative externalities happen when two rivals
in a market are competing for advertisement slots. One com-
pany increases its market share by gaining advertisement slots
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but it also loses some market share if advertisement slots are
assigned to its rival. One could model the market share lost
by the company as a certain percentage of the market share
gain by its rivals. Note that this allows that the valuation
of an agent for an allocation depends on the valuations re-
ported by other agents. It creates a situation in which agents
do not fully know their own valuations for allocations. How-
ever, since we are interested in truthful mechanisms in the
sense of truth-telling being a dominant strategy for all agents,
it guarantees that agents do not have incentive to deviate their
reports after seeing the reports by other agents. Another ap-
proach closely related to our model is to model the external-
ities as certain percents of the true values of other agents for
their own pieces. In this paper, we choose the former ap-
proach due to the following two reasons. First, in the latter
approach, the valuation of an agent is affected both by the
reported valuations of other agents (which affect the alloca-
tion returned by the mechanism) and by the true valuations
of other agents (which affect the externalities he obtains). To
obtain the valuations of allocations, agents need to know the
private information (true valuations) of other agents, which
may be impossible. Second, once truthful mechanisms ex-
ist in the former approach, the results also imply that truth-
telling is a Nash equilibrium in the latter approach, which is
a reasonable solution concept for the latter approach.

1.2 Assumptions
Before we continue, we would like to take a tour of the as-
sumptions and properties that mechanisms are assumed to
satisfy in this paper.

In classical settings without externalities, normalizations
are often carried out since it does not affect the preferences of
agents, that is, agents always prefer a larger piece of cake in
some sense. However, when externalities exist, agents care
for their own assignments but also for the assignments of
other agents. It is not precise to say that agents always want
to maximize their pieces of cake. Hence, in this paper, we
only normalize the valuations of agents for the entire cake to
1. In this way, each component in the valuation of an agent
for an allocation is normalized (see Section 2.1 for the con-
crete model). Hence, in general we could say agents want to
maximize the pieces of cake (i.e., the assignments) that are
important to them. This matches well with the settings with-
out externalities in which the only important pieces of cake
for agents are the ones assigned to them.

For mechanisms, besides truthfulness, envy-freeness and
proportionality mentioned above, we are also interested in
mechanisms that are non-wasteful and position independent.
All of these properties or similar properties could be found
in the literature, but some of them are not well defined in
cake cutting settings when externalities exist. A mechanism is
non-wasteful if it assigns any piece of cake, which is desired
by at least one agent, to some agent who desires it. By relax-
ing it, a trivial mechanism could be one that assigns nothing
to all agents. Position independence can be seen as a simi-
lar concept to anonymity to avoid dictatorship mechanisms.
Anonymity is ambiguous in two ways when externalities ex-
ist. Generally, anonymity means that the outcome of a mech-
anism does not depend on the identities of agents. However,

when externalities exist, it is necessary to know the identities
of other agents in order to evaluate the externalities obtained
by an agent. The second ambiguity is that outcomes of mech-
anisms could be defined in terms of either assignments or val-
ues of agents when externalities are introduced. In this paper,
we say a mechanism is position independent if agents’ values
over the allocation get permuted accordingly when agents are
permuted in the input to the mechanism. One could easily
see that this definition is more general than the definition in
terms of assignments. Permuted allocation ensures the val-
ues of agents over the allocation remain the same, while, vice
versa it may not be necessarily true. Additionally, random-
ized mechanisms are necessary if one defines position inde-
pendence in terms of assignments. Considering two agents
having the same valuation for the cake, randomization is re-
quired since any deterministic mechanism cannot distinguish
the identities of the agents.

1.3 Our Results
In this paper, we study truthful cake cutting mechanisms
when externalities are modeled in the way that agents are enti-
tled benefits or costs from each other’s assignment. Our main
contributions are two-fold.

• First, we show that, in general no truthful, non-wasteful
and position independent cake cutting mechanisms exist
when externalities are either positive or negative.

• On the other hand, for positive externalities, when agents
have limited benefits from others, we show that there ex-
ists a truthful cake cutting mechanism with other desired
properties.

1.4 Related Work
A detailed review on cake cutting from the perspectives
of economics and mathematics refers to Robertson and
Webb [Robertson and Webb, 1998]. Besides, there is a recent
survey [Procaccia, 2013] that summarizes cake cutting al-
gorithms from both computational and game-theoretic view-
points. In addition, there are series of papers studying cake
cutting algorithms from different aspects in computer science
and AI communities, e.g. fairness [Balkanski et al., 2014;
Brânzei et al., 2013; Caragiannis et al., 2011; Kurokawa et
al., 2013; Segal-Halevi et al., 2015], social welfare [Bei et
al., 2012; Cohler et al., 2011], equilibrium [Brânzei and Mil-
tersen, 2013], truthfulness [Chen et al., 2013]. However,
none of these papers consider truthful cake cutting mecha-
nisms when externalities exist.

Two most relevant papers to us are [Chen et al., 2013]
and [Brânzei et al., 2013]. Chen et al. [2013] studied truth-
ful cake cutting mechanisms without considering externali-
ties. They gave a deterministic truthful, proportional, envy-
free cake cutting mechanism for piecewise uniform valuation
functions, and a randomized truthful-in-expectation, propor-
tional, envy-free cake cutting mechanism for piecewise linear
valuation functions. On the other hand, Brânzei et al. [2013]
studied the concepts of envy-freeness when externalities exist
in the context of cake cutting but they did not explicitly de-
scribe the externalities. Their main contributions are the fol-
lowing two concepts: swap envy-freeness and swap stability.

590



In a swap envy-free outcome, an agent cannot benefit from
swapping his assignment with that of of another agent. In a
swap stable outcome, an agent cannot benefit from swapping
the assignments of any pair of agents. We adopt the swap-
envy-freeness to generalize the classical definition of envy-
freeness in cake cutting settings when externalities exist.

2 Preliminaries
2.1 Model
The entire cake is the interval [0, 1]. A piece of cake is a set of
disjoint subintervals in [0, 1]. There is a set N = {1, . . . , n}
of agents who have values for different pieces of cake. Each
agent i ∈ N has a private non-negative valuation density
function vi(·) over the entire cake. We say an agent prefers a
piece of cake if his valuation density is positive across the en-
tire piece. The value of agent i for a piece x of cake is given
by Vi(x) =

∑
I∈x

∫
I
vi(z)dz. The definition allows us to

consider pieces of cake intersecting at the boundaries as dis-
joint pieces since agents have no values for any single point
of cake. For example, piece ([ 12 ,

3
5 ], [

7
8 , 1]) and piece [ 35 ,

7
8 ]

are disjoint. Similar to classical settings, the values of agents
for the entire cake are normalized, that is, Vi([0, 1]) = 1 for
all i ∈ N . In this paper, we focus on piecewise uniform valu-
ation functions, where each agent prefers a piece of cake and
has the same marginal value over this piece. Formally, Vi is
piecewise uniform if and only if vi is either some constant
c ∈ R+ or zero across the entire cake. We denote V as the
class of piecewise uniform valuation functions. In this pa-
per, due to the property of piecewise uniform valuation func-
tions and Vi([0, 1]) = 1, we say agent i declares his preferred
pieces (or equivalently, intervals) of cake denoted by Ii in-
stead of declaring the valuation density function vi. Let |Ii|
be the total length of the intervals agent i prefers. When S is
a set of agents, |IS | is the total length of the intervals which
at least one agent in S prefers.

An allocation A = (A1, . . . , An) that consists of n pieces
of cake is feasible if and only if all pieces A1, . . . , An are
disjoint. In allocation A, agent i gets the piece Ai of cake.
We model the externalities by that agents derive benefits or
costs that are some percent of the values other agents report.
Specifically, agent i derives a value αi,jVj(Aj) when Aj is
allocated to agent j. Note that αi,j ∈ R. With externalities,
the value of agent i for allocation A is Vi(A) = Vi(Ai) +∑N
j 6=i αi,jVj(Aj) =

∑
j∈N αi,jVj(Aj) where αi,i = 1.

Note that Vi(A) is not normalized in this paper as discussed
in the introduction.

For convenience, we use Vi(·) to denote both the value of
agent i for a piece of cake and the value of agent i for an
allocation. When z is a piece of cake, Vi(z) is the value of
agent i for the piece z of cake. When z is an allocation, Vi(z)
is the value of agent i for allocation z.

2.2 Properties of Cake Cutting Algorithms
A (deterministic) cake cutting mechanism M maps the entire
cake and valuation functions to a feasible allocation A, and
the rest of cake [0, 1]\

⋃
i∈N Ai is disposed at zero cost. Given

valuations V1, . . . , Vn, we denote M(V1, . . . , Vn) as the allo-

cation produced by M , and Mi(V1, . . . , Vn) as the piece of
cake assigned to agent i.

A cake cutting mechanismM is truthful if for every i ∈ N ,
every V1, . . . , Vn ∈ V and every V ′i ∈ V , it holds that
Vi(M(V1, . . . , Vn)) ≥ Vi(M(V1, . . . , Vi−1, V

′

i , Vi+1, Vn)).
The truthfulness guarantees that agents cannot benefit if they
misreport their true valuation functions regardless of the re-
ports from other agents. Note that agent i’s valuation function
Vi also contains all αi,j for j 6= i. One can interpret {αi,j}
as public or private information. In this paper, we assume
they are public knowledge. It would not be difficult to see
that there is little we can achieve if {αi,j} is unrestricted and
private. Since the valuation function is piecewise uniform,
the only private information of agent i is the piece of cake Ii
agent i prefers.

A cake cutting mechanism M is proportional if for
every i ∈ N , every V1, . . . , Vn ∈ V , it holds that
Vi(M(V1, . . . , Vn)) ≥ 1

nVi(Ãi), where Ãi is the allocation
that maximizes agent i’s value. Due to externalities, Ãi may
not be equal to giving all agent i’s preferred intervals to him.

A cake cutting mechanism M is swap envy-free if
for every i, j ∈ N , every V1, . . . , Vn ∈ V , it
holds that Vi(Mi(V1, . . . , Vn))+αi,jVj(Mj(V1, . . . , Vn)) ≥
Vi(Mj(V1, . . . , Vn)) + αi,jVj(Mi(V1, . . . , Vn)).

A cake cutting mechanism M is non-wasteful if it always
allocates every piece of cake that is preferred by at least one
agent to some agent who prefers it.

A cake cutting mechanism M is position independent
if for every V1, . . . , Vn ∈ V and every permutation π of
agents, it holds for any i ∈ N , Vi(M(V1, . . . , Vn)) =

Ṽπ(i)(M(Ṽ1, . . . , Ṽn) where Ṽj = Vπ(j).

3 Impossibility Result
We begin with the following impossibility result when exter-
nalities are negative.

Theorem 1. No truthful, non-wasteful and position indepen-
dent cake cutting mechanisms exist when {αi,j} are negative.

Proof. Suppose there exists a truthful, non-wasteful and po-
sition independent cake cutting mechanism M . Assume that
there are two agents and α1,2, α2,1 < 0. Let x, y, z ⊂ [0, 1]
be three nonempty and disjoint intervals of cake. Consider
the case that the preferred pieces of cake for two agents are
I1 = x ∪ y and I2 = y ∪ z. By the non-wasteful property,
mechanism M should allocate x ∪ y1 to agent 1 and y2 ∪ z
to agent 2, where y1 ∩ y2 = ∅ and y1 ∪ y2 = y. Without
loss of generality, suppose y1 6= ∅. Consider another case
that the preferred pieces of cake for two agents are I ′1 = x
and I ′2 = y ∪ z. Due to non-wasteful property, the mecha-
nism should allocate x to agent 1 and y ∪ z to agent 2. Now
if agent 1 pretends that his preferred piece is x ∪ y, he can
still obtain V1(x ∪ y1) = V1(x) while V2(y2 ∪ z) is strictly
smaller than V2(y ∪ z). Since α1,2 < 0, agent 1 will get a
larger value. The proof is finished by contradiction.

Note that similar proofs can be constructed when αij are
mixed with positive and negative values. More importantly,
the proof does not rely on the formulation of externalities.
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Hence, the result applies to a large class of externalities rather
than only the model we have. Next, we present the general
impossibility result for positive externalities:

Theorem 2. No truthful, non-wasteful and position indepen-
dent cake cutting mechanisms exist, even when {αi,j} are
positive.

The proof of Theorem 2 relies on the following lemmas.

Lemma 1. Given two agents with I1 = I2 = X where X
is a non-empty piece of cake, if α1,2 = α2,1 6= 1, any non-
wasteful and position independent cake cutting mechanism
allocates a half of X to each agent.

Lemma 2. Given two agents where I1∩I2 6= ∅ and I1∪I2 =
X , if for agent 1, α1,2V2(I1 ∩ I2) > V1(I1 ∩ I2), then any
truthful and non-wasteful cake cutting mechanism allocates
I2 to agent 2 and I1 \ I2 to agent 1.

By Lemma 2, it is easy to observe that if α1,2V2(I1∩I2) >
V1(I1∩I2) and α2,1V1(I1∩I2) > V2(I1∩I2), then no truthful
and non-wasteful cake cutting mechanism exists. But these
two conditions induce that max(α1,2, α2,1) > 1 which seems
unlikely in real situations. Next we give a stronger impossi-
bility result, which shows that even if we require all αi,j < 1,
no mechanisms with good properties exist in general.

Proof of Theorem 2 To prove this theorem, we use the in-
stance in Lemma 1. We make X = I1 = I2 = [0, 1] and
specify α1,2 and α2,1 such that 1 > α1,2 = α2,1 > 1

2 . It
is suggested by Lemma 1 that the entire cake should be split
equally to two agents. Now consider the case when agent
1 reports that his valuation density is uniform on [0, 12 + ε]

where α2,1 > 1
2 + ε. Lemma 2 suggests that the mecha-

nism would allocate [0, 12 + ε] to agent 1 and [ 12 + ε, 1] to
agent 2. It is clear that agent 1 gets a larger value than be-
fore. Hence, this fact suggests that agent 1 could benefit by
misreporting [0, 12 + ε] instead of the entire cake [0, 1]. Sim-
ilar arguments apply to multiple agents with I1 = . . . = In
and all αi,j 6=i = c where 1

n < c < 1. It follows that no
truthful, non-wasteful and position independent cake cutting
mechanism is possible in general.

Corollary 1. Given n agents with all 1
n < αi,j 6=i < 1, no

truthful, non-wasteful and position independent cake cutting
mechanisms are possible.

The results above suggest, when positive externalities ex-
ist, in general it is not possible to have truthful cake cutting
mechanisms with some good properties. However, it does
not rule out the existence of such mechanisms in restricted
classes. For example, if all αi,j are equal to 1, meaning the
valuation functions of all agents become the same, then a triv-
ial mechanism that allocates the cake to maximize the valu-
ation of all agents solves the problem. The rest of this paper
deals with another case in which αi,j 6=i ≤ 1/n2.

4 Possibility Result
The intuition behind the proof of Theorem 2 is that agent
1 could benefit by misreporting a smaller preferred piece of
cake in the way that agent 2 feels better off if some piece of

cake is given to agent 1. As α2,1 is high, agent 2 can extract
large externalities from agent 1. Although it seems restric-
tive, it happens in practice. For instance, considering adver-
tisement slots in TV or on the Internet as a cake, a company,
which produces and sells parts of vehicles to big automobile
companies, would be happier if advertisement slots are as-
signed to those automobile companies rather than itself. This
is because customers watching TV or browsing the Internet
have little interest in purchasing individual parts of vehicles.
On the other hand, it is often to find that externalities are lim-
ited. In this section, we discuss an opposite case when all αi,j
are small, i.e., αi,j ≤ 1

n2 . Instead of giving new mechanisms,
it is important to understand existing truthful cake cutting al-
gorithms in this new setting. We show a truthful cake cutting
algorithm [Chen et al., 2013] performs well even when the
externalities exist.

For the sake of completeness, let us present that determin-
istic cake cutting mechanism as Mechanism 1 and use the
following notations. A set of agents is denoted by S, and
a piece of cake is denoted by X . Let D(S,X) be the por-
tion of X that is preferred by at least one agent in S, and
avg(S,X) = |D(S,X)|/|S| = |IS ∩ X|/|S|. An exact al-
location with respect to S and X allocates each agent in S a
piece of cake of length avg(S,X) in his preferred intervals.
Given a piece of cake X to be allocated and a set of agents S,
Mechanism 1 recursively finds a subset S′ of agents with the
smallest avg(S′, X) and gives an exact allocation D(S′, X)
to S′, then makes a recursive call on the remaining agents
S \S′ and the remaining cakeX \D(S′, X). Let S1, . . . , Sm
be the sequence of agent sets with smallest average chosen by
Mechanism 1, and X1, . . . , Xm be the sequence of pieces to
be allocated in calls to Divide. Note that avg(Sk, Xk) is non-
decreasing when k increases. It is shown that Mechanism 1
can be implemented with running time polynomial in n.

Mechanism 1: [Chen et al., 2013]([0, 1], V1, . . . , Vn)
1 Divide({1, . . . , n}, [0, 1], (V1, . . . , Vn)).

Divide(S,X, V1, . . . , Vn)
1 If S = ∅, return.
2 Let Smin ∈ argminS′⊆S avg(S

′, X), breaking ties
arbitrarily;

3 Let E1, . . . , En be an exact allocation with respect to
4 Smin and X with arbitrary tie-breaking rule. For

each i ∈ Smin, set Ai = Ei;
5 Divide (S \ Smin, X \D(Smin, X), V1, . . . , Vn).

Theorem 3. When there are n agents with all αi,j 6=i ≤ 1
n2 ,

Mechanism 1 is truthful, non-wasteful, position independent,
proportional and swap envy-free.

Here we would like to emphasize why it is important to
understand Mechanism 1 in the setting of externalities. It
also gives the motivation that we concentrate on piecewise
uniform valuation functions. First, it is very natural to as-
sume that mechanisms that are truthful when externalities ex-
ist should also be truthful when no externalities exist. To
the best of our knowledge, Mechanism 1 is the only truthful
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mechanism with other good properties for piecewise uniform
valuation functions in the literature. We believe it is definitely
worth understanding its performance when externalities exist.
Second, in a recent paper [Aziz and Ye, 2014], Aziz and Ye
gave two deterministic mechanisms (MEA and CCEA) that
are not truthful in general. However, the two mechanisms are
truthful for piecewise uniform valuation functions. More im-
portantly, they show that Mechanism 1 is equal to MEA and
CCEA in such settings. Therefore, these results make Mech-
anism 1 a perfect candidate to study when externalities exist.

4.1 Truthfulness
Chen et al. [2013] showed that, when Mechanism 1 is used,
agents could not get larger pieces in their preferred intervals
by misreporting their preferred pieces of cake. This is not
enough to guarantee that agents do not have such incentives
when externalities are introduced, since agents may strategi-
cally report their preferred intervals to benefit by extracting
more externalities from the assignments to other agents. It
is not trivial to see the truthfulness of Mechanism 1 in this
setting. The proof relies on several insights of Mechanism 1,
which give us more understanding on it. All lemmas hold
without considering the externalities. For this reason, we be-
lieve they are also of independent interest.

The first observation of Mechanism 1 establishes the re-
lation between the remaining piece of cake and the already
allocated agents.

Observation 1. When agent i is assigned in some round k
during the process of Mechanism 1, i.e. i ∈ Sk, his entire
preferred intervals are allocated before or in this round.

The following two lemmas examine the set of agents al-
located in each round. Lemma 3 analyzes the changes on
the smallest average length if a subset of agents and their pre-
ferred pieces are (recursively) removed. Lemma 4 bounds the
ratio on the lengths of preferred intervals between agents in
the same Sk (i.e. at the same round). These facts are the key
tools to prove the truthfulness of Mechanism 1.

Lemma 3. Considering a piece X of cake, a set of agents
S, for any S′ ⊆ S and avg(S,X) ≤ avg(S′, X), it holds
avg(S \ S′, X \ IS′) ≤ avg(S,X).

Proof.

avg(S \ S′, X \ IS′) =
|D(S,X)| − |IS′ ∩D(S,X)|

|S| − |S′|

=
avg(S,X)|S| − avg(S′, X)|S′|

|S| − |S′|
≤ avg(S,X)

The last inequality is implied by the condition in the lemma.

Lemma 4. Let S1, . . . , Sm and X1, . . . , Xm be defined as
above. For any agent i ∈ Sk, if there exists another agent j
with |Ij | < 1

n |Ii|, then j ∈ Sk′ where k′ < k.

Proof. Let nk be the number of agents allocated before round
k. Because avg(Sk, Xk) is non-decreasing with respect to k,

we have

|Ii ∩Xk| ≥ |Ii| − avg(Sk−1, Xk−1) · nk
≥ |Ii| − avg(Sk, Xk) · nk

Since i ∈ Sk, the smallest average in round k is bounded by
assigning Ii ∩Xk to n− nk agents, that is,

avg(Sk, Xk) ≥
|Ii| − avg(Sk, Xk) · nk

n− nk
.

This implies avg(Sk, Xk) ≥ |Ii|n .
Now let us turn to agent j. In round k, we know that |Ij ∩

Xk| ≤ |Ij |. Therefore, setting Sk = {j} gives a smaller
avg(Sk, Xk), which shows agent j must be allocated before
agent i. Then the lemma directly follows.

By Lemma 3, we show the changes on the assignment for
agent j who is previously assigned before or after agent i
when agent i misreports his preferred piece of cake.
Lemma 5. For any agent i ∈ N , let S1, . . . , Sm and
X1, . . . , Xm be defined as above when agent i reports truth-
fully. Assuming that i ∈ Sk, for any agent j ∈ Sk′ with
k′ < k, if agent i misreports his preferred intervals, the value
agent j has for his allocated piece of cake is at most the value
agent j has for his allocated piece of cake when agent i report
truthfully.
Lemma 6. For any agent i ∈ N , let S1, . . . , Sm and
X1, . . . , Xm be defined as above when agent i reports truth-
fully. Assuming that i ∈ Sk, for any agent j ∈ Sk′ with
k′ ≥ k, if agent i misreports his preferred intervals and the
value agent i has for his allocated piece of cake remains the
same, then the value agent j has for his allocated piece of
cake is at most the value agent j has for his allocated piece
of cake when agent i report truthfully.

Intuitively, the following two lemmas study how the allo-
cations change when the remaining cake changes.
Lemma 7. Considering a piece X ⊆ [0, 1] of cake and a set
of agents S, letA be the allocation produced by Mechanism 1.
For any for any S′ ⊂ S, let A′ be the allocation when only
the piece X \ IS′ of cake is assigned to agents in S \ S′ by
Mechanism 1, it holds |A′j | ≤ |Aj | for all j ∈ S \ S′.
Lemma 8. Considering a piece X ⊂ [0, 1] of cake and a set
of agents S, letA be the allocation produced by Mechanism 1.
For any another piece X ′ ⊂ [0, 1] of cake with X ∩X ′ = ∅,
letA′ be the allocation when only the pieceX ∪X ′ of cake is
assigned to agents in S by Mechanism 1, it holds |A′j | ≥ |Aj |
for all j ∈ S.

Now we are ready to prove the truthfulness of Mecha-
nism 1. The intuition behind the proof is the following. For
any agent, we show that he cannot benefit in the way that he
extracts more externalities from other agents while keeping a
piece of cake with the same value. Furthermore, we show that
he cannot benefit from his misreport, in the way that although
he gets a less valuable piece of cake than before, he can ex-
tract more externalities from other agents which increases his
value for the whole allocation eventually.
Property 1. Mechanism 1 is truthful when all αi,j ≤ 1/n2.
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Proof. Consider agent i, let A be the allocation produced
by Mechanism 1 when he reports truthfully. Recall that the
valuation of agent i for allocation A is Vi(A) = Vi(Ai) +∑
j 6=i αi,jVj(Aj). By the results in [Chen et al., 2013], we

know that agent i cannot increase Vi(Ai), that is, the value of
agent i for his own piece of cake. It implies that agent i must
increase his externalities from other agents by misreporting I ′i
in order to benefit. Assume that Mechanism 1 is not truthful,
and agent i could benefit from his misreport. LetA′ be the al-
location produced by Mechanism 1 when agent i misreports,
then A′ must satisfy one of the following conditions:

1. Vi(A′i) = Vi(Ai), and there exists another j such that
Vj(A

′
j) > Vj(Aj);

2. Vi(A′i) < Vi(Ai) but the increased externalities agent i
extracts from the assignments to other agents compen-
sate his loss.

Now we prove that neither of two conditions can happen.

Condition 1: Lemma 5 and 6 together show that, when
agent i misreports but gets a piece of cake with the same
value, any agent cannot get a piece of cake he valued more
than that when agent i reports truthfully.

Condition 2: To show that agent i fails to extract more ex-
ternalities from other agents to increase his value for the allo-
cation, we consider the following cases:
• ∀j ∈ N \{i}, Vj(A′j) ≥ Vj(Aj). In this case, only agent
i receives a smaller piece of cake, and it implies that
every agent in N \ {i} receives a piece of cake whose
length is at most |Ai| − |A′i| larger than before. Hence,
there must exist an agent j such that |Ij | < αi,j |Ii| and
Vj(A

′
j) > Vj(Aj). It is because the increased externali-

ties agent i extracts from agent j’s assignment compen-
sates his loss, which is implied by 1

|Ii| <
αi,j

|Ij | . How-
ever, Lemma 4 shows that, if there is an agent j with
|Ij | < αi,j |Ii|, agent j must be allocated before the
round in which agent i is allocated. In addition to this,
Lemma 5 shows that, if agent i misreports, agents who
are allocated before the round agent i is allocated when
agent i reports truthfully, cannot get a larger piece of
cake than before. It follows the first case cannot occur.
• Otherwise, besides agent i, there exist other agents who

also receive less. It implies that some agent, say j, might
get a large piece of cake by an amount more than |Ai| −
|A′i| when agent i misreports. Let us assume i ∈ Sk
when agent i reports truthfully, and i ∈ S′k′ when agent
i misreports.
When k′ > k, we know that S′y = Sy for all y < k
and agents in S1 ∪ ... ∪ Sk−1 receive the same piece
of cake. Agents in S′k ∪ ... ∪ S′k′−1 receive at most
|Ii ∩Ai| − |Ii ∩A′i| more in total. By Lemma 4, the in-
creased externalities cannot compensate the loss of agent
i. Agents after S′k′−1 cannot receive more since agent i
would compete with them.
When k′ < k, we know that that Sy = S′y for all
y < k′). It means that agents in S1∪. . .∪Sk′ receive the

same pieces of cake as before. By Lemma 5, we know
that j does not belong to S1 ∪ . . . ∪ Sk−1. Therefore,
the worst scenario is the following. When agent i misre-
ports, all agents in Sk′ ∪ . . . ∪ Sk−1 receive weakly less
than before and the changes

∑
x∈Sk′∪...∪Sk−1∪{i} |Ax \

A′x| are assigned to some agents in Sk, . . . , Sm ex-
cluding agent i. One could verify that it is equivalent
to saying that there exists a piece with the length of∑
x∈Sk′∪...∪Sk−1∪{i} |Ax \ A

′
x| in Ii \ I ′i such that this

piece is assigned to some agent in Sk, . . . , Sm exclud-
ing agent i. Let d = avg(Sk, Xk) − avg(S′k′ , X

′
k′).

We know Vi(Ai) − Vi(A
′
i) ≥ d

|Ii| . We first bound
the changes on the pieces of cake assigned to agents in
Sk′ ∪ . . . ∪ Sk−1. Since for any z ∈ {k′, . . . , k − 1},
we know avg(Sz, Xz) ≤ avg(Sk, Xk). It implies that
the change on the piece of cake assigned to any agent in
Sk′ ∪ . . . ∪ Sk−1 is at most d. Since we have at most
n − 1 agents in Sk′ ∪ . . . ∪ Sk−1 ∪ {i}, the changes of
the pieces of cake assigned to agents in S1 ∪ . . . ∪ Sk−1
is at most (n− 1)d. Then let us consider the changes for
agents in (Sk \ {i}) ∪ . . . ∪ Sm. Let agent g be some
agent in S1∪. . .∪Sk−1 who appears last in S′1, . . . , S

′
m′ .

Assume g ∈ S′t′ . By Lemma 5, we know that any
agent in (Sk \ {i}) ∪ . . . ∪ Sm ∩ (S′1 ∪ . . . ∪ S′t′) re-
ceives weakly less than before. Note that the changes
from these agents will not be allocated to agents in
(Sk \ {i}) ∪ . . . ∪ Sm \ (S′1 ∪ . . . ∪ S′max{t′,k′}) since
all their preferred intervals are allocated before or in the
round they are selected. In order to bound the lengths of
the extra pieces of cake given to agents in (Sk \ {i}) ∪
. . .∪Sm \ (S′1 ∪ . . .∪S′max{t′,k′}), we define three sce-
narios of allocations for those agents. In scenario 1, they
have a piece of cake A(Sk\{i})∪...∪Sm\(S′1∪...S′max{t′,k′})

,
which corresponds to the case when agent i does not
misreport; In scenario 2, they have a remaining cake
X ′max{t′,k′}+1 \ Ii, which corresponds to the case when
i misreports and also takes away the original Ii; In
scenario 3, they have a remaining cake X ′max{t′,k′}+1,
which corresponds to the actual case when i misreports.
We aim to show that from scenario 1 to 3, every agent
in (Sk \ {i}) ∪ . . . ∪ Sm \ (S′1 ∪ . . . ∪ S′max{t′,k′}) re-
ceives at most |Ii \ I ′i| more. The whole change can be
split into two phases. From Scenario 1 to 2, because the
available cake becomes strictly less, by Lemma 7, every
agent in (Sk \ {i})∪ . . .∪Sm \ (S′1 ∪ . . .∪S′max{t′,k′})

gets weakly less cake. From Scenario 2 to 3, an extra
piece of cake with a length of |Ii − I ′i| is added and
by Lemma 8, every agent receives weakly more. Com-
bining the two processes we know that every agent re-
ceives weakly more but they get at most |Ii − I ′i| more
in total. Therefore, the best case for agent i is that a
piece of cake with the length of (n − 1)d is assigned
to an agent v with the biggest αi,v among agents in
(Sk \ {i}) ∪ . . . ∪ Sm \ (S′1 ∪ . . . ∪ S′max{t′,k′}). By
Lemma 4, we know |Iv| is at least |Ii|/n. Hence, the
increased externalities agent i could extract from agent
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v are at most αi,v
(n−1)nd
|Ii| . Since Vi(A)− Vi(A′) ≥ d

|Ii|
and αi,v < 1

n2 , it follows that agent i cannot benefit.
The statement directly follows by the above two cases.

4.2 Other Properties of Mechanism 1
Chen et al. [2013] showed that, without externalities, each
agent prefers his own piece of cake (i.e., Vi(Ai) ≥ Vi(Aj))
and his value of the piece of cake is at least 1/n. By
these facts, when the externalities exist, one could verify that
Mechanism 1 is non-wasteful, position independent, propor-
tional and swap envy-free. We also note that, assuming that
all αi,j 6=i ≤ 1/n and there exists an allocation that optimizes
every agent’s value, Mechanism 1 outputs such an allocation.

5 Discussion and Conclusion
This paper sheds light on mechanism design in the context
of cake cutting when externalities exist. These externalities
are benefits or costs to agents from each other’s allocation.
Specifically, the externalities of agents are modeled as a cer-
tain percentage of the value that other agents have for their
pieces of cake. Even for this restricted class of externalities,
we provide impossibility results. In addition, we show that,
when the percentages are small, the truthful mechanism pro-
posed by Chen et al. [2013] maintains its truthfulness along
with good properties. The results suggest an intuitive inter-
pretation: the existence of deterministic truthful cake cut-
ting mechanisms with good properties relies on the values
of {αi,j} in the model. The paper leaves an interesting open
question — whether there exists a truthful cake cutting mech-
anism with good properties when some αi,j are greater than
1/n2 but not all αi,j are greater than 1/n. For randomized
mechanisms, one could easily see that the randomized mech-
anism for piecewise linear valuation functions in [Chen et al.,
2013] remains truthful in our setting. However, such random-
ized mechanisms are not non-wasteful. This work also moti-
vates the studies of truthful mechanisms on other models of
externalities.
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