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Abstract

We study the problem of multi-robot perimeter pa-
trol in adversarial environments, under uncertainty
of adversarial behavior. The robots patrol around
a closed area using a nondeterministic patrol algo-
rithm. The adversary’s choice of penetration point
depends on the knowledge it obtained on the pa-
trolling algorithm and its weakness points. Pre-
vious work investigated full knowledge and zero
knowledge adversaries, and the impact of their
knowledge on the optimal algorithm for the robots.
However, realistically the knowledge obtained by
the adversary is neither zero nor full, and therefore
it will have uncertainty in its choice of penetration
points. This paper considers these cases, and of-
fers several approaches to bounding the level of un-
certainty of the adversary, and its influence on the
optimal patrol algorithm. We provide theoretical
results that justify these approaches, and empirical
results that show the performance of the derived al-
gorithms used by simulated robots working against
humans playing the role of the adversary is several
different settings.

1 Introduction

The problem of multi-robot patrol has gained interest in re-
cent years [Ahmadi and Stone, 2006; Chevaleyre, 2004; Ag-
mon et al., 2008a], mainly due to its applicability in various
security applications. In this problem, robots are required to
repeatedly visit a target area, to monitor it. Many researches
have focused on a frequency-based approach, guaranteeing
some point-visit frequency criteria are met by the patrol algo-
rithm. Others [Paruchuri et al., 2007b; Agmon et al., 2008a;
2008b; Amigoni et al., 2008] have advocated an adversarial
approach, in which the robots’ goal is to patrol in a way that
maximizes their chances of detecting an adversary trying to
penetrate through the patrol path. This problem is inherently
different from the frequency driven patrol problem, mainly in
the need to add randomization to the robots’ behavior.

∗This research was supported in part by ISF grant #1357/07 and
#1685/07.

Recent investigations have examined the optimality of pa-
trol algorithms in two extreme adversarial settings, which
vary in the knowledge of the adversary on the patrol algo-
rithm and its parameters. Agmon et al. [Agmon et al., 2008b]

has explored optimal algorithms for a zero-knowledge adver-
sary which chooses its penetration point arbitrarily. More
commonly, a worst-case full-knowledge adversary is inves-
tigated, which is assumed to know the randomization pa-
rameters (e.g., heading change probability), and therefore se-
lect the optimal penetration point [Paruchuri et al., 2007b;
Agmon et al., 2008a; Amigoni et al., 2008]. However, realis-
tically, most adversaries would have neither perfect knowl-
edge nor zero knowledge, but partial knowledge. Unfor-
tunately, optimal algorithms for either extreme case fail in
partial-knowledge cases.

This paper provides a theoretical discussion of the case
in which the adversary lies somewhere along the knowledge
continuum, between full and zero knowledge. Specifically,
we focus on the influence of the adversary’s partial knowl-
edge on its uncertainty of its choice of action, and the impact
of this uncertainty on the robots’ optimal patrol algorithm.

We describe two approaches for bounding the uncertainty
of the adversary in its choices. In the first approach, we as-
sume the adversary will choose to penetrate through one of
the v weakest spots, i.e., the v spots with minimal probability
of penetration detection. In the second approach, we assume
the adversary will choose to penetrate through the set of v
points surrounding the weakest spot. Both cases generalize
the knowledge continuum; for both, maximal v corresponds
to zero knowledge (thus maximal uncertainty), and minimal
v is equivalent to full knowledge adversary (no uncertainty).

For both approaches, we present optimal patrol algorithms,
which have polynomial run-time complexity. We prove that
in some cases the v physical neighborhood and v weakest
spots algorithms are equivalent. However, in many cases,
their predictions of the adversary’s actions are different.

We therefore provide an empirical evaluation of the two
patrol algorithms, using 71 human subjects that played as ad-
versaries against simulated robots. We compare the two ap-
proaches to two other algorithms: MaxiMin, proven optimal
for a full-knowledge adversary [Agmon et al., 2008a], and a
novel heuristic algorithm MidAvg that averages the MaxiMin
and the zero-knowledge algorithm.

Results show that given partial knowledge (correspond-
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ing to limited observation time), the two v-algorithms out-
performed the others. Moreover, the MaxiMin algorithm—
optimal for full-knowledge adversary—performed poorly.
We discuss the results of the game, and the possible reasons
for reaching such results.

2 Background

Multi-robot patrolling algorithms have been studied in var-
ious contexts. Many of these focused on optimizing fre-
quency criteria [Ahmadi and Stone, 2006; Chevaleyre, 2004;
Elmaliach et al., 2008], without any reference to the existence
of an adversary. In this paper we consider the problem of
multi-robot patrol in adversarial environments [Agmon et al.,
2008a; 2008b; Sak et al., 2008], which is inherently different
from all frequency-driven patrol approaches.

Agmon et. al. [Agmon et al., 2008a; 2008b] investi-
gated multi-robot adversarial perimeter patrolling algorithms
for full- and zero-knowledge cases. They introduced the
robot motion model that we also utilize. They describe the
MaxiMin polynomial-time algorithm that maximizes the min-
imal probability of penetration detection along the perimeter
(i.e., improves the weakest point of penetration). This algo-
rithm is proven optimal for a full-knowledge adversary. For
the partial knowledge case, Agmon et al. propose a heuristic
algorithm, yet provided no theoretical discussion of this case.
In contrast, in this paper we focus on the partial knowledge
case, and provide both theoretical and empirical analysis.

Sak et. al. [Sak et al., 2008] considered the case of multi-
agent patrol in general graphs (rather than perimeters, as is
our focus here). They concentrated on an empirical evalua-
tion (using a simulation, with no human subjects involved)
of several non-deterministic patrol algorithms that can be
roughly divided into two: Those that divide the graph be-
tween the patrolling agents, and those that allow all agents
to visit all parts of the graph. They considered three types
of adversaries: random adversary, an adversary that always
chooses to penetrate through a recently-visited node and an
adversary that uses statistical methods to predict the chances
that a node will be visited soon. They concluded that there
is no patrol metric that outperformed the other in all the do-
mains they have checked, but the results depend on the en-
vironment. In contrast to this investigation, we provide em-
pirical results from tests with human subjects, and theoretic
proofs of optimality for different settings.

Other closely related work is the work by Paruchuri et. al.
[Paruchuri et al., 2007b; 2007a], which considered the prob-
lem of placing security checkpoints in adversarial environ-
ments. They use policy randomization for the agents’ behav-
ior in order to maximize their rewards. In their work, the
adversary has full knowledge of the agents’ behavior, there-
fore it can use it in order to minimize its probability of being
caught in some checkpoint. They again do not consider sen-
sorial scenarios which depend on different sensorial models
of the robots. Pita et. al. [Pita et al., 2009] continued this
research to consider the case in which the adversary makes
their choice based on their bounded rationality or uncertainty,
rather than make the optimal game-theoretic choice. They
considered three different types of uncertainty over the ad-

versary’s choices, and provide new algorithms that deal with
these types of uncertainties. In our work we discuss other
aspects of uncertainty in adversary’s choice, and provide op-
timal polynomial-time solutions.

Amigoni et. al. [Amigoni et al., 2008] also used a game-
theoretic approach for determining the optimal strategy for
patrolling agents, using leader-follower games. They con-
sider an environment in which a robot can move between any
two nodes in a graph, as opposed to the perimeter model we
focus on. Their solution is suitable for one robot, and since
the computation of the optimal strategy is exponential, they
described a heuristic approach for finding a solution.

3 Robot and environment model

We are given a team of k homogenous robots, required to
patrol around a closed area (perimeter). The perimeter is di-
vided into N segments, where the travel time of each robot
through a segment is uniform, i.e., all robots travel through
one segment per time cycle . Hence the segments’ length is
uniform in time, but not necessarily in distance.

The robots have directionality associated with their move-
ment, i.e, if they go backwards they physically turn around.
We model the cost of turning around in time, and denote time
it takes the robots to turn around and stabilize in their new
direction by τ . In this paper we focus on the case of τ = 1.

The system of perimeter patrol is linear, meaning that at
each time step the robots have one of two options: go straight
or turn around. Therefore the robot’s patrol algorithm is char-
acterized by a probability p, i.e., at each time step go straight
forward with probability p, or turn around with probability
q = 1 − p.

We consider coordinated robotic systems in the sense that
if the robots decide to turn around, they do it simultaneously.
Moreover, we require that the robots are placed uniformly
along the perimeter, with distance of d = N/k segments
between every two consecutive robots along the path. The
coordination and uniform-distance requirements are derived
from the optimality proofs given in [Agmon et al., 2008b;
2008a], which have shown that the probability of penetration
detection is optimized under these conditions. These opti-
mality proofsare based on the fact that the probability of pen-
etration detection decreases as the distance from the robot in-
creases [Agmon et al., 2008a]. Therefore it is best to min-
imize the maximal distance between every two consecutive
robots. This is done by guaranteeing that the distance in time
between every two consecutive robots is equal, maintained so
by the requirement that the robots are coordinated.

In the adversarial models considered here, the adversary
decides at time 0 through which segment to penetrate, and
the time it takes it to penetrate is not instantaneous, and lasts
t time units.

The chances of the robots to detect an adversary passing
through a segment si is defined as the probability of penetra-
tion detection at the segment, and denoted by ppdi. This is
the probability that some robot will pass through segment si

during t time units, and is a function of the probability of the
robots to continue straightforward, p.

1812



4 Uncertainty in the adversary’s perspective

In most cases, it is realistic to assume that the adversary’s
knowledge on the patrol algorithm lies somewhere along
the knowledge continuum, between full and zero knowledge.
Usually, the adversary does not gain enough information on
the patrol algorithm in order to derive the exact algorithm
(i.e., probability p) or the exact weakest spots of the algo-
rithm. Therefore we explore theoretically two directions in
handling partial knowledge of the adversary. In the first, the
adversary might have some estimation of the probability p
characterizing the patrol algorithm. In the second, the adver-
sary might have some estimation of the weakest spot of the
algorithm. In both cases, we wish to use the region of possi-
ble beliefs of the adversary in order to find an optimal patrol
algorithm for the patrolling robots.

A common way of handling uncertainties of systems is to
assume that when having no knowledge, a random choice,
with uniform probability, is made. In this domain, this ap-
proach was proven to be useful in an empirical evaluation in
[Agmon et al., 2008b], where a patrol algorithm proven to be
optimal for a random adversary performed substantially bet-
ter than other algorithms for humans playing the role of an
adversary that had no knowledge of the patrolling robots. We
will use a similar approach here, i.e., within the region of es-
timation of the adversary — either of the patrol algorithm p
or of the weakest spots — the adversary will be assumed to
choose its actions at random.

We first examine the approach according to which the ad-
versary estimates the probability p characterizing the patrol
algorithm with some error. Unfortunately, we show that it is
impossible to find an optimal patrol algorithm in this case.

We then discuss two alternative approaches, in which the
uncertainty is reflected by the choice of penetration spot. In
this case, we do not necessarily assume that the adversary
calculates the probability p, but tries to estimate the weakest
spot using two estimation methods - physical proximity, or
probability proximity to the minimal ppd.

4.1 Estimating p - negative result

In this section we discuss the case in which the adversary es-
timates the probability p characterizing the patrol algorithm.

The problem of estimating the probability p can be con-
sidered as observing a Bernoulli trial, where a success is an
event of going straight with probability p, and a loss is turning
around with probability 1 − p. We can use the Central Limit
Theorem [Devore, 1991] that bounds the expected error from
the real value of p after viewing it for tv trials. The average
of successes after viewing tv trials is inside the boundaries
[p − δ, p + δ] with probability pconf , where δ is a function
of tv and depends on pconf . Therefore the adversary can es-
timate the real value of p inside some interval around p, and
we will try to use this interval in order to optimize the patrol
algorithm of the robots. Consider the following problem.

P-Interval problem definition:
Let p be the probability characterizing the perimeter patrol al-
gorithm of a team of robots. Assume the adversary estimates
that the real value of p is inside the interval [p − δ, p + δ].
Therefore it chooses its believed pb at random with uniform

probability inside this interval. The algorithm needs to find
the probability p characterizing the patrol of the robots such
that it maximizes the expected ppd throughout the perimeter.

Unfortunately, we prove that this problem is unsolvable un-
less δ = 0. We prove it by showing that the expected ppd
function inside the interval [0, 1] is monotonically increasing,
i.e., as p grows the expected ppd grows, hence the optimal p
does not converge unless δ = 0 (since maximization of the
expected ppd is obtained in the right bound of the interval,
which is also the mid point of the interval only when δ = 0).

We omit the proof of the following Lemma due to space
constraints.
Let Eppd(p) be the expected ppd for probability p ∈ [0, 1]

Lemma 1. The expected ppd, as a function of p, is a mono-
tonically increasing function in the range [0, 1], i.e., for all
0 ≤ p′ < p ≤ 1, Eppd(p′) < Eppd(p)

Theorem 2. P-Interval is unsolvable unless δ = 0.

Proof. Assume, towards contradiction that δ > 0, yet there
exists p∗ that maximizes the expected ppd throughout the
perimeter. By the definition of P-Interval, the adversary de-
duces an interval around p∗ in which it chooses its believed p
at random inside the interval [p∗−δ, p∗+δ]. By Lemma 1, the
expected ppd function is monotonically increasing, therefore
the maximal expected ppd inside this interval is obtained in
p ∗ +δ. This contradicts the assumption that p∗ maximizes
the expected ppd, unless δ = 0.

4.2 Uncertainty in the choice of penetration spot

In this section we explore the case in which the patrial knowl-
edge of the adversary on the patrol algorithm is translated into
different possible options of penetration spots. For several
reasons, the adversary might not choose to penetrate through
the exact weakest spot. We present herein two deviations
from the weakest spots, hence two possible corresponding
optimal ways of choosing the patrol algorithm in such cases.

The adversary, after studying the robots’ patrol for a period
of time, could result in several reasonable segments which the
ppd values, as it believes, are small enough. In this case it
could choose to penetrate through one of the v weakest spots
at random, with some probability distribution (for example
uniform). Hence the robots should choose p such that the ex-
pected ppd along the v segments with minimal ppd is maxi-
mal. We refer to this approach by v-Min.

The second case is that the adversary might not choose to
penetrate through the segment with the minimal ppd, but ei-
ther through that segment, or through one of its neighboring
segments at random. Hence the robots should choose p such
that the minimal expected ppd along v neighboring segments
is maximized. This approach is referred to as v-Neighbor.

Note the difference between the two cases - in v-Min we are
looking for the value 0 ≤ p ≤ 1 such that the weighted aver-
age of the v minimal ppd’s is maximized, and in v-Neighbor
case we are looking for p such that the minimal weighted av-
erage of v neighboring segments is maximized.

In both cases, the two extremities of uncertainties—full
knowledge adversary (no uncertainty) and zero knowledge
adversary (complete uncertainty)—match the results obtained

1813



by [Agmon et al., 2008a; 2008b], respectively. If v = 1, i.e.,
there is no uncertainty in the choice of the weakest spot, then
the algorithms are required to return exactly the value p such
that the minimal ppd is maximized, similar to the MaxiMin
algorithm presented in [Agmon et al., 2008a]. On the other
hand, if v = d and the probability distribution is uniform,
then the algorithms will return the value p that maximized
the expected ppd throughout the perimeter (=average ppd).
As proven in [Agmon et al., 2008b], the optimal algorithm in
this case is p = 1, i.e., the deterministic algorithm.

The algorithms for finding an optimal patrol uses the ppdi

function for each segment si. These ppdi are functions of
p, and are calculated in polynomial time using a dynamic-
programming algorithm described in [Agmon et al., 2008a].

Optimality of the patrol algorithm using the v-Min
approach

We present herein Algorithm ComputeMinV that finds the
optimal patrol algorithm, corresponding to the probability p
of going straight at each time step under the v-Min scenario.
Specifically, Algorithm ComputeMinV computes the value p
such that the minimal v ppd’s are maximized, given a proba-
bility distribution V = {vi, v2, . . . , vv}, where vi is the prob-
ability that the adversary will choose to penetrate through the
i’th weakest spot,

∑v

i=1
vi = 1. This distribution can be used

to further manipulate the impact of the extent of knowledge
of the adversary on its choice of penetration spot, for exam-
ple after obtaining more knowledge v1 may increase to more
than the uniform distribution (1/v).

Algorithm 1 ComputeMinV(v, V, {ppd1, . . . , ppdd})

1: Set BufP ← {0, 1} {initialize list of all intersection
points}

2: for every pair ppdi, ppdj , 1 ≤ i, j ≤ d, i �= j do

3: Intersecti,j ← intersection points between ppdi and
ppdj .

4: BufP ← BufP
⋃

Intersecti,j
5: Sort BufP in ascending order
6: Resf , Resp ← 0 {initialize maximin value and its p }
7: for j ← 1 to |BufP | do
8: Find v functions fj1 , . . . , fjv

such that fji
(p′) <

fn(p′) ∀p′ ∈ [BufP (j), BufP (j + 1)], 1 ≤ i ≤ v,
fn �= fji

9: favg ←
∑v

i=1
vi × fji

10: m ← favg(p∗) such that ∀p ∈ [BufP (j), BufP (j +
1)], favg(p∗) ≥ favg(p)

11: if m > Resf then
12: Resf ← m ; Resp ← p∗
13: Return Resp

The algorithm works as follows. First, it identifies all in-
tersection points between every pair of ppdi, ppdj functions

(1 ≤ i, j ≤ d, i �= j). Then it divides the range [0, 1] to sec-
tions according to all the intersection points. For each sec-
tion [pa, pb], the algorithm identifies the minimal v curves
between [pa, pb], and finds their average curve, favg . Since
the adversary chooses to penetrate through one of the v seg-
ments with lowest ppd at random with the given distribution

V , the weighted average (given weight vi to the i’th mini-
mal curve) of the v curves represent the expected ppd in that
section. Last, ComputeMinV calculates the maximal value
of favg(a, b) in the section [pa, pb], and reports the point popt

that is maximal among all minimal points of the average func-
tions. An illustration of this algorithm is shown in Figure 1.

Figure 1: An illustration of Algorithm ComputeMinV for
d = 8, t = 6, v = 3. The small stars mark the intersection
points, and the bold curve is the average of the 3 minimal
curves at each section. The arrow marks the maximal point
computed by ComputeMinV.

The time complexity of ComputeMinV is O(d4 +
d3 log d3) (compared to time complexity of O(d3) of the
MaxiMin algorithm for full knowledge adversary [Agmon et
al., 2008b]).

Optimality of the patrol algorithm using the v-Neighbor
approach

As stated previously, the adversary might attempt to pene-
trate not only through the weakest segment, but through one
of its neighboring segments. Therefore this can be used in
order to find a patrol algorithm (p value) more suitable for
the situation. Algorithm ComputeNeighborV computes the
weighted average of v neighboring segments according to a
distribution V = {v1, . . . vv}, then finds the maximin point
of the new curves. Note that if the robot currently resides in-
side the v-neighborhood of a segment si (i.e., v − i < 0 or
v + i > d), its current location is excluded, i.e., we average
fewer segments for that case. The probability distribution can
be used to express the fact that the adversary tends, for exam-
ple, to try and penetrate through the segments further away
from the robot in its current position. Figure 2 illustrates the
algorithm for d = 8, t = 6 and v = 3.

Algorithm 2 ComputeNeighborV(v, V, {ppd1, . . . , ppdd})

1: Set FuncSet ← ∅
2: for i ← 1 to d do
3: ie = min(d, i + v)

4: FuncSet ←
∑ie

j=i vj−i+1 × ppdj

⋃
FuncSet

5: popt ← MaxiMin(FuncSet, d)
6: Return popt

The time complexity of Algorithm ComputeNeighborV
is O(d3) (similar to the complexity of MaxiMin).
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Figure 2: An illustration of Algorithm ComputeNeighborV
for d = 8, t = 6, v = 3. The curves are not the original
ppdi functions, but the average of v−neighborhood of each
segment. The arrow points to the maximin point of the new
curves.

Comparing v-Min and v-Neighbor

The two approaches of v-Min and v-Neighbor towards
bounding the uncertainty of the adversary in its choice of pen-
etration spot might seem to be inherently different. Consider
for example the case in which d = 8, t = 6 and v = 3
(Figures 1 and 2). The optimal p in case of v-Neighbor is
p = 0.7359, and the optimal p for v-Min is p = 0.9273. The
result returned by the MaxiMin algorithm (used in case of a
full knowledge adversary, i.e., v = 1) is p = 0.7037.

However, in some cases they coincide, as proven in the
following Theorem.

Theorem 3. The optimal choice of p according to
v-Neighbor coincides with the optimal p according to v-Min
if t = 
d/2�+ 1.

Proof. The optimal p in the v−neighborhood and in the v−
minimal, is the one maximizing the minimal ppd of the av-
erage of the v− neighborhood and v− minimal ppdi func-
tions, correspondingly. Therefore it is enough to show that
along this optimal point po, the v− minimal ppdi func-
tions are also all neighbors. Formally, we need to show that
ppdi1

, . . . , ppdiv
are minimal, where il = j + l for some

index 1 ≤ j ≤ d − v.
Consider the section of d segments between two consecu-

tive robots Ra and Rb. First, assume d is odd. In this case,
ppdi for 1 ≤ i ≤ t is influenced only by Ra, and ppdi for
t + 1 ≤ i ≤ d is influenced only by Rb. Moreover, ev-
ery ppdi function for 1 ≤ i ≤ t equals 0 if p = 0, and
equals 1 if p = 1. On the other hand, every ppdi function for
t + 1 ≤ i ≤ d equals 0 in both p = 0 and p = 1.

Note that if a robot is headed clockwise, then any ppd func-
tion of a segment si of distance i to its right is larger than a
ppd function of segment which is in the same distance, but to
the left. For example, ppd1 > ppdd, ppd2 > ppdd−1 and so
on. The reason lies in the fact that the probability of reaching
a segment of distance i in the opposite direction is equivalent

to the probability of reaching a segment in distance i in the
same direction, but multiplied by (1 − p). Since we assume
that p ≤ 1, this it always true.

Combining all known facts together, from Lemma 1 in
[Agmon et al., 2008a] we see that ppdt+1 ≤ ppdt+2 ≤
. . . ≤ ppdd−1 ≤ ppdd and ppdt ≤ ppdt−1 . . . ≤
ppd1. Also, as shown herein, ppd1 ≥ ppdd, ppd2 ≥
ppdd−1, . . . , ppdt−1 ≥ ppdt+1. It follows that, necessar-
ily, the minimal function is ppdt+1, the function above it is
ppdt and ppdt−1, followed by ppdt+2 and ppdt−2 and so on
(see an example in Figure 3). Therefore, necessarily, when
considering the v− minimal segments, for all v, we remain in
the v− neighborhood of ppdt+1.

If d is even, then the only difference is that function ppdt

receives components from both Ra and Rb, hence it is not
straightforward that it is smaller than ppdt−1. Calculating

the exact value of ppdt shows us that ppdt = pt + (1 −
p)pt−1 = pt−1. On the other hand, ppdt−1 = pt−1, i.e.,
ppdt−1 = ppdt, and the rest of the proof follows directly as
in the case of an odd d.

Figure 3: An illustration of proof of Theorem 3, in which the
v−neighborhood and v− minimal coincide (here d = 9, t =
5 and v = 3). The bold line represents the average of v−
minimal / v− neighboring segments.

5 Evaluation

In order to evaluate the performance of the suggested algo-
rithms when working against different adversaries, we cre-
ated a variation of the PenDet-game that was described in
[Agmon et al., 2008b]. In this game, the adversary is played
by a human subject, working against simulated robots in a
Web-based environment. Using humans as adversaries mod-
els the realistic requirement of such a system, i.e., the robots
will perform in real world against human adversaries in var-
ious environments (similar evaluation method is also used in
[Pita et al., 2009; Agmon et al., 2008b]).

The patrol algorithms executed by the robots were calcu-
lated according to the following:
v-Min (with several v values)
v-Neighbor (with several v values)
MaxiMin, which maximizes the minimal ppd along the
perimeter, proven by [Agmon et al., 2008a] to be optimal
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against a full-knowledge adversary
MidAvg, a novel heuristic algorithm that averages between
the p value of the optimal algorithms against full and zero
knowledge adversaries (MaxiMin and deterministic algo-
rithms, respectively).

5.1 Experimental setting

The game was played by 71 human subjects, all undergrad-
uate Computer Science students, playing the role of the ad-
versary that tries to penetrate through the simulated robots.
The subjects received both an oral presentation explaining the
rules of the game, and were handed additional explanation
sheets.

Each trial was composed of 6 subgames. Each such sub-
game starts with an observation phase of 60 seconds, in which
the player studies the patrol algorithm by observing the ac-
tions of the robots in order to choose a penetration spot.

Preliminary experiments that included observation periods
of 5 and 30 seconds have shown that these observation pe-
riods were not long enough to enable learning of the robots’
patrol algorithm, hence the choices made by the subjects were
arbitrary. Thus we focused on an observation period of 60
seconds.

After the observation phase, the players chose a penetration
spot through which they assumed to maximize their chance of
penetrating without being detected by the patrolling robots.
Each player played 6 subgames, however the player did not
get feedback on whether the penetration attempt was success-
ful.

We checked two pairs of (d, t) values: (8, 6), in which
the resulted patrol algorithm was different for the v-Min
and v-Neighbor for v = 2, 3. In the second pair, (16, 9),
as proven also by Theorem 3, the results of v-Min and
v-Neighbor coincide, hence we checked the following v val-
ues: v = 3, 5, 7, 9. We considered only the uniform distribu-
tion of V , i.e., vi = 1/v.

Each set of (d, t) values and algorithm (characterized by
probability p) was played by 34 to 37 subjects. The order of
the subgames in the trial was randomly selected, and there
were no repetitions of sets in one trial.

5.2 Experimental results and discussion

Figures 4, 5 describes the expected probability of penetration
detection given the players’ choice of penetration locations
for d = 8, t = 6 and d = 16, t = 9 (respectively) for all algo-
rithms described above, given an observation time of 60 sec-
onds, where the patrol algorithm was unknown to the player.
The bars represent the expected penetration detection ratio
given the actual choices of the players’ penetration spots. In
order to compare the performance results obtained by the dif-
ferent algorithms, we used the Mann-Whitney U-test [Mann
and Whitney, 1947], which is a non-parametric test, suitable
for data with no normal distribution (like the data in our case).

For the first case in which d = 8, t = 6 we can clearly
see that the best-performing algorithm, i.e., the algorithm that
achieved the highest expected probability of penetration de-
tection based on the choices of the players, was v-Min for v =
3 (denoted by 3−Min). Specifically, the results of 3−min
were statistically significantly better than v-Neighbor and

Figure 4: Results of the experiment for d = 8, t = 6. The
bars represent the expected penetration detection ratio
of the robots given the actual choices of the players.

v-Min for v = 2 (p − value = 0.001 and p − value = 0.01,
respectively), MaxiMin (p − value = 0.003) and MidAvg
(p − value < 0.002). However, the results of 3−min were
not significantly better than v-Neighbor for v = 3 (denoted
by 3−Neighbor).

In order to explain the advantage of using 3−Min, we in-
spected the actual choices the players made concerning their
penetration spots. Approximately 50% of the players decided
to penetrate through one of the 3 segments with minimal ppd,
and the expected ppd in these segments is 34%. In contrast,
only approximately 29% of the players detected the weak-
est spot when executing the MaxiMin algorithm (in this case
having an expected ppd of 24%). This means that the 3−Min
algorithm indeed had better predictions concerning the pene-
tration spots.

Another reason for the 3−Min’s good performance lies in
the fact that the other 50% of the players who didn’t choose
to penetrate through the weakest spots, had better chances of
getting caught by the 3−Min algorithm also in the other seg-
ments. The MaxiMin algorithm attempts to strengthen the
weakest spot, and thus it substantially decreases the probabil-
ity of penetration detection in the other segments. For exam-
ple, for d = 8, t = 6, the expected ppd in the non-weakest
segments using the MaxiMin algorithm is 49%, whereas with
the 3−Min algorithm it is 83%. The minimal ppd, though,
decreases from 24% to 11% with the 3−Min algorithm.

Since the players did not obtain enough information to
identify the exact weakest spots and enter through those spots,
the use of the MaxiMin algorithm was not worthwhile. The
2−Min and 2−Neighbor algorithms suffer from the same
problem, though not as profoundly as the MaxiMin does.
Therefore they did not perform as well as the 3-min or 3-
neighbor algorithms. The 3−Min algorithm performed better
than the 3−Neighbor algorithm, yet not significantly better,
since they both assume similar uncertainty level (3 segments).

Note that it may be worthwhile to enlarge the level of un-
certainty, i.e., the v value in order to capture more choices
of penetration spots. However, if d = 8, t = 6, for v > 3
the optimal algorithm is deterministic, which is highly pre-
dictable, and as shown in [Agmon et al., 2008b], it is easily
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manipulated by an adversary with even a small amount of in-
formation.

Figure 5: Results of the experiment for d = 16, t = 9. The
bars represent the expected penetration detection ratio
of the robots given the actual choices of the players.

For d = 16, t = 9 we see from the expected ppd values
that v-Min / v-Neighbor for v = 9 (denoted by V − 9) per-
forms considerably better than algorithms with smaller v’s
(tested for v = 3, 5, 7), MaxiMin and MidAvg. However,
we were not able to obtain statistical significance using the
Mann-Whitney U-test. The reason lies in the fact that V − 9
expects the players to penetrate through one of the 9 weakest
segments, and indeed 68% of the players chose to penetrate
through these segments. Therefore the expected ppd consists
of a large range of possible values that are not normally dis-
tributed, therefore even though the V − 9 produced highest
levels of ppd, we could not show significance.

6 Conclusions and future work

In this paper, we considered the problem of multi-robot
perimeter patrol in adversarial environments, under uncer-
tainty of adversarial behavior. In this case, the adversary has
some knowledge on the patrolling robots — on the scale be-
tween zero to full knowledge, yet it is uncertain in determin-
ing its best option for penetration spot. We bounded the un-
certainty in such a way that enabled us to find an optimal pa-
trol algorithm for the robots that will maximize their chances
of detecting the adversary. We described two approaches for
dealing with this problem. In the first, we assumed that the
adversary will choose to penetrate through some spot which
is in some physically proximity to the weakest spot of the
patrol, and in the second we assumed the adversary would
penetrate through one of the weakest spots. We described a
polynomial time algorithm for determining the optimal pa-
trol algorithm for each case, and have shown when these two
approaches coincide. We performed a massive experiment,
using 71 human subjects playing the role of the adversary
against simulated robots, and have shown significant benefits
in using our suggested algorithms.

For future work we consider the following points. We
intend to further investigate uncertainties in the adversary’s
choice. As a first step, we would like to perform additional

empirical evaluation with a longer learning phase of the pa-
trolling robots, and try to extract the transition points between
possible v values. We would also like to examine possible
uncertainties in the internal robotic system, originated for ex-
ample in faulty movement and faulty sensing.
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