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Abstract

We develop a novel circuit-level stochastic local
search (SLS) method D-CRSat for Boolean satis-
fiability by integrating a structure-based heuristic
into the recent CRSat algorithm. D-CRSat signif-
icantly improves on CRSat on real-world applica-
tion benchmarks on which other current CNF and
circuit-level SLS methods tend to perform weakly.
We also give an intricate proof of probabilistically
approximate completeness for D-CRSat, highlight-
ing key features of the method.

1 Introduction

Today, Boolean satisfiability (SAT) solvers are routinely used
to solve hard problem instances arising from AI research
and various industrial applications. The most efficient SAT-
based approach to solving such real-world instances is typ-
ically based on conflict-driven clause learning (CDCL). In
contrast, stochastic local search (SLS) for SAT is often con-
sidered effective mainly on random SAT instances. Only re-
cently some research effort has been directed towards making
SLS a noteworthy alternative for solving real-world instances.
This work contributes substantially to these efforts by devel-
oping novel structure-based SLS techniques that can lift the
performance of SLS closer to that of CDCL on real-world
application instances.

A major challenge in improving the performance of SLS
on real-world application instances is in developing efficient
techniques that exploit variable dependencies [Kautz and Sel-
man, 2007]. The results in this paper indicate that a key to
solving this challenge is to exploit non-clausal formula rep-
resentations (such as Boolean circuits) instead of focusing on
the customary approach of first translating formulas into the
flat conjunctive normal form (CNF) format and then applying
CNF-level SLS methods.

Most SLS methods previously proposed for non-clausal
formulas focus search on truth assignments over indepen-
dent (or input) variables [Sebastiani, 1994; Kautz et al., 1997;
Stachniak, 2002; Pham et al., 2007; Muhammad and Stuckey,
2006; Stachniak and Belov, 2008; Belov and Stachniak,
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2009]. An alternative approach to circuit-level SLS was first
proposed in the BC SLS method [Järvisalo et al., 2008b;
2008a]. In contrast to searching in a bottom-up mode as in
circuit-level SLS methods focusing on input variables, search
in BC SLS is driven top-down in the overall structure of
the circuit by utilizing so-called justification frontiers. BC
SLS also introduced the concept of justification-based SLS,
in which search steps aim at correcting local inconsistencies
within a circuit by justifying inconsistently assigned (unjusti-
fied) gates. The more recent circuit-level SLS method CRSat
builds on the concept of justification-based search [Belov and
Stachniak, 2010]. The key novel feature of CRSat is the in-
corporation of limited constraint propagation into the search.
Additionally, CRSat relaxes justification-based search to con-
sider all unjustified gates. CRSat was shown to significantly
outperform BC SLS on problem instances from real-world
application domains [Belov and Stachniak, 2010].

In this work we develop a novel depth-driven circuit-level
SLS method D-CRSat. D-CRSat exploits the explicit circuit-
level instance structure through a symbiosis of limited for-
ward propagation and a structure-based heuristic based on
gate depth information within justification-based search. We
show that D-CRSat significantly improves the performance of
CRSat on a wide range of industrial application benchmarks
on which both bottom-up mode circuit-level SLS and current
CNF-level SLS methods (using a standard CNF translation
for the latter) tend to perform weakly. In fact, D-CRSat com-
pares in some cases favourably even with a modern circuit-
level CDCL solver. Complementing these major practical im-
provements, we give a proof of probabilistically approximate
completeness (PAC) [Hoos, 1999] for D-CRSat. While also
interesting in its own right, the proof reveals that gate depth
information is indeed an important search parameter. Com-
pared to typical PAC proofs, the case of D-CRSat is more
involved due to non-local changes caused by the constraint
propagation mechanism. The proof also reveals that D-CRSat
(and CRSat) has an intrinsic ability to autonomously restart
search without explicitly being forced to do so. An additional
side-product of the proof is that CRSat is also PAC.

2 Preliminaries

A Boolean circuit over a finite set G of gates is a set
C of equations of the form g = f(g1, . . . , gn), where
g, g1, . . . , gn ∈ G and f : {0, 1}n → {0, 1} is a Boolean

504

Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence



function, with the additional requirements that (i) each g ∈ G
appears at most once as the left hand side in the equations in
C, and (ii) the underlying directed graph 〈G,E(C)〉, where
E(C) = {〈g′, g〉 ∈ G×G | g = f(. . . , g′, . . .) ∈ C}, is
acyclic. If 〈g′, g〉 ∈ E(C), then g′ is a child of g and g is a
parent of g′. For a gate g, the sets of its children (i.e., the fanin
of g) and parents (i.e., the fanout of g) are denoted by fanin(g)
and fanout(g), respectively. The descendant and ancestor re-
lations fanin

∗
and fanout

∗
are the transitive closures of the

child and parent relations, respectively. If g = f(g1, . . . , gn)
is in C, then g is an f -gate (or of type f ). A gate with no
children (resp. no parents) is an input gate (resp. an output
gate). The sets of input gates and output gates in C are de-
noted by inputs(C) and outputs(C), respectively. A gate that
is neither an input nor an output is an internal gate.

An (truth) assignment for C is a (possibly partial) function
τ : G → {0, 1}. A complete assignment τ for C is consistent
if τ(g) = f(τ(g1), . . . , τ(gn)) for each g = f(g1, . . . , gn)
in C. The domain of τ , i.e., the set of gates assigned in τ , is
denoted by dom(τ). Two assignments, τ and τ ′, disagree on
a gate g ∈ dom(τ) ∩ dom(τ ′) if τ(g) �= τ ′(g). Furthermore,
we identify 〈g, v〉 ∈ τ with τ(g) = v.

A constrained Boolean circuit Cα consists of a Boolean
circuit C and an assignment α for C. Each 〈g, v〉 ∈ α is a
constraint, and g is constrained to v if 〈g, v〉 ∈ α. A com-
plete assignment τ for C satisfies Cα if (i) τ is consistent
with C, and (ii) it respects the constraints: τ ⊇ α. If some
assignment satisfies Cα, then Cα is satisfiable. A circuit that
is not satisfiable is unsatisfiable. Without loss of generality,
we assume that constraints are imposed only on output gates.

The restriction τ |G′ of an assignment τ to a set G′ ⊆ G of
gates is defined as {〈g, v〉 ∈ τ | g ∈ G′}. Given a gate equa-
tion g = f(g1, . . . , gn) and a value v ∈ {0, 1}, a justification
for the pair 〈g, v〉 is a partial assignment σ : {g1, . . . , gn} →
{0, 1} to the children of g such that f(τ(g1), . . . , τ(gn)) = v
holds for all extensions τ ⊇ σ. That is, the values as-
signed by σ to the children of g are enough to force g to
take the consistent value v. For example, the justifications
for 〈g, 0〉, where g = AND(g1, g2), are {〈g1, 0〉}, {〈g2, 0〉},
and {〈g1, 0〉, 〈g2, 0〉}, out of which the first two are subset-
minimal. A gate g is justified in an assignment τ if it is
assigned, i.e. τ(g) is defined, and (i) it is an input gate, or
(ii) g = f(g1, . . . , gn) ∈ C and τ |{g1,...,gn} is a justifica-

tion for 〈g, τ(g)〉. We denote the set of unjustified gates in an
assignment τ by unjust(Cα, τ).

For a truth assignment τ and set of gates G ⊆ dom(τ), let

flip(G, τ) =
(
τ \

⋃
g∈G

{〈g, τ(g)〉}
)
∪

⋃
g∈G

{〈g, 1− τ(g)〉}.

In other words, flip(G, τ) is the truth assignment obtained by
changing the values of the gates in G, and leaving the rest of
τ unchanged.

3 Justification-Based Circuit-Level SLS

This section provides an overview of the justification-based
circuit-level SLS methods BC SLS and CRSAT. We start
with BC SLS which introduced the idea of justification-based
SLS [Järvisalo et al., 2008b] that was later adopted in CR-
SAT [Belov and Stachniak, 2010]

3.1 BC SLS

In BC SLS search is driven by the dynamically updated jus-
tification frontier jfront(Cα, τ) of the constrained circuit Cα

based on the current assignment τ . For a given τ , consider the
smallest set S of gates which includes all constrained gates
and, for each justified gate g in S, all the gates that participate
in some subset-minimal justification for g. The justification
frontier jfront(Cα, τ) is the “bottom edge” of S, consisting
of those gates in S that are not justified. By definition, we
always have jfront(Cα, τ) ⊆ unjust(Cα, τ).

BC SLS exploits the fact that when the justification fron-
tier jfront(Cα, τ) is empty, the constrained circuit Cα is sat-
isfiable. Starting with a random complete assignment τ for
Cα, and as long as the justification frontier jfront(Cα, τ) is
not empty, the algorithm removes a gate g from jfront(Cα, τ)
at random, and performs either a downward move—which is
central in justification-based search—or an upward move.

In a downward move the gate g is justified by choosing a
justification σ for 〈g, τ(g)〉, and flipping the values of gates
on which σ and τ disagree. As a result, some gates in fanin(g)
may become unjustified and are hence added to the updated
justification frontier. To choose σ, the set Σ of all justifica-
tions for 〈g, τ(g)〉 is constructed, and one element is selected
from this set either at random, or greedily with the objective
of minimizing the size of the set of gates in jfront(Cα, τ) and
their descendants after the move.

In an upward move the value of g itself is flipped (requiring
that g is unconstrained). As a result, g becomes justified, and,
potentially, some gates in fanout(g) become unjustified.

Intuitively, BC SLS balances between moving the justifi-
cation frontier towards the inputs with downward moves with
the upward moves that, in essence, assign to the chosen gate
the value that is consistent with the assignment on its chil-
dren, hence pushing the frontier towards the outputs.

3.2 CRSAT

The CRSAT algorithm also applies the idea of justification-
based search. However, in contrast to BC SLS, CRSAT does
not maintain the justification frontier or perform explicit up-
ward moves. Instead, CRSAT incorporates a more direct lim-
ited forward propagation mechanism—restricted bottom-up
circuit-level constraint propagation—within the search.

Pseudo-code for CRSAT is presented as Algorithm 1.
First, a complete extension of a random value assignment
to inputs(Cα) is constructed, i.e., the value of each uncon-
strained internal gate is set consistently with the values of its
children. Then, as long as unjust(Cα, τ) is not empty (i.e.,
τ is not a satisfying assignment), the algorithm selects a gate
g from unjust(Cα, τ) at random (line 6), and, similarly to
the downward moves in BC SLS, justifies g by choosing a
justification σ for 〈g, τ(g)〉 and flipping the values of gates
on which σ and τ disagree. However, CRSAT additionally
propagates the consequences of the flip using limited forward
propagation. These two actions form a step of CRSat (see
function STEP(Cα, G, τ) on lines 19-22).

The justification σ used to make a step is selected from the
set Σ of all justifications for 〈g, τ(g)〉 either at random (with
probability wp), or greedily with the objective of minimizing
the number of unjustified gates after the step.
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Algorithm 1 CRSAT(Cα, wp, cutoff)

Input: Cα – constrained Boolean circuit
wp – noise parameter ,i.e., probability of random walk
cutoff – cutoff, i.e., maximum number of steps

Output: status – SAT if a satisfying assignment for Ca is found,
UNKNOWN otherwise

τ – a satisfying assignment for Cα if found, ∅ otherwise
1: τ ← a complete extension of a random assignment to

inputs(Cα)
2: steps← 0
3: while steps < cutoff do
4: if unjust(Cα, τ ) = ∅ then
5: return 〈SAT, τ 〉

6: g ← a random element from unjust(Cα, τ )
7: Σ← the set of justifications for 〈g, τ (g)〉
8: with-probability wp do
9: σ ← random element of Σ � random walk

10: otherwise
11: σ ← a random justification from the justifications in Σ
12: that minimize |unjust(Cα, ·)| after step
13: � greedy downward move
14: end with-probability
15: G← set of gates in σ that disagree with τ
16: τ ← STEP(Cα, G, τ ) � flip + limited forward propagation
17: steps← steps + 1

18: return 〈UNKNOWN, ∅〉

19: function STEP(Cα, G, τ )
20: τ ′ ← flip(G, τ )
21: τ ′ ← LBCP-FORWARD(Cα, G, τ ′)
22: return τ ′

3.3 Limited Forward Propagation

We now provide details on how to implement the limited for-
ward propagation mechanism (Algorithm 2) that is one of the
key techniques in both CRSAT and the method developed in
this paper. More details can be found in [Belov, 2010].

The propagation algorithm uses a priority queue Q of gates
(without duplicates) that allows to query the smallest gate ac-
cording to a topological order in constant time. Recall that a
topological order on the set of gates in a circuit is any strict
total order < that respects the condition “if g1 ∈ fanin(g2),
then g1 < g2”.

Given a set of gates G (that presumably have just changed
their value as a result of a flip), the algorithm starts by insert-
ing the gates into Q. Then, for each gate g removed from Q,
the algorithm queues all gates in fanout(g) if either g ∈ G,
or g is unjustified and not constrained. In the latter case the
value of g is flipped, and so g becomes justified. Thus, infor-
mally, given the set of gates G the algorithm propagates their
values towards the outputs of the circuit, but only as long as
some gates change their values.

The following proposition captures a key property of the
forward propagation procedure applied within CRSAT.

Proposition 1 Let Cα be a constrained circuit, τ an assign-
ment for Cα, and G be a set of gates constructed on line 15
of CRSAT. Let τ ′ = STEP(Cα, G, τ). Then:

(i) For all g /∈ G ∪ dom(α), if g ∈ unjust(Cα, τ ′), then
g ∈ unjust(Cα, τ).

Algorithm 2 LBCP-FORWARD(Cα , G, τ )

Input: Cα – constrained Boolean circuit;
G – a set of gates whose value changes are to be propagated.
τ – an assignment for Ca;

Output: τ ′ – an assignment for Cα which is a result of limited
forward propagation of the assignment τ |G.

1: τ ′ ← τ
2: Q.ENQUEUE(G)
3: while ¬ Q.EMPTY do
4: g ←Q.POP FRONT

5: if g ∈ G then � g is one of the original gates
6: Q.ENQUEUE(fanout(g))
7: else
8: if g ∈ unjust(Cα, τ ′) \ dom(α) then
9: � g unconstrained and unjustified

10: τ ′ ← flip({g}, τ ′)
11: Q.ENQUEUE(fanout(g))

12: return τ ′

(ii) For all g /∈ G, if g ∈ unjust(Cα, τ ′), then τ ′(g) = τ(g).

Thus, a step of CRSAT does not create new unjustified gates
beside, possibly, those in G and dom(α). Furthermore, any
gate not in G that is unjustified after a step has the same value
as before the step.

4 D-CRSAT: Depth-Based CRSAT

The efficiency of justification-based search depends critically
on how gates are selected for justification during search.
In [Belov and Stachniak, 2010] no explicit gate selection
heuristic for CRSAT was proposed. On the other hand, the
search heuristic of BC SLS is tightly bound to the justi-
fication frontier, causing a single move of BC SLS to be
quite expensive in practice. In this section we introduce a
structure-based gate selection heuristic which, when incor-
porated into CRSAT, results in significant performance im-
provement with only small overhead. We call the result-
ing method D-CRSAT. In the following sections we pro-
vide theoretical justifications and experimental evidence for
D-CRSAT’s good performance.

Given a constrained Boolean circuit Cα, for each gate g in
Cα we define the depth of g in Cα as depth(Cα, g) = 0 if
g ∈ outputs(C) and, otherwise,

depth(Cα, g) = 1 +max{depth(Cα, g′) | g′ ∈ fanout(g)}.

We denote by D-CRSAT the version of CRSAT in which the
unjustified gate g on line 6 is selected at random from the
set of gates in unjust(Cα, τ) that are at maximum depth ac-
cording to depth(Cα, g). In other words, D-CRSAT always
selects the unjustified gate g from the set of gates

argmax
g∈unjust(Cα,τ)

depth(Cα, g).

Proposition 1 provides some intuition as to why the combi-
nation of this depth-based heuristic and limited forward prop-
agation may be appealing. Namely, forward propagation does
not create new unjustified unconstrained gates, and hence can
only make currently unjustified gates justified. Therefore,
choosing a gate for justification from the set of unjustified
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gates at maximum depth provides forward propagation with
more opportunities to justify gates at smaller depths.

The depth-based heuristic makes D-CRSAT a more fo-
cused refinement of CRSAT (in CRSAT gate selection is done
at random), but even so, we establish that D-CRSAT is prob-
abilistically approximately complete. In fact, the proof of this
fact shows that D-CRSAT may find a satisfying assignment
using a significantly smaller number of steps than CRSAT.

5 PAC and Restarts

An SLS algorithm is probabilistically approximately com-
plete (PAC) [Hoos, 1999] if the probability of finding a so-
lution to any satisfiable instance is asymptotically 1.

Definition 1 A SAT algorithm A is probabilistically approx-
imately complete (PAC) if for any satisfiable instance F ,
limt→∞ P (RTA,F ≤ t) = 1, where P (RTA,F ≤ t) denotes
the probability that A finds a satisfying assignment for F in
time ≤ t. Further, A is essentially incomplete if it is not PAC.

Our main theoretical result is the following.

Theorem 1 D-CRSAT with any noise parameter value
wp > 0 and infinite cutoff is PAC.

For full versions of the proofs in this section, see [Belov,
2010]. Before proceedings with a proof of Theorem 1, we
show that the condition wp > 0 is indeed necessary.

Theorem 2 D-CRSAT with wp = 0 and infinite cutoff is es-
sentially incomplete.

Proof. Consider the circuit Cα

OR OR

g2

y2y1

x3x2

g1
OR

x1

S

11

¬

where α = {〈y1, 1〉, 〈y2, 1〉} and g2 is the output gate of a
sub-circuit S such that τ∗(g2) = 0 for any satisfying assign-
ment τ∗ for Cα. Assume that the initial assignment is τ0 =
α∪{〈g1, 1〉, 〈g2, 0〉, 〈x1, 0〉, 〈x2, 1〉, 〈x3, 1〉, . . .} and that ev-
ery gate in S is justified under τ0. Now unjust(Cα, τ0) =
{y2}, and D-CRSAT greedily flips the value of g2 to 1, mak-
ing g2 unjustified. Since S is unsatisfiable when g2 is as-
signed to 1, D-CRSAT will either get stuck inside S, or will
return to the assignment τ0 and greedily flip g2 again. �

It is easy to show that any CNF-level SLS algorithm that al-
lows random walk during any step is PAC [Hoos, 1999]: ran-
dom walk guarantees that there is a non-zero probability of
the event that the Hamming distance from the current assign-
ment τ to some fixed satisfying assignment τ∗ is decreased.
This is because any unsatisfied clause c must have at least one
variable set in disagreement with τ∗ and so with the proba-
bility 1/|c|, this particular variable will be flipped during the
random walk. Similar argument, generalized to the setting of
constrained Boolean circuits, establishes the PAC property of
BC SLS [Järvisalo et al., 2008a].

For D-CRSAT this approach to proving PAC does not
work, since D-CRSAT cannot flip the unjustified gate se-
lected on line 6. Thus, if during a step all unjustified gates
are assigned in disagreement with τ∗, then D-CRSAT may be
unable to decrease the Hamming distance to τ∗ in this step.
This situation could be avoided if D-CRSAT could start with
an assignment in which all unjustified gates were assigned as
in τ∗, and could always choose justifications that agree with
τ∗; by Proposition 1, all unjustified gates would then always
be assigned as in τ∗. Observe that for any assignment τ with
unjust(Cα, τ) ⊆ dom(α) (we call such τ ’s restart assign-
ments), the unjustified gates are assigned as in τ∗.

Additional difficulty in proving PAC is caused by the fact
that forward propagation makes non-local changes to the cur-
rent assignment. Hence, even when the value of one gate is
set as in τ∗ during a step, forward propagation may cause
other gates in the circuit to be set in disagreement with τ∗.
The solution is to monitor the changes in the Hamming dis-
tance between the current assignment τ and the selected sat-
isfying assignment τ∗, both restricted to the input gates.

Lemma 1 Let Cα be a satisfiable constrained Boolean cir-
cuit, and let m ≥ 0 be such that the assignment τm at the
beginning of the m-th iteration of D-CRSAT is a restart as-
signment. Then, there is a constant k, where

0 ≤ k ≤ depth(Cα) · |inputs(Cα)|, (1)

such that the probability of the event that the assignment
τm+k at the beginning of the (m + k)-th iteration is satis-
fying is at least (

wp

2f − 1

)k

, (2)

where f is the maximum size of fanin among the gates in Cα.

Proof sketch. Assume that τm is not satisfying (otherwise
k = 0), and let τ∗ be some satisfying assignment for Cα.
Consider those executions of D-CRSAT in which the justifi-
cation σ selected on line 14 is such that τ∗|dom(σ) = σ. At
each step, the probability of selecting such a justification is
at least wp/(2f − 1) (i.e., the probability of taking a random
walk, and selecting the justification that agrees with τ∗ from
the 2f−1 possibilities). Thus, the probability of selecting jus-
tifications according to τ∗ during any k consecutive steps is at
least (2). By Proposition 1, for any k, τm+k agrees with τ∗ on
the values of all unjustified gates. Since τm is not satisfying,
at least one constrained gate is unjustified, and, for each un-
justified gate g, fanin∗(g) must contain at least one input gate
that disagrees with τ∗. In the worst case all |inputs(Cα)| in-
put gates disagree with τ∗. D-CRSAT has to make at most
depth(Cα) steps to assign values as in τ∗ to such gates: D-
CRSAT always selects a gate of maximal depth for justifica-
tion and, hence, some input gate will be flipped after no more
than depth(Cα) steps. Since input gates are not affected by
forward propagation, once an input gate is assigned accord-
ing to τ∗ it will not change its value in the future. Hence the
number k of steps required to assign all inputs according to
τ∗ satisfies (1). Hence τm+k|inputs(Cα) = τ∗|inputs(Cα), and
therefore τm+k = τ∗ (otherwise there would be a gate un-
justified under τm+k whose assignment disagrees with τ∗).

�
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We observe that D-CRSAT starts the search from a restart
assignment (line 1), and, in fact, will modify any assignment
into a restart assignment in a bounded number of steps:

Lemma 2 Let Cα be a constrained Boolean circuit, and let
τm be the assignment at the beginning of the m-th iteration
of D-CRSAT. Then, there is a constant k, where

0 ≤ k ≤ |G|2 · depth(Cα), (3)

such that the assignment τm+k at the beginning of the (m +
k)-th iteration is a restart assignment.

Proof sketch. Assume that τm is not a restart assignment; oth-
erwise we are done. Let gm /∈ dom(α) be the unjustified gate
selected at the m-th iteration. All gates in fanin∗(gm) are jus-
tified. To justify gm without making any gate in fanin∗(gm)
unjustified, the algorithm needs to

(i) follow a path from gm down to some input gate and jus-
tify every gate along the path (at most depth(Cα) steps);

(ii) select the next unjustified gate and repeat (i). This gate
has to be in fanin

∗(gm) since we always select unjusti-
fied gates at maximum depth, and by Proposition 1 the
only new unjustified gates resulting from step (i) are in
fanin

∗(gm) ∪ dom(α); and

(iii) repeat (ii) for all gates in fanin∗(gm).

Since |fanin∗(gm)| ≤ |G|, gm and all gates in fanin∗(gm)
will be justified in at most |G| · depth(Cα) steps. Again,
by Proposition 1 the only new unjustified gates that will be
created during this process are in dom(α). Since at iteration
m there are at most |G| unjustified gates outside of dom(α),
after at most |G|2 · depth(Cα) steps all such unjustified gates
will be justified, resulting in a restart assignment. �

With Lemmas 1 and 2 we can prove Theorem 1.
Proof sketch of Theorem 1. Consider any execution of D-
CRSAT. Let τi be an assignment on step i of this execution,
and let Xi be a random variable with

Xi =

⎧⎨
⎩
0 if τi is a non-satisfying restart assignment

1 if τi is a non-satisfying non-restart assignment

2 if τi is a satisfying assignment.

Let k1 and k2 be the bounds (1) and (3), respectively.
The sequence 〈X0, Xk1

, Xk1+k2
, X2k1+k2

, X2k1+2k2
, . . . 〉 is

a Markov chain. Using Lemmas 1 and 2, one can show that
state 2 is the only persistent state. �

The proof of Theorem 1 also applies to CRSAT as, with
non-zero probability, it can always justify a gate at maxi-
mum depth. However, compared to D-CRSAT, the expected
number of steps (recall Lemmas 1 and 2) can be significantly
larger, i.e., in theory D-CRSAT converges to a satisfying as-
signment significantly faster. The experimental results pre-
sented next confirm that this is also the case in practice.

Furthermore, Lemma 2 reveals another intriguing prop-
erty of both D-CRSAT and CRSAT. Namely, the algorithms
are always bound to eventually return to a restart assign-
ment. Since, by definition, both of the algorithms start the
search from some restart assignment, Lemma 2 shows that
D-CRSAT and CRSAT have the intrinsic ability to dynami-
cally restart without explicitly forced restarts.

6 Experiments

We compare the performance of D-CRSAT to that of CRSAT

(using our implementations d-crsat and crsat) and also
to other circuit and CNF-level SLS methods. For this, we also
implemented a circuit-level method inputLS that searches
over assignments to input gates in the style of [Pham et al.,
2007] (the authors were unable to provide us with their im-
plementation). We also used the CNF-level methods TNM and
slstc that were one of the best SLS solvers in SAT Compe-
tition 2009 on random and application instances, resp., on the
standard Tseitin CNF encodings of the benchmark circuits.

In both d-crsat and crsat), a justification at each step
is selected from the set of subset minimal justifications for the
selected gate. This is due to positive results in preliminary
experiments for both methods. For retrieving the unjustified
gates of maximum depth in d-crsat, the set unjust(Cα, τ)
of unjustified gates is kept in a heap data-structure that al-
lows to retrieve such a gate in constant time, but incurs a
O(log(|unjust(Cα, τ)|)) penalty for insertions.

For each solver, we obtained the empirical run-time and
run-length distributions from 100 runs on each benchmark.
The near-optimal random walk probability values were deter-
mined experimentally beforehand. The experiments were run
under Linux on a Intel Core 2 Duo 3.00-GHz processor. As
benchmarks, we used over 450 And-Inverted circuits (AIGs)
from four different industrial application domains.

hwmcc08-sat 204 AIGs obtained from Hardware Model Checking
Competition 2008 (http://fmv.jku.at/hwmcc08/) problems us-
ing aigtobmc (http://fmv.jku.at/aiger) with step bound k = 45
for time frame expansion.

smtqfbv-sat 61 AIGs generated using Boolector
(http://fmv.jku.at/boolector/) to bit-blast QF BV (theory
of bit-vectors) instances of the SMT Competition 2009
(http://www.smtcomp.org/2009/)

sss-sat-1.0 98 AIGs from “formal verification of buggy variants of a
dual-issue superscalar microprocessor” (http://www.miroslav-
velev.com/sat benchmarks.html) converted to AIGs with ABC
(http://www.eecs.berkeley.edu/˜alanmi/abc/).

vliw-sat-1.1 98 AIGs from “formal verification of buggy variants of
a VLIW microprocessor”, in the same fashion as sss-sat-1.0.

6.1 Results

Table 1 summarizes the results. The time and steps ra-
tios are calculated from the median running times and num-
ber of steps. Overall, d-crsat takes significantly fewer
steps than crsat. Despite the fact that the heap incurs
a run-time penalty, the differences in the number of search
steps translate into improvements in run-times. Improve-
ments are pronounced on difficult problems (Figure 1, up-
per). d-crsat solves significantly more instances than the
circuit-level method inputLS and the CNF-level methods
TNM and slstc. It also solves a vast majority of those in-
stances solved by the other solvers significantly faster.

We also compare d-crsat to NoClause, a circuit-level
conflict-driven clause learning solver [Thiffault et al., 2004]

with many modern CDCL solver techniques in the style of
zChaff (including VSIDS, 1-UIP learning and backjumping,
watched literals, etc.); such CDCL techniques are at the cen-
ter of state-of-the-art SAT solvers for industrial applications.

508



Table 1: Performance of d-crsat compared to other SLS-based SAT solvers. Here an instance is considered “solved” by a
solver if the success rate on 100 tries with 300 stimeout per try is over 50%. The “time ratio” (resp. “step ratio”) column for a
solver shows the ratio of total time (resp. steps) taken by the solver to that of d-crsat on instances solved by both solvers.

Benchmark class d-crsat crsat inputLS slstc TNM

(# instances) solved solved time ratio steps ratio solved time ratio solved time ratio solved time ratio

hwmcc08-sat (204) 137 103 6.58x 8.84x 17 0.31x 81 23.69x 50 331.83x
smtqfbv-sat (61) 53 38 3.97x 7.17x 25 10.32x 2 181.87x 1 1.00x
sss-sat-1.0 (96) 79 74 2.14x 2.23x 15 377.64x 64 4.12x 3 489.29x
vliw-sat-1.1(98) 94 95 1.02x 1.22x 68 23.90x 9 597.78x 0 n/a

Figure 1 (lower) shows that d-crsat compares in cases
favourably even with NoClause, especially on the vliw-sat-
1.1 family (although one should notice that NoClause is not
as efficient as the currently most efficient CDCL solvers).

7 Conclusions

We developed a circuit-level SLS method D-CRSat that com-
bines justification-based SLS with structure-based heuristics
and limited reasoning by forward propagation. We showed
experimentally that D-CRSat outperforms CRSat on vari-
ous classes of real-world circuit benchmarks, and dominates
other recent circuit and CNF-level SLS methods, including an
implementation of circuit-level SLS focusing on input vari-
ables. In some cases, CRSat compares favourably even with
a circuit-level conflict-driven clause learning solver. This in-
dicates that further advances in SLS-based techniques could
make SLS a viable alternative to CDCL-based algorithms for
solving instances from real-world application domains. Com-
plementing our experimental results, the presented intricate
PAC proof for D-CRSAT provides key insights into the pro-
posed gate selection heuristic, highlighting the gate depth as
an important search parameter and revealing the intrinsic abil-
ity of D-CRSAT to dynamically restart search.
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Figure 1: Upper: steps taken by crsat and d-crsat; lower:
runtimes of d-crsat (median) and NoClause.

509




