
Verifying Fault Tolerance and Self-Diagnosability
of an Autonomous Underwater Vehicle∗

Jonathan Ezekiel and Alessio Lomuscio

Imperial College London, UK
{jezekiel,alessio}@doc.ic.ac.uk

Levente Molnar and Sandor Veres

University of Southampton, UK
{L.Molnar,S.M.Veres}@soton.ac.uk

Miles Pebody

National Oceanography Centre, UK M.Pebody@noc.soton.ac.uk

Abstract

We report the results obtained during the veri-
fication of Autosub6000, an autonomous under-
water vehicle used for deep oceanic exploration.
Our starting point is the Simulink/Matlab engi-
neering model of the submarine, which is discre-
tised by a compiler into a representation suitable
for model checking. We assess the ability of the
vehicle to function under degraded conditions by
injecting faults automatically into the discretised
model. The resulting system is analysed by means
of the model checker MCMAS, and conclusions are
drawn on the system’s ability to withstand faults
and to perform self-diagnosis and recovery. We
present lessons learnt from this and suggest a gen-
eral method for verifying autonomous vehicles.

1 Introduction

The Autosub6000 [McPhail, 2009] is an autonomous under-
water vehicle (AUV) aimed at scientific oceanographic explo-
ration. With an autonomy of up to 8.6 days, and an operating
range of 1000km, the Autosub6000 performs Oceanographic
seafloor surveys at depths of several thousand meters. The
missions Autosub6000 has successfully completed includes
24 hours under sea ice in the Arctic, and a 30km run under
an Antarctic ice shelf [McPhail, 2009]. During these mis-
sions the vehicle operated beyond communication range of
the mother ship, and without hope of rescue if anything went
wrong with the vehicle.

AUVs are very costly; their reliability is a key concern.
Diagnosing and repairing faults, as well as recovering the ve-
hicle in case of problems can be extremely expensive (easily
in excess of $2,000 per hour [Chance, 2003]), when possible
at all. Thus, there is a pressing need for key characteristics
of these vehicles to be correct. For example, if the vehicle
is too deep in the water we need to be certain that the con-
trol module will not keep the vehicle diving and endanger it.
It is therefore appealing to verify the core AUV behaviours
systematically before operation.

∗The research described in this paper is partly supported by EP-
SRC funded project EP/E02727X/1.

Studying an AUV such as the Autosub6000 is inherently
difficult as it contains several subsystems that communicate
with each other, each autonomously responsible for differ-
ent parts of the system, that were not necessarily designed
to work together. To analyse their overall behaviour, given
the heterogeneous nature of the components, their character-
istics, as well as the overall goal of the AUV, it is natural to
adopt a multi-agent based stance [Wooldridge, 2000] when
reasoning about it.

Indeed, significant inroads have been made by the multi-
agent systems (MAS) community in terms of specification
languages (epistemic logic, ATL/cooperation logics, bounded
rationality, etc.) to denote the properties a MAS may have
to satisfy. More recently, methodologies and toolkits have
been put forward to verify automatically behaviours of MAS,
typically by model checking [Clarke et al., 1999]. Model
checkers for MAS have been released [Gammie and van der
Meyden, 2004; Lomuscio et al., 2009; Niewiadomski et al.,
2004] for the community to use. While much of this effort
has made a theoretical contribution to the problem of veri-
fying MAS, the approach is largely untested in any reason-
ably large and realistic scenario. The aim of this paper is to
present a methodology built upon existing work and apply it
to verify key fault tolerance properties of a real and existing
autonomous system, the Autosub6000.

Our starting point is the recent development of a general
integrity and fault assessment system (IFAS) for complex au-
tonomous engineering systems [Molnar and Veres, 2009a;
2009b]. The IFAS is intended as a general toolkit to assist
system engineers in designing reliable AUVs. In the IFAS
approach, a formal model is defined for the AUV by means of
Simulink/Matlab descriptions. These are commonplace in en-
gineering and used extensively in the industry. The Simulink
model is then automatically refined by means of a discrete
abstraction of the hybrid system model, thereby converting
into a MAS formalism. This formalism can then be used with
automated verification tools such as model checking to verify
that the system satisfies safety requirements

However, the methodology above is not generally sufficient
when reasoning about AUVs, as in this domain we are typi-
cally interested to reason about the operation of an AUV un-
der degraded conditions. These aspects have recently been
addressed by an approach that combines fault injection [Iyer,
1995] with model checking to verify the correctness of vari-

1659

Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence

ous aspects of fault tolerance in MAS [Ezekiel and Lomus-
cio, 2009]. In contrast to ad-hoc modelling of faulty be-
haviour, in this approach faults can be automatically injected
into a model of a correctly behaving system to create a mu-
tated model which exhibits both correct and faulty behaviour.
Temporal-epistemic specifications [Fagin et al., 1995] can
then be verified to analyse the correct and faulty behaviour
of agents in the mutated model, as well as the knowledge
that agents have about the behaviour. This allows for the
seamless verification of fault tolerance, recovery from faults,
and diagnosability, i.e., whether an unobservable fault can be
accurately diagnosed from the observable events of the sys-
tem [Sampath et al., 1995], which is difficult to specify with-
out epistemic operators in the language. The high level of
usability offered by the automatic nature of both the fault in-
jection and the model checking process makes the approach
particularly attractive to non-experts in verification such as
system engineers [Bozzano and Villafiorita, 2007]. However,
until now this approach has never been applied to truly au-
tonomous systems, such as robotic vehicles.

In this paper we suggest a methodology that combines
fault-injection with IFAS and use it to verify the Autosub6000
AUV [McPhail and Pebody, 1998]. We find the exercise use-
ful not only in terms of the actual results we obtained that per-
tain to the AUV in question, but, more generally, because we
believe that the methodology we put forward here can largely
be adopted when assessing other autonomous systems. We
present the background to the methodology in the next Sec-
tion, the methodology in Section 3, the Autosub6000 AUV
in Section 4, and the results in Section 5. In Section 6 we
discuss the related work and conclude.

2 Background

Model checking [Clarke et al., 1999] is a widely adopted
technique for systems verification. The system S considered
for verification is represented by a logical model MS which
encodes all behaviours of the system as computational traces.
A specification of a property P is expressed by means of a
logical formula ϕP . The model checker establishes whether
or not MS satisfies ϕP (formally, MS � ϕP). The satis-
faction relation is implemented as an automatic decision pro-
cedure, making model checking attractive for the purpose of
verification [Clarke et al., 1999]. In the case of MAS, ϕP

is often expressed by using a number of rich modal logics
including temporal and epistemic logics [Wooldridge, 2000].

2.1 Interpreted Systems and MCMAS

We assume familiarity with the interpreted systems model as
presented in [Fagin et al., 1995]. This models a MAS by tak-
ing a collection of local states, actions, protocols, local tran-
sitions... The model has been used in several key scenarios
including robotics, web services, etc.

As a specification language we take the temporal-epistemic
logic CTLK, defined by:
ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | EXϕ | AGϕ | E(ϕUϕ) | Kiϕ |

EΓϕ | CΓϕ
In the grammar above p ∈ AP is an atomic proposition; EX
is a temporal operator expressing that there exists a next state

in which ϕ holds; AG expresses that in all runs ϕ holds glob-
ally; E(ϕUψ) is a temporal operator expressing that there
exists a run in which ϕ holds until ψ holds; Kiϕ expresses
that agent i knows ϕ; EΓϕ expresses that everybody in group
Γ knows ϕ; CΓϕ expresses that it is common knowledge in
group Γ that ϕ. This syntax, as well as other temporal modal-
ities, can be interpreted on interpreted systems as standard.
We refer to [Lomuscio et al., 2009] for details.

MCMAS [Lomuscio et al., 2009] provides ISPL as an in-
put language for modelling a MAS and expressing (amongst
others) temporal and epistemic formulas as specifications of
the system. ISPL programs are closely related to interpreted
systems; specifically each ISPL program describes an inter-
preted system. MCMAS supports the verification for all for-
mulas in the language above.

2.2 Injecting Faults into MAS Programs

The first step of a combined fault injection and model check-
ing approach [Bozzano and Villafiorita, 2007; Ezekiel and
Lomuscio, 2009] involves mutating a model of correct system
behaviour by automatically injecting faulty behaviour into it.
This provides a general technique to automate the process of
creating system models containing faulty behaviour in com-
parison to the lengthy process of manually introducing the
behaviour. The output of a mutation step is a model contain-
ing correct and faulty behaviour.

We summarise the mutation technique for interpreted sys-
tems presented in [Ezekiel and Lomuscio, 2009]. Any agent
A of the system can be mutated into a faulty agent AF∗ (F∗
denotes mutated) that includes faulty behaviour. A fault in-
jection agent FI implements the timing characteristics of the
fault. The faulty behaviour is triggered in the faulty agent
whenever an inject action is performed byFI and the correct
behaviour is preserved in the faulty agent when the inject
action is not performed. A number of timing options can be
selected for FI: injecting constantly, randomly, after a ran-
dom start, until a random stop, and after and until an action
has occurred [Ezekiel and Lomuscio, 2009]. The local states,
actions, protocol, and evolution function of the fault injection
agent a defined according to these options, which can be com-
bined to create complex timing characteristics of the fault. A
mutated set of initial states IF∗ stipulates that the local state
of FI is set to either notfaulty which persists throughout
the system run, or to a state in which faults may be injected
into the system by FI in the future according to the timing
options. The faulty behaviour in the faulty agentAF∗ is intro-
duced using a number of mutation rules that determine how
the evolution function tA is mutated to tAF∗ . These can be
applied to mutate the model to represent desired faulty be-
haviour, e.g., by inverting a particular state of an agent.

A mutated valuation function V F∗ relates atomic propo-
sitions to the local states of each fault injection agent. This
can be used to reason about the correct and faulty behaviours
of the mutated interpreted system ISF∗. For each fault
j ∈ {1, . . . ,m} the mutated set of atomic propositions
APF∗ extends with the propositions faultyj , injectedj ,
injectingj , stoppedj . This allows for reasoning about the
persistence of a fault, i.e., the continued existence or occur-
rence of a fault during a system run. The proposition faultyj

1660

represents that a fault can be injected during the system run;
injectedj expresses that a fault is injected at the current clock
tick (a global state describing the system at a particular in-
stant of time); injectingj denotes that a fault can be injected
at the current clock tick; stoppedj describes that a fault has
been injected and can not be injected at the current clock tick.

Once a mutated model ISF∗ has been obtained, both the
correct and faulty behaviours of the system can be analysed.
For this purpose a library of specification patterns pertain-
ing to fault tolerance, recoverability, and diagnosability was
defined in [Ezekiel and Lomuscio, 2009].

2.3 IFAS

The IFAS process [Molnar and Veres, 2009b] is intended as
a methodology to carry out fault and integrity assessment of
complex autonomous systems in order to provide an assur-
ance of their reliability. It consists of the following stages:
1) A formal model is defined for the autonomous system to
be investigated; 2) The model is refined for adapting it to a
mainstream model checker by means of a discrete abstraction
of the hybrid system model and a conversion of the design
into a MAS formalism; 3) The requirements of the system are
analysed, hence asserting the properties that the design must
satisfy; 4) A model checker is used to verify whether these
requirements are satisfied or whether bugs exist; 5) If the ver-
ification stage shows that some requirements are not satisfied,
then counter-examples are produced and the design process is
resumed to refine the model based on the counter-examples.

An industry-standard format for embedded systems (State-
flow/Simulink) is used to represent the formal model.
Simulink blocks provide the ability to model the continu-
ous dynamics corresponding to the discrete states. Stateflow
charts allow the creation of discrete state transition systems
based on hierarchical state machines. Testing and simula-
tion can be performed on the autonomous system using these
tools. However, this is insufficient to verify the correct oper-
ation of the system under degraded conditions.

A compiler automatically translates the discrete state tran-
sition system from Stateflow into ISPL [Molnar and Veres,
2009b]. MCMAS is used for verification, providing counter-
examples if the requirements of the system are not satisfied.
By analysing this resulting model we can infer which prop-
erties the system satisfies during correct executions, but also
when certain faults arise. Specifically, we are interested in
assessing the robustness of the system to faults, its capacity
to diagnose them and to recover from them.

Until now, the IFAS process has been demonstrated on il-
lustrative examples to highlight how liveness properties can
be verified. In this paper we apply the IFAS process to the
Autosub6000 AUV. This required the integration of fault in-
jection with the IFAS process, which we now present.

3 Methodology

The methodology we propose here extends the IFAS pro-
cess [Molnar and Veres, 2009b], and is presented as a wa-
terfall model in Fig. 1. The user techniques and approaches,
that can be used at each stage of the process, are highlighted.
Fault injection is integrated into the process at the “Require-
ments Analysis and Formulae Definition” stage. This allowed

Specification Patterns

Fault Injection Compiler

Integrated Fault Injection
Approach

MCMAS

Automatic Analysis

Stateflow to ISPL Compiler

User Techniques/Approaches Process Stagesinput

interface

interface

Requirements Analysis
and Formulae Definition

Parsing and Transformation

Formal Engineering Model

Verification

 Simulink/Stateflow

Refinement
Model

Figure 1: Waterfall model of the IFAS process.

for verification of the correct operation of the Autosub6000
under degraded conditions. Applying IFAS to complex real
system allowed us to extensively study the process from a
system engineering perspective.

The formal engineering model was defined by analysing
the existing Autosub6000 design in detail and consulting with
the engineers that designed the AUV. The engineering model
was extensively simulated using the Stateflow/Simulink and
Matlab tools which provided a preliminary assurance of the
validity of the model. Minor oversights during the analysis
process meant that bugs were uncovered in the model during
verification. These were corrected during refinement, provid-
ing further assurances as to the validity of the model. We
expect that this exercise of uncovering bugs is similar to one
that a system engineer would experience when assessing a
new system design. This makes our lessons learnt at the ver-
ification stage of the process particularly relevant. Further-
more, the assurance of the validity of the model reinforced
confidence that the results from applying the methodology
(see Sec. 5) provided a genuine assessment of the reliability
of Autosub6000 operating under degraded conditions.

To introduce faulty behaviour into the discretised model,
we used a compiler for fault injection available for public
use [Ezekiel and Lomuscio, 2009]. The compiler allowed
faults to be injected into an ISPL program using a graphi-
cal user interface to facilitate fault definition, including the
mutation rules, and timing options of the fault. Following
fault definition, the compiler output a mutated ISPL program
including the definition of the fault injection agents, the mu-
tated faulty behaviour, and the atomic propositions for rea-
soning about the faults. This allowed for a high level of au-
tomation compared to introducing faulty behaviour manually.

The mutated system was visualised by reversing the com-
pilation process in [Molnar and Veres, 2009b] to convert the
mutated ISPL program into Stateflow. This allowed for vi-
sual inspection of the faulty behaviour, increasing our confi-
dence that the faults had been chosen and defined correctly. A
graphical depiction of the mutated system in a familiar format
assists engineers in understanding the complex behaviour.

Specification patterns from [Ezekiel and Lomuscio, 2009]
were used to analyse fault tolerant requirements of the sys-
tem. This gave us a template for defining formulae for verify-
ing fault tolerance, diagnosability, and recoverability require-
ments. This facilitated an easier way to analyse requirements
than by crafting specifications individually.

1661

MCMAS was used at the verification stage to verify these
specifications and provide counter-examples when the re-
quirements of the system were not satisfied. When counter-
examples were produced, we used the Stateflow representa-
tion of the system, along with the counter-example to un-
derstand the problematic behaviour. When the system was
refined, the previously defined faults were automatically in-
jected into the refined model, and the same specifications
were applied to the mutated refined model. In this sense, both
system behaviour and mutated faulty behaviour can be altered
without having to re-write specifications.

A further benefit of a combined fault injection and model
checking approach is that graphical artifacts such as fault
trees and diagnosability analysis can be produced by using the
fault definitions to automatically generate specification that
analyse the system, and by interpreting the results from inter-
facing with MCMAS to verify these specifications against the
mutated model [Ezekiel and Lomuscio, 2010]. Although we
have not tested this approach on the Autosub system yet, this
facility is available in the fault injection compiler.

The methodology we put forward in this section signif-
icantly enhances the power of IFAS to assist system engi-
neers in designing reliable autonomous systems, by integrat-
ing fault injection into the process. The application of the
process to the Autosub6000 has allowed us to describe its us-
age in this section from the perspective of its suitability to
real complex autonomous systems. In the next section we de-
scribe the ISPL definition of the vehicle, generated from the
parsing and transformation stage of the IFAS process.

4 Modelling of Autosub6000

The Autosub6000 AUV [McPhail, 2009] is engineered to
operate in hazardous conditions using a number of reliable
subsystems. Autonomous subsystem nodes are distributed
throughout the vehicle and carry out tasks such as guid-
ance/mission control, control of position, depth and forward
speed, navigation, actuator control, battery/power system
monitoring and communication. Communication between
these subsystems takes place using a modular, distributed and
networked control architecture [McPhail and Pebody, 1998].

The formal model of the Autosub6000 was discretised dur-
ing the IFAS process, in this same manner as the discretisa-
tion process described in [Molnar and Veres, 2009b]. A finite
state transition system describes the functionality of each net-
work control node. Translating this discretised model using
the Stateflow to ISPL compiler resulted in 27 agents repre-
senting the communicating processes autonomously govern-
ing the AUV, its environment, and a human observing the
AUV from the mother ship. The Stateflow/Simulink model
file consists of 15000 lines and is 450KB in size. Here, we
summarise some of the key agents relating to our study.

A MScriptEx agent models the state machine functionality
of the mission control process. Mission events send instruc-
tions to the control, actuator and sensor payload systems. Al-
ternative mission ending scenarios are indicated by “mission
termination exception” states. An Echosounder agent mod-
els an echosounder that detects objects on the vehicle’s path.
A HorizAvoidStrat agent models the multi-state process de-

veloped for the collision and obstacle avoidance for the hor-
izontal control dimension. When the vehicle encounters an
obstacle, it takes a 180 degree turn, retreats along its path to a
safe retreat distance, and tries a new track parallel to the orig-
inal track. Agents SPMeter, RPArray, RTLength are used dur-
ing the horizontal avoidance process in order to navigate to a
safe retreat distance from the obstacle. An AvoidTimer agent
monitors the length of time of the avoidance process since it
became active and an RTCounter agent counts of the num-
ber of times the AUV retreats during the horizontal avoid-
ance process. A PowerNode agent models the onboard bat-
tery and if the battery voltage falls below a preconfigured set
level the mission control state machine is notified. An Emer-
gencyAbort models the functionality of the emergency abort
node. If the mission has continued for too long, or the vehicle
is too deep, the emergency abort system is notified. A Hom-
ingSystem agent models the vehicle’s onboard homing system
which guides the vehicle towards the ship’s position when a
homing signal is received. An Environment agent represents
the hazardous physical environment that the vehicle operates
in. A Human agent represents the human operator observing
the AUV from the support ship during its operation. The op-
erator can instruct an acoustic beacon to be lowered from the
support ship to trigger the vehicle’s onboard homing system.

We now turn our attention to verifying various properties
of fault tolerance in the discretised Autosub6000 system.

5 Verification Results

The fault injection compiler from [Ezekiel and Lomuscio,
2009] was used to create thirteen carefully selected faults that
can potentially be encountered during a real mission. Each
fault was chosen in consultation with the engineers so that
important properties of the mission control state machine, the
homing system, the emergency abort system, and the avoid-
ance strategy could be verified. The faults were automatically
injected into the discretised Autosub6000 ISPL model to cre-
ate a mutated ISPL model for input into MCMAS. We provide
a brief description of some of the faults in Table 1.

A total of 85 specifications were written in consultation
with the engineers to assess key fault tolerance properties of
the AUV. Fault tolerance, recoverability, and diagnosability
specifications were described using the specifications patterns
in [Ezekiel and Lomuscio, 2009]. MCMAS verified all of
the specifications in just under 2 hours using approximately
203MB of memory on a 3.2GHz processor with 2GB of mem-
ory, where the number of reachable states is approximately
4.7 × 1010 out of a possible 6.2 × 1027. Here we simply fo-
cus on some of the interesting specifications and the results
obtained. We use the atoms in Table 1, and as a naming
convention, we use f to indicate the faulty persistence of
a fault; i to indicate the injecting persistence; s to indicate
the stopped persistence; and is to indicate the disjunction of
the injecting persistence and stopped persistence.

To verify that the mission control state machine enters the
first mission termination exception mte1 when the power is
low, and the vehicle does not appear faulty, we used the fol-
lowing specification.

AG((¬V AFf ∧ PLs)→ AF (mte1))

1662

Table 1: Description of the fault injection agents.

VehicleAppearsFaulty (VAF) : Human observes
physically that the AUV appears to be faulty
PowerLow (PL) : AUV onboard battery power is low
AvoidTimerFail (ATF) : Obstacle avoidance process has
continued for too long
RetryTrackAvoidanceFail (RTA): AUV has attempted
to retreat too many times during obstacle avoidance
RPAAvoidanceFail (RPAAF) : There are no demands to
be sent to the position control during obstacle avoidance
Horiz.Avoid.Fail (HAF) : Horizontal avoidance strategy
fails to avoid an obstacle
EchosounderDetects (ED) : The forward looking
echosounder has detected an object on the vehicle’s path
MinIceRange (MIR) : Reached the “minimum ice
clearance” ’ configuration limit
MinAltRange (MAR) : Reached the “minimum altitude”
configuration limit

This specification states that in all paths in which the vehicle
does not appear faulty and a power low fault has occurred,
mte1 is reached. MCMAS reported this specification as true.
The mission termination is therefore correctly entered when
the power is low.

The following specification expresses that the first mission
termination exception is a state of the system in which the
mission control node can diagnose that the power is low or
one of the avoidance failures has occurred.
AG(mte1→ (KMScriptEx(
ATFis ∨ PLis ∨RPAAFis ∨RTAis ∨HAFis)
∧ ¬KMScriptEx(ATFis) ∧ ¬KMScriptEx(PLis)
∧ ¬KMScriptEx(RPAAFis) ∧ ¬KMScriptEx(RTAis)
∧ ¬KMScriptEx(HAFis))

This specification states that whenever mte1 is reached, the
MScriptEx agent knows about the occurrence (i.e., the fault
has occurred or is occurring) of either a power low or obsta-
cle avoidance failure, but does not know about the specific
occurrence of either of these faults. MCMAS verified this
specification as true which testifies to the ability of the mis-
sion control state machine to diagnose the occurrence of low
power or obstacle avoidance failures.

The following specification encodes that when the forward
looking echosounder diagnoses the detection of the object on
the vehicles path, the knowledge of the fault is propagated to
the horizontal avoidance strategy.
¬E(¬KEchosounder(EDis) U (KEchosounder(EDis) ∧
¬AF (KHorizAvoidStrat(EDis ∨ (MIRis ∧MARis))))

This specification states that there is no path in which the
Echosounder agent comes to know about the echosounder
detecting the fault without the HorizAvoidStrat agent al-
ways coming to know that an obstacle needs to be avoided
due to the detection of the object on the vehicles path or the
reaching of the “minimum ice clearance” and “minimum al-
titude” configuration limits. MCMAS reported this specifica-
tion as true. Thus, the forward looking echosounder propa-

gates its knowledge of the detection of the object on the vehi-
cles path to the horizontal avoidance strategy.

The following specification encodes that when the horizon-
tal avoidance strategy diagnoses the detection of the object
on the vehicles path or the reaching of the “minimum ice
clearance” and “minimum altitude” configuration limits, the
knowledge of that one of these faults has occurred is propa-
gated to the obstacle avoidance timer.
¬E(¬KHorizAvoidStrat(EDis ∨ (MIRis ∧MARis)) U
(KHorizAvoidStrat(EDis ∨ (MIRis ∧MARis)) ∧
¬AF (KAvoidT imer(EDis ∨ (MIRis ∧MARis))))

This specification states that there is no path in which
the HorizAvoidStrat agent comes to know about the
echosounder detecting fault or the minimum ice clearance
and minimum altitude configuration limits faults without the
AvoidT imer agent always coming to know these faults.
MCMAS verified this specification as true. Thus, the hori-
zontal avoidance strategy propagates its knowledge of the de-
tection of the object on the vehicles path or the reaching of
the configuration limits to the obstacle avoidance timer.

The following specification expresses that when horizon-
tal avoidance strategy diagnoses the detection of the object
on the vehicles path or the reaching of the “minimum ice
clearance” and “minimum altitude” configuration limits, the
knowledge of that one of these faults has occurred is propa-
gated to a group of obstacle avoidance agents.
¬E(¬KHorizAvoidStrat(EDis ∨ (MIRis ∧MARis)) U
(KHorizAvoidStrat(EDis ∨ (MIRis ∧MARis)) ∧
¬AF (EKObstAvoidGroup(EDis ∨ (MIRis ∧MARis))))

This specification states that there is no path in which
the HorizAvoidStrat agent comes to know about the
echosounder detecting the faults, or the minimum ice clear-
ance and minimum altitude configuration limits faults, with-
out everybody in the groupObstAvoidGroup (comprising of
the AvoidT imer, RTCounter, SPMeter, and RTLength
agents) always coming to know about the occurrence of these
faults. MCMAS verified this specification as true. Thus, the
horizontal control dimension avoidance strategy propagates
its knowledge of the detection of the object on the vehicles
path or the reaching of the configuration limits to the obstacle
avoidance agents that require it.

The verification results illustrate how our methodology can
provide a useful assessment of reliability of the Autosub6000
AUV under degraded operational conditions. In particular,
establishing an assurance that: in faulty scenarios the vehicle
can terminate its mission correctly; faults are suitably diag-
nosed; and the knowledge of obstacles is appropriately prop-
agated amongst the subsystems of the AUV.

6 Related Work and Conclusions

Previous work on combining fault injection with model
checking [Bozzano and Villafiorita, 2007; Ezekiel and Lo-
muscio, 2009] has been applied to reactive systems [Boz-
zano and Villafiorita, 2007] and MAS [Ezekiel and Lomus-
cio, 2009]. In [Bozzano and Villafiorita, 2007] an inte-
grated tool for injecting faults into a system model defined
in NuSMV [Cimatti et al., 1999] is applied to verify safety-
critical avionics systems. The tool automatically mutates the

1663

NuSMV code using a library of failure modes. Temporal
specifications are used to verify fault tolerance and diagnos-
ability is not considered.

In [Ezekiel and Lomuscio, 2009] a combined fault injec-
tion and model checking approach is applied to MAS, using
temporal-epistemic specifications to verify fault tolerance, re-
coverability and diagnosability. However, the evaluation of
the approach is limited to network protocols.

Previous work on verifying AUVs [O’Connor et al., 2006]
presents a systematic method of verification for an AUV as a
hybrid system. The AUV is modelled as a reactive system. In
this approach the UPPAAL [Behrmann et al., 2006] tempo-
ral logic model checker is used to verify safety and liveness
properties of the AUV model. Properties of fault tolerance,
recoverability and diagnosability are not considered.

In this paper we presented a methodology that addresses
fault tolerance, recoverability and diagnosability through a
combination of fault injection and IFAS. These new methods
have been applied to verify a real autonomous system, the
Autosub6000 AUV. We presented results from verifying vari-
ous properties of a discretised model of Autosub6000, which
was mutated by injecting faults of real degraded scenarios.

The results from this study are useful to system engineers
working on the design of AUVs and similar complex au-
tonomous engineering systems. The key contribution of our
work is the integration of the fault injection approach into
IFAS, which provides a methodology for system engineers to
assess and refine their designs to meet stringent operational
requirements of reliability. We learned several important
lessons from applying this methodology to Autosub6000: the
ability to automate the definition of faulty scenarios using the
fault injection compiler and the ability to examine these sce-
narios in Stateflow, give the methodology significant merits in
terms of its usability for system engineers.The expression of
reliability requirements can be made easily through specifi-
cation patterns and re-applied automatically when the system
is refined. Scenarios in which requirements are not met can
be investigated visually and comprehensively using a combi-
nation of counter-examples and Stateflow. These aspects of
the methodology provide a highly usable and automated way,
in which the reliability of real complex autonomous systems
can be assessed.

Furthermore, artifacts such as fault trees that analyse relia-
bility requirements can be automatically produced using our
approach [Ezekiel and Lomuscio, 2010]. We leave this inves-
tigation to future work.

References

[Behrmann et al., 2006] G. Behrmann, A. David, K. G.
Larsen, J. Hakansson, P. Petterson, W. Yi, and M. Hen-
driks. Uppaal 4.0. In Proceedings of QEST’06, pages
125–126. IEEE, 2006.

[Bozzano and Villafiorita, 2007] M. Bozzano and A. Vil-
lafiorita. The FSAP/NuSMV-SA safety analysis platform.
Software Tools for Technology Transfer, 9(1):5–24, 2007.

[Chance, 2003] T.S. Chance. AUV surveys - extending our
reach, 24000 km later. In Proceedings of UUST’03. AUSI,
2003.

[Cimatti et al., 1999] A. Cimatti, E.M. Clarke,
F. Giunchiglia, and M. Roveri. NUSMV: a new
Symbolic Model Verifier. In Proceedings of CAV’99,
volume 1633 of LNCS, pages 495–499. Springer, 1999.

[Clarke et al., 1999] E.M. Clarke, O.Grumberg, and D.A.
Peled. Model Checking. MIT Press, Cambridge, 1999.

[Ezekiel and Lomuscio, 2009] J. Ezekiel and A. Lomuscio.
An automated approach to verifying diagnosability in
multi-agent systems. In Proceedings of SEFM’09, pages
51–60. IEEE, 2009.

[Ezekiel and Lomuscio, 2010] J. Ezekiel and A. Lomuscio.
A methodology for automatic diagnosability analysis. In
Proceedings of ICFEM’10. To appear, 2010.

[Fagin et al., 1995] R. Fagin, J. Y. Halpern, M. Y. Vardi, and
Y. Moses. Reasoning about knowledge. MIT Press, Cam-
bridge, 1995.

[Gammie and van der Meyden, 2004] P. Gammie and
R. van der Meyden. MCK: Model checking the logic of
knowledge. In Proceedings of CAV’04, volume 3114 of
LNCS, pages 479–483. Springer, 2004.

[Iyer, 1995] R.K. Iyer. Experimental evaluation. In Proceed-
ings of FTCS-25, pages 115–132. IEEE, 1995.

[Lomuscio et al., 2009] A. Lomuscio, H. Qu, and F. Rai-
mondi. MCMAS: A model checker for the verification of
multi-agent systems. In Proceedings of CAV’09, volume
5643 of LNCS, pages 682–688. Springer, 2009.

[McPhail and Pebody, 1998] S.D. McPhail and M. Pebody.
Navigation and control of an autonomous underwater ve-
hicle using a distributed, networked, control architecture.
Society for Underwater Technology, 23(12):19–30, 1998.

[McPhail, 2009] S. McPhail. Autosub6000: A deep diving
long range AUV. Bionic Engineering, 6(1):55–62, 2009.

[Molnar and Veres, 2009a] L. Molnar and S. M. Veres. Sys-
tem verification of autonomous underwater vehicles by
model checking. In Proceedings of Oceans’09, pages 1–
10. IEEE, 2009.

[Molnar and Veres, 2009b] L. Molnar and S. M. Veres. Ver-
ification of autonomous underwater vehicles using formal
logic. In Proceedings of ECC’09, pages 1–6. EUCA, 2009.

[Niewiadomski et al., 2004] A. Niewiadomski, W. Penczek,
and M. Szreter. Verics 2004: A model checker for real time
and multi-agent systems. In Proceedings of CS&P’04,
Informatik-Berichte, pages 88–99, 2004.

[O’Connor et al., 2006] M. O’Connor, S. Tangirala, R. Ku-
mar, S. Bhattacharyya, M. Sznaier, and L.E. Holloway. A
bottom-up approach to verification of hybrid model-based
hierarchical controllers with application to underwater ve-
hicles. In Proceedings of ACC’06, page 6 pp. IEEE, 2006.

[Sampath et al., 1995] M. Sampath, R. Sengupta, S. Lafor-
tune, K. Sinnamohideen, and D. Teneketzis. Diagnosabil-
ity of discrete-event systems. IEEE Transactions on Auto-
matic Control, 40(9):1555–1575, 1995.

[Wooldridge, 2000] M. J. Wooldridge. Reasoning about Ra-
tional Agents. MIT Press, Cambridge, 2000.

1664

