
Monte-Carlo Exploration for Deterministic Planning

Hootan Nakhost and Martin Müller

Department of Computing Science
University of Alberta

{nakhost,mmueller}@cs.ualberta.ca

Abstract

Search methods based on Monte-Carlo simulation
have recently led to breakthrough performance im-
provements in difficult game-playing domains such
as Go and General Game Playing. Monte-Carlo
Random Walk (MRW) planning applies Monte-
Carlo ideas to deterministic classical planning. In
the forward chaining planner ARVAND, Monte-
Carlo random walks are used to explore the local
neighborhood of a search state for action selection.
In contrast to the stochastic local search approach
used in the recent planner Identidem, random walks
yield a larger and unbiased sample of the search
neighborhood, and require state evaluations only at
the endpoints of each walk. On IPC-4 competition
problems, the performance of ARVAND is compet-
itive with state of the art systems.

1 Introduction

Local search methods are among the most effective tech-
niques for satisficing planning. Search steps in a local search
strategy are determined based on local knowledge obtained
from neighbors in the search space. These techniques typi-
cally scale much better than systematic search methods, even
though their sophisticated heuristic evaluation functions, such
as FF’s relaxed graphplan heuristic, are relatively slow to
compute.

While they perform very well on “easy” search topologies,
current local search methods have trouble dealing with exten-
sive local minima and plateaus. They fail to provide guidance
for the search if the heuristic values of neighboring states do
not improve the current state’s value. Most local search meth-
ods are greedy - they try to immediately exploit their local
knowledge instead of exploring the neighborhood of a state.
Following a misleading heuristic function can quickly lead to
a much worse state than what could be achieved with a lit-
tle exploration. This exploitation - exploration trade-off has
been extensively studied in so-called bandit problems [Auer
et al., 1995]. The resulting search algorithms such as UCT
[Kocsis and Szepesvári, 2006] have been hugely successful
in difficult adversarial domains such as Go [Gelly and Silver,
2008] and General Game Playing [Finnsson and Björnsson,
2008].

Monte-Carlo Random Walk (MRW) is an algorithm for de-
terministic planning that uses random exploration of the local
neighborhood of a search state for selecting a promising ac-
tion sequence. MRW is built on two premises:

1. In typical planning problems, action generation is orders
of magnitude faster than computing a state of the art
heuristic evaluation. Therefore, increased randomized
exploration of the local search neighborhood is com-
putationally feasible as long as the number of heuristic
evaluations can be limited.

2. The experience from game-playing domains shows that
exploration can be a good thing, if carefully balanced
with the exploitation of focusing most effort on states
with good evaluation.

Monte-Carlo methods have already been applied to several
other areas of automated planning, such as sampling possible
trajectories in probabilistic planning [Bryce et al., 2006] and
robot motion planning [LaValle, 2006]. In the context of de-
terministic planning, [Fern et al., 2004] used exploration by
random walks to learn domain-specific control knowledge.

The remainder of this paper is organized as follows: Sub-
section 1.1 briefly reviews different techniques used in AI
planning to escape from local minima and plateaus. Section
2 describes the main idea of MRW planning. Section 3 ex-
plains details of the basic MRW algorithm and two refine-
ments. Section 4 introduces two techniques that use learned
action value estimates to address the two main weak points
of the basic algorithm. Section 5 discusses the strengths
and weaknesses of the new approach and evaluates its per-
formance on standard planning benchmarks from the IPC-4
competition. Sections 6 and 7 contain concluding remarks
and some potential directions for future work.

1.1 The Problem of Local Minima and Plateaus

In AI planning, many different approaches have been pro-
posed to tackle the problem of escaping from local minima
and plateaus. Fast Forward (FF) [Hoffmann and Nebel, 2001]
uses a local search method called Enforced Hill Climbing
(EHC), which includes a breadth first search to try to es-
cape from local minima. While EHC is very effective in
many planning benchmarks, its systematic search can be slow
to escape from extensive local minima/plateaus. Intuitively,
a planner should use bigger jumps to get away from such

1766



traps. Several FF-inspired systems address this issue: Mar-
vin [Coles and Smith, 2007] and YAHSP [Vidal, 2004] build
macro action sequences, and Identidem [Coles et al., 2007]
uses stochastic local search.

Coles and Smith’s planner Marvin adds machine-learned
plateau-escaping macro-actions to EHC. Marvin’s learning
system memoizes successful action sequences that led to an
exit from a plateau, and attempts to escape from similar
plateaus via these macros. This strategy is most effective in
search spaces that contain many repeating structures.

Vidal’s YAHSP constructs an additional macro action in
each search step, using actions in FF’s relaxed planning
graph. This macro-action allows YAHSP to make a big step in
the search space, which can help to quickly escape from local
minima. The YAHSP look-ahead strategy requires a heuristic
function that can also produce the actions of a relaxed plan.
Its effectiveness depends on the quality of these actions.

FF, Marvin and YAHSP do not use much exploration. FF
and Marvin explore only when the local search gets stuck.
While the single macro-action built from the relaxed plan al-
lows YAHSP to jump out of traps, this planner does not ex-
plore the neighborhood.

Coles and Smith’s Identidem introduces exploration by
stochastic local search (SLS) [Hoos and Stützle, 2004]. Iden-
tidem’s exit strategy consists of trying successively longer
probes, action sequences chosen probabilistically from the set
of all possible actions in each state. Identidem evaluates the
FF heuristic after each action of each probe, and immediately
jumps to the first state that improves on the start state.

2 Monte-Carlo Random Walks in Planning

In MRW planning, fast Monte-Carlo random walks are used
for exploring the neighborhood of a search state. A relatively
large set of states S in the neighborhood of the current state
s0 is sampled before greedily selecting a most promising next
state s ∈ S. Each state in S is reached through a new ran-
dom walk starting from s0. All states in S, but no states
along the walks, are evaluated by a heuristic function h, for
example by the FF heuristic. When a stopping criterion is
satisfied, the algorithm replaces s0 by the minimum h-value
element of S. This method uniformly deals with both prob-
lems of local search methods: it quickly escapes from local
minima, and can recover from areas where the evaluation is
poor. The method does not rely on any assumptions about the
local properties of the search space or heuristic function. It
locally explores the state space before it commits to an action
sequence that leads to the best explored state.

Compared to Identidem’s probing strategy, ARVAND is
able to find better neighbors because of increased sampling
and delayed commitment to an action sequence. However, if
Identidem finds a very good neighbor, it jumps there immedi-
ately, while ARVAND will waste time on more exploration.
This issue is partially resolved by the acceptable progress
stopping criterion of Section 3.2.

Experiments in Section 5 show that this simple planning
method significantly outperforms FF on hard planning tasks,
and is competitive with recent systems that are built on top of
FF’s relaxed graphplan heuristic. A main benefit of MRW

planning is that increased exploration through fast random
walks can overcome many biases introduced by heuristic
evaluation functions, while retaining much of their guiding
power.

3 Local Search using Monte Carlo

Algorithm 1 shows an outline of the MRW method. For
a given planning problem, a forward-chaining search in the
state space of the problem is used to find the solution. Search
builds a chain of states s0 → s1 → s2 → · · · → sn such
that s0 is the initial state, sn is a goal state, and each transi-
tion sj → sj+1 uses an action sequence found by MRW ex-
ploring the neighborhood of sj . MRW search fails when the
minimum obtained h-value does not improve within a given
number of search steps, or when it gets stuck in a dead-end
state. In such cases the search simply restarts from s0.

Algorithm 1 Local Search Using Monte Carlo Random
Walks
Input Initial State s0, goal condition G and

available actions A
Output A solution plan

s ← s0

hmin ← h(s0)
counter ← 0
while s does not satisfy G do

if counter > MAX STEPS or DeadEnd(s) then
s ← s0 {restart from initial state}
counter ← 0

end if
s ← MonteCarloRandomWalk(s, G)
if h(s) < hmin then

hmin ← h(s)
counter ← 0

else
counter ← counter + 1

end if
end while
return the plan reaching the state s

Three variations of MRW methods are explored: The base
algorithm uses pure random walks, where all applicable ac-
tions are equally likely to be explored. The two other meth-
ods use statistics from earlier random walks to bias the ran-
dom action selection towards previously successful actions,
or away from unsuccessful ones.

3.1 Pure Random Walks

The main motivation for MRW planning is to better explore
the current search neighborhood. The simplified pseudocode
in Algorithm 2 illustrates how random walks are used to gen-
erate samples. A walk stops at a goal state, a dead-end, or
when its length reaches a bound LENGTH WALK . The
end state of each random walk is evaluated by a heuristic h.
The algorithm terminates either when a goal state is reached,
or after NUM WALK walks. The sampled state with min-
imum h-value and the action sequence leading to it are re-

1767



turned. If all random walks stop at dead-end states, the start
state and an empty sequence are returned.

These limits on the length and the number of random walks
have a huge impact on the performance of this algorithm.
Good choices depend on the planning problem, and the char-
acteristics of the local search space. While they are constant
in the basic algorithm shown here, the next subsection de-
scribes how these parameters are adapted dynamically in AR-
VAND.

Algorithm 2 Pure Random Walk
Input current state s, goal condition G
Output smin

1: hmin ← INF
2: smin ← NULL
3: for i ← 1 to NUM WALK do
4: s′ ← s
5: for j ← 1 to LENGTH WALK do
6: A ← ApplicableActions(s′)
7: if A = φ then
8: break
9: end if

10: a ← UniformlyRandomSelectFrom(A)
11: s′ ← apply(s′, a)
12: if s′ satisfies G then
13: return s′
14: end if
15: end for
16: if h(s′) < hmin then
17: smin ← s′
18: hmin ← h(s′)
19: end if
20: end for
21: if smin = NULL then
22: return s
23: else
24: return smin

25: end if

3.2 Adapting the Length and Number of Random
Walks

Random Walk Length

Each run of the Random Walk Algorithm from a new start
state uses an initial length bound, and successively extends it
by iterative deepening, similar to the way probes are extended
in Identidem. If the best seen h-value does not change quickly
enough, the length bound is increased and the sample space
iteratively expands. If the algorithm encounters better states
frequently enough, the length bound remains unchanged.

Number of Random Walks

The acceptable progress mechanism stops exploration if a
state with small enough h-value is reached. This algorithm
is much more efficient than using a fixed number of walks.

Let hmin be the minimum h-value encountered so far. The
progress of walk n measures the decrease (if any) in hmin

caused by this walk: P (n) = max(0, hold
min − hmin). As

soon as progress exceeds an acceptable progress threshold,
exploration is stopped and the corresponding state is imme-
diately selected. Acceptable progress, AP (n), is defined as
a weighted combination of progress made in earlier search
steps, AP (1) = P (1), AP (n+1) = (1−α)AP (n)+αP (n),
with a parameter α, 0 ≤ α ≤ 1. Higher α values put more
emphasis on recent progress.

The algorithm requires several parameters such as α and
the length extension schedule for random walks. Fortunately,
fixed settings for these parameters, as used in the experiments
in Section 5, seem to work well.

4 MDA and MHA: Using Online Statistical

Action Value Estimates

Pure random walks work poorly in two types of planning
problems. First, in problems with a high density of dead-
end states, most of the walks are aborted and fail to yield new
evaluated end states. The other source of trouble are prob-
lems with a large average branching factor of 1000 or more.
If most actions are detrimental in such a search space, almost
all walks will fail to find a better state. These types of sit-
uations are generally challenging for local search methods.
Most planners use pruning techniques to avoid exploring all
possible actions. A popular technique limits the search to pre-
ferred operators [Helmert, 2006], which are believed to likely
lead to progress. Such operators can sometimes be found in
the process of computing a heuristic evaluation, at no signif-
icant additional cost. The best known example of preferred
operators are helpful actions from the relaxed planning graph.
They are used in planners such as FF, YAHSP, Marvin and
Identidem.

4.1 Gibbs Sampling for Probabilistic Action
Selection

The Monte-Carlo Deadlock Avoidance (MDA) and Monte-
Carlo with Helpful Actions (MHA) enhancements address the
problems of MRW planning with dead-end states and large
branching factors. Their common basic idea is to extract more
information than just a single heuristic value from the sam-
pled states, and use this information to improve future random
walks. This enhancement is inspired by the history-based
techniques in games, such as the history heuristic [Schaef-
fer, 1989] and rapid action value estimate [Gelly and Sil-
ver, 2008]. Both MDA and MHA continuously update an
action value Q(a) for each possible action a, and use these
values to bias random walks by Gibbs sampling [Finnsson
and Björnsson, 2008]: The probability P (a, s) that action a
is chosen among all applicable actions A(s) in state s is set
to

P (a, s) =
eQ(a)/τ

∑n
b∈A(s) eQ(b)/τ

(1)

The parameter τ stretches or flattens the probability distribu-
tion. MDA and MHA compute Q(a) differently.

4.2 MDA: Monte-Carlo Deadlock Avoidance

MDA tries to avoid dead-end states by penalizing actions that
appear in failed walks. Let S(a) and F (a) be the number of

1768



Domain ARVAND FF Marvin YAHSP SGPlan
Average 10 runs

Airport(50) 85 92 74 74 72 86
Satellite(36) 92 92 100 83 100 83
Tankage(50) 86 92 46 40 86 66
NoTankage(50) 94 100 76 54 100 100
Opt.Telegraph(48) 10 10 27 19 27 29
Philosophers(48) 81 94 31 63 60 60
PSR-Small(50) 100 100 96 82 96 94
PSR-Large(50) 44 48 - 16 - 22

Table 1: Percentage of tasks solved. “Average” results are
over ten runs. “10 runs” data indicates solved at least once
in ten runs. Total number of tasks shown in parentheses after
each domain name.

successful and failed random walks that contained action a,
respectively. Then set Q(a) = 0 if F (a) + S(a) = 0, and
Q(a) = −F (a)/(S(a) + F (a)) otherwise.

4.3 MHA: Monte-Carlo with Helpful Actions

MHA defines Q(a) through helpful actions. Ideally, helpful
actions would be computed at each step of each random walk.
For efficiency, MHA only computes them at endpoints as a
byproduct of the heuristic evaluation. Q(a) counts how often
action a was a helpful action at an evaluated endpoint in all
random walks so far.

Both MDA and MHA are used as fall-back strategies in
ARVAND. The planner always starts with pure random walks,
and starts using one of these enhancements only when a
threshold is exceeded. MDA is used whenever more than
50% of random walks hit a dead-end. MHA is switched on if
the average branching factor exceeds 1000.

5 Experiments

ARVAND is built on top of Fast Downward (FD) [Helmert,
2006]. FD contains an efficient successor generator function
and an implementation of the FF heuristic. It supports full
propositional PDDL 2.2, including ADL-style conditions and
derived predicates. Since FD uses the SAS+ [Bäckström and
Nebel, 1995] formalism, STRIPS problems are run through
FD’s translator first.

ARVAND was tested on all the supported domains
from the fourth international planning competition (IPC-4):
Pipesworld Tankage, Pipesworld NoTankage, Promela Opti-
cal Telegraph, Promela Dining Philosophers, Airport, Satel-
lite, and Power Supply Restoration-PSR. This test suite con-
tains a diverse set of problems, including those that are chal-
lenging for both EHC and MRW planning.

ARVAND is compared with FF, Marvin, YAHSP and SG-
Plan [Chen et al., 2006]. All these planners participated in
IPC-4 and are based on the FF heuristic. ARVAND and FF
were run on a 2.5GHz machine. The results for the other
three planners [Edelkamp, 2004] were obtained on a 3GHz
machine. All tests used 1GB memory and a 30 minute time
limit.1

The results are summarized in Table 1. For each plan-
ner/domain pair, the percentage of solved tasks is shown.

1The memory limit is for the planner itself. The SAS+ translation
in FD required up to 1.5 GB memory for some of the largest tasks.

Domain PURE RW MDA MHA
Avg. 10 runs Avg. 10 runs Avg. 10 runs

Satellite(36) 81 83 - - 92 92
Opt.Telegraphs(48) 10 10 10 10 - -
Philosophers(48) 21 23 81 94 - -

Table 2: Percentage of tasks solved for pure random walk,
MDA and MHA in three challenging domains.

Missing entries in the table signify that a planner either does
not support the domain description, or did not compete in that
domain in IPC-4. The results for ARVAND are reported in two
columns. In the first column the results are averaged over ten
runs, and the second column shows the percentage of tasks
that are solved at least once in ten runs. The ten run results
can indicate the performance of a basic parallel planner that
simply runs ten independent instances of ARVAND. Marvin
and ARVAND used the ADL description with derived predi-
cates in the Promela domains Optical Telegraph and Philoso-
phers.

Over ten runs, the results for ARVAND show relatively lit-
tle variation in terms of the number of solved tasks. Out of
the eight tested domains, ARVAND solved the largest number
of problems in four under the average measure, and is top in
two more domains when given 10 tries. It is also compet-
itive in Satellite, but lags behind in Optical Telegraph. AR-
VAND outperforms FF and Marvin in terms of total number of
solved problems. The most challenging tests for MRW plan-
ning are the two Promela domains and Satellite. The Promela
problems contain a high density of dead-end states, while big
Satellite tasks have a very large branching factor.

Table 2 illustrates how MDA and MHA contribute to the
performance of ARVAND in these domains. Missing entries
indicate that this configuration is not used for the correspond-
ing domain. Pure random walk without any fall-back strategy
is the weakest configuration in these three domains. In both
Promela domains MDA reduces the number of failed random
walks by a factor of 10. This results in a huge improvement in
Philosophers, but is surprisingly ineffective in Optical Tele-
graph. This requires further study.

Satellite is an easy domain for FF. The local minima in
this domain are not too extensive. Helpful actions very ef-
fectively prune irrelevant regions of the search. MHA, which
uses helpful actions in a different way, performs better than
pure random walk, and solves four more problems on average
in this domain.

Figure 1 compares the runtimes of ARVAND and FF in
Pipesworld Tankage. For ARVAND, both the median and
the minimum time over ten runs are shown. Median time is
shown only if a task was solved in all ten runs. Since FF does
not do any exploration, it solves the easier tasks much faster
than ARVAND. However, in harder problems the benefits of
exploration become apparent and ARVAND outperforms FF.
For better performance on easier cases, a n-way parallel sys-
tem could start one copy of FF in addition to n − 1 copies of
ARVAND.

Regarding solution length, the focus of the research on AR-
VAND so far has been to improve the number of tasks that are
solved. Currently, a simple post-processing algorithm is used
to remove useless loops in the plan, and to prune single ac-

1769



tions that are apparently useless. More sophisticated solution
length optimization algorithms are a topic for future work.
Figure 2 shows the plan length of the obtained solutions by
FF, ARVAND, and YAHSP for Tankage. For ARVAND, both
the average and the minimum plan length obtained over ten
runs are shown. Among the evaluated planners, YAHSP and
ARVAND solve the most problems in this domain. In terms
of plan quality, the results are worse than FF and close to
YAHSP. This pattern can also be seen in the No Tankage do-
main. However, in other domains YAHSP does better than
ARVAND in terms of plan quality.

Figure 1: Runtimes of ARVAND (median and minimum over
ten runs) and FF in Tankage.

Figure 2: Plan Lengths of ARVAND (average and minimum
over ten runs), YAHSP and FF in Tankage domain.

The parameter values for all configurations are shown in
Table 3. All these values were determined experimentally
and were fixed in all the tested domains. The parame-
ters EXTENDING PERIOD and EXTENDING RATE
control the length extending schedule. For example, the
values of 300 and 1.5 for pure RW mean that if the best
seen h-value does not improve over 300 random walks, then
LENGTH WALK is increased by a factor of 1.5.

Parameters Pure RW MDA MHA
α 0.9 0.9 0.9
NUM WALK 2000 2000 2000
LENGTH WALK 10 1 10
EXTENDING PERIOD 300 300 300
EXTENDING RATE 1.5 2 1.5
MAX STEPS 7 7 7
τ - 0.5 10

Table 3: Parameters used in different configurations.

Most parameter settings in Table 3 are the same for all three
methods, except for length extension in MDA. In this method,
most of the early random walks in problems with a high den-
sity of dead-end states are aborted. Therefore, the initial value
of LENGTH WALK is lowered to one, in order to decrease
the probability of hitting a dead-end in early walks. A larger
EXTENDING RATE enables MDA to explore more in the
later walks. In all configurations, setting α = 0.9 heavily
biases the acceptable progress towards recent progress in the
search. Settings for the temperature τ reflect the fact that the
average Q-values are much larger for MHA than for MDA.

6 Conclusion

This research shows how Monte-Carlo search can improve
the solving power of classical deterministic planners. To
the best of our knowledge, this is the first successful use of
Monte-Carlo search as the main search method of a classical
planner. Contrary to greedy local search methods that try to
immediately exploit their local knowledge, MRW planning
explores the local search space by using random walks. Many
random walks are tested from a search state until either a state
with acceptable progress is found, or the number of random
walks exceeds a pre-set limit. The algorithmic benefits of the
provided exploration are twofold: First, the method is more
robust in presence of misleading heuristic estimates, since it
obtains more information from the local neighborhood. Sec-
ond, when the search is trapped in local minima, the itera-
tively deepening random walks can rapidly find an exit. A
practical benefit of Monte-Carlo explorations is that they can
be easily parallelized.

Two different techniques, MDA and MHA, use the out-
come of earlier random walks to provide better guidance for
exploration in the search space. Experiments showed that
both techniques can be very effective in problems that are
hard for pure random walks.

In the ARVAND planning system, MRW is used in con-
junction with the FF heuristic. The presented results show
that ARVAND outperforms FF for hard problems in most of
the tested domains, and is competitive with other state of the
art planning systems that are based on the FF heuristic.

7 Future Work

For future work, there are many research avenues to explore
to improve MRW planning. First, ARVAND and Identidem
should be compared in detail since they both use stochastic
approaches.

1770



We have started to investigate using the UCT algorithm in
deterministic planning. UCT uses Monte-Carlo tree search
and tries to balance exploration and exploitation by treating
each random action selection as a bandit problem. One ad-
vantage of UCT is that it focuses on regions in the search
space that look more promising.

Another idea, which recently has been used to provide
fast and better exploration in motion planning, is Rapidly-
exploring Random Trees (RRTs) [LaValle, 2006]. This tech-
nique gradually builds a tree that expands effectively in the
search space. In each phase, first either the goal state or a
randomly selected state is chosen as a target. Then, the near-
est node in the current tree is extended towards this target.
This algorithm has been very effective in path finding. The
main challenge in using RRTs in deterministic planning is to
find good enough heuristic functions that are also very fast.
Each time a randomly selected state is chosen as the target,
the distances of all the nodes in the tree to this new target
must be estimated.

8 Acknowledgments

The authors wish to thank Malte Helmert for providing the
source code for FD, and the anonymous referees for their
valuable advice. This research is supported by a Provost Doc-
toral Entrance Award funded by the University of Alberta,
and by grants from iCORE, the province of Alberta’s Infor-
matics Circle of Research Excellence, and NSERC, the Nat-
ural Sciences and Engineering Research Council of Canada.

References

[Auer et al., 1995] Peter Auer, Nicolò Cesa-Bianchi, Yoav
Freund, and Robert E. Schapire. Gambling in a rigged
casino: The adversarial multi-arm bandit problem. In Pro-
ceedings of the 36th Annual Symposium on Foundations of
Computer Science, FOCS 1998, pages 322–331, 1995.

[Bäckström and Nebel, 1995] Christer Bäckström and Bern-
hard Nebel. Complexity results for SAS+ planning. Com-
putational Intelligence, 11:625–656, 1995.

[Bryce et al., 2006] Daniel Bryce, Subbarao Kambhampati,
and David E. Smith. Sequential Monte Carlo in proba-
bilistic planning reachability heuristics. In Proceedings
of the Sixteenth International Conference on Automated
Planning and Scheduling, ICAPS 2006, pages 233–242,
2006.

[Chen et al., 2006] Yixin Chen, Benjamin W. Wah, and
Chih-Wei Hsu. Temporal planning using subgoal parti-
tioning and resolution in SGPlan. Journal of Artificial In-
telligence Research (JAIR), 26:323–369, 2006.

[Coles and Smith, 2007] Andrew Coles and Amanda Smith.
Marvin: A heuristic search planner with online macro-
action learning. Journal of Artificial Intelligence Research
(JAIR), 28:119–156, 2007.

[Coles et al., 2007] Andrew Coles, Maria Fox, and Amanda
Smith. A new local-search algorithm for forward-chaining
planning. In Proceedings of the Seventeenth Interna-
tional Conference on Automated Planning and Scheduling,
ICAPS 2007, pages 89–96, 2007.

[Edelkamp, 2004] Stefan Edelkamp. International plan-
ning competition: The 2004 competition, 2004. Avail-
able at http://ls5-www.cs.tu-dortmund.de/
˜edelkamp/ipc-4/, retrieved January 5, 2009.

[Fern et al., 2004] Alan Fern, Sung Wook Yoon, and Robert
Givan. Learning domain-specific control knowledge from
random walks. In Proceedings of the Fourteenth Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS 2004), pages 191–199, 2004.

[Finnsson and Björnsson, 2008] Hilmar Finnsson and Yngvi
Björnsson. Simulation-based approach to general game
playing. In Proceedings of the Twenty-Third AAAI Confer-
ence on Artificial Intelligence, AAAI 2008, pages 259–264,
2008.

[Gelly and Silver, 2008] Sylvain Gelly and David Silver.
Achieving master level play in 9 x 9 computer Go. In
Proceedings of the Twenty-Third AAAI Conference on Ar-
tificial Intelligence, AAAI 2008, pages 1537–1540, 2008.

[Helmert, 2006] Malte Helmert. The Fast Downward plan-
ning system. Journal of Artificial Intelligence Research
(JAIR), 26:191–246, 2006.

[Hoffmann and Nebel, 2001] Jörg Hoffmann and Bernhard
Nebel. The FF planning system: Fast plan generation
through heuristic search. Journal of Artificial Intelligence
Research (JAIR), 14:253–302, 2001.

[Hoos and Stützle, 2004] Holger Hoos and Thomas Stützle.
Stochastic Local Search: Foundations & Applications.
Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA, 2004.

[Kocsis and Szepesvári, 2006] Levente Kocsis and Csaba
Szepesvári. Bandit based Monte-Carlo planning. In Pro-
ceedings of 17th European Conference on Machine Learn-
ing, ECML 2006, pages 282–293, 2006.

[LaValle, 2006] S. M. LaValle. Planning Algorithms. Cam-
bridge University Press, Cambridge, U.K., 2006. Also
available at http://ls5-www.cs.tu-dortmund.
de/˜edelkamp/ipc-4/.

[Schaeffer, 1989] J. Schaeffer. The history heuristic and
alpha-beta search enhancements in practice. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence,
11(11):1203–1212, 1989.

[Vidal, 2004] Vincent Vidal. A lookahead strategy for
heuristic search planning. In Shlomo Zilberstein, Jana
Koehler, and Sven Koenig, editors, Proceedings of the
Fourteenth International Conference on Automated Plan-
ning and Scheduling, ICAPS 2004, pages 150–160. AAAI,
2004.

1771


