
Domain-Independent, Automatic Partitioning for Probabilistic Planning

Peng Dai Mausam Daniel S. Weld

Dept of Computer Science and Engineering
University of Washington

Seattle, WA-98195
{daipeng,mausam,weld}@cs.washington.edu

Abstract

Recent progress on external-memory MDP solvers,
in particular PEMVI [Dai et al., 2008], has en-
abled optimal solutions to large probabilistic plan-
ning problems. However, PEMVI requires a human
to manually partition the MDP before the planning
algorithm can be applied — putting an added bur-
den on the domain designer and detracting from the
vision of automated planning. This paper presents
a novel partitioning scheme, which automatically
subdivides the state space into blocks that respect
the memory constraints. Our algorithm first ap-
plies static domain analysis to identify candidates
for partitioning, and then uses heuristic search to
generate a ‘good’ partition. We evaluate the use-
fulness of our method in the context of PEMVI
across many benchmark domains, showing that it
can successfully solve extremely large problems in
each domain. We also compare the performance
of automatic partitioning with previously reported
results using human-designed partitions. Experi-
ments show that our algorithm generates signifi-
cantly superior partitions, which speed MDP solv-
ing and also yield vast memory savings.

1 Introduction

AI researchers typically formulate planning under uncertainty
problems using a Markov Decision Process (MDP) [Bresina
et al., 2002; Aberdeen et al., 2004]. Popular algorithms to
solve MDPs, like value iteration (VI), RTDP, LAO*, etc.,
are all based on dynamic programming [Bellman, 1957;
Barto et al., 1995; Hansen and Zilberstein, 2001]. While ef-
fective in small settings, all these algorithms have memory
requirements polynomial in the size of the (reachable) state
space, which is exponential in the number of domain fea-
tures. This greatly constrains the size of the problems that
can be solved, making existing techniques practically useless
for real planning problems.

Recent progress for scaling up dynamic programming has
exploited external memory to alleviate this memory bottle-
neck. EMVI [Edelkamp et al., 2007] associates values with
edges instead of nodes. Using a clever sorting routine it en-
sures that all the backups of a VI can be accomplished by a

scan on two contiguous files from the disk. EMVI is a the-
oretically clever algorithm, but was outperformed in practice
by PEMVI [Dai et al., 2008]. PEMVI divides the states into
blocks and performs (one or more) backups on all states in
a block before moving onto the next ones. All information
required for backing blocks is stored on the disk and is trans-
ferred on demand in a piecemeal fashion. This simple idea
was very effective in practice and significantly outperformed
EMVI, but, with one caveat – PEMVI required a human to
specify the partitioning of the state space. Human specified
partitioning is a far cry from the vision of automated plan-
ning.

In this paper, we develop and implement automatic parti-
tioning on top of PEMVI. We first build a theory of XOR
groups [Edelkamp and Helmert, 1999] and construct neces-
sary and sufficient conditions for a set of fluents to be a valid
XOR group. We use static domain analysis to identify XOR
groups present in the domain and search over a partition space
created by these XOR groups yielding a suitable partition.
We evaluate three criteria (viz. coherence, locality and bal-
ance) for this search, and conclude that a combination of two
yields the best results. We also observe that our automatic
partitioning engine constructs better partitions than the man-
ual partitioning constructed in our previous work [Dai et al.,
2008], due to which we are able to solve problems larger than
ones that were previously reported. We release a fully auto-
mated, domain-independent, optimal MDP solver that is able
to solve many large problems across domains from the inter-
national planning competition 2006 [ipc, 2006].

2 Background

A Markov decision process is defined as a four-tuple
〈S,A, T, C〉, where S is the state space, A represents the set
of all applicable actions, T is the transition matrix describ-
ing the domain dynamics, and C denotes the cost of actions.
A probabilistic planning problem is typically described by a
factored MDP, which specifies F — the set of domain fea-
tures. The state space S can be calculated as the set of value
assignments to the features in F .

The agent executes its actions in discrete time steps called
stages. At each stage, the system is in one distinct state s.
The agent can pick from any action a ∈ A, incurring a cost of
C(s,a). The action takes the system to a new state s′ stochas-
tically, with probability Ta(s′|s).
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The horizon of an MDP is the number of stages for which
costs are accumulated. We are interested in a special set of
MDPs called stochastic shortest path problems. The horizon
is indefinite and the costs are accumulated with no discount.
There are a set of sink goal states G ⊆ S, reaching which
terminates the execution. To solve the MDP we need to find
an optimal policy (S → A), a probabilistic execution plan
that reaches a goal state with the minimum expected cost. We
evaluate a policy π by a value function. Any optimal policy
must satisfy the following system of Bellman equations:

V ∗(s) = 0 if s ∈ G else (1)

V ∗(s) = min
a∈A

[C(s,a) +
∑

s′∈S
T (s′|s,a)V ∗(s′)]

The optimal policy, thus, is extracted from the value func-
tion:

π∗(s) = argmina∈AC(s,a) +
∑

s′∈S
Ta(s′|s)V ∗(s′).

2.1 Dynamic Programming

Most popular MDP algorithms are based on dynamic pro-
gramming. Its usefulness was first proved by a simple yet
powerful algorithm named value iteration [Bellman, 1957].
Value iteration first initializes the value function arbitrarily.
Then, the values are updated using an operator called Bellman
backup to create successively better approximations. Value
iteration stops updating when the value function converges.

Value iteration (and other modern algorithms like LAO*,
labeled RTDP, etc.) converges to the optimal value function
in time polynomial in the size of the states [Littman et al.,
1995], but the model of an MDP (transition and value func-
tion) must be present in the memory before computation is
applicable. This constraint prohibits these algorithms from
solving problems whose models do not fit in the memory.
This precludes most real world problems, since they are too
large to be optimally solvable.

2.2 External-Memory Dynamic Programming

Recently, researchers have developed external memory algo-
rithms that use disk to store the large MDP models. External
memory value iteration (EMVI) [Edelkamp et al., 2007] is
the first such MDP algorithm. It associates values with edges
instead of nodes. Using a clever sorting routine it ensures
that all the backups of a VI can be accomplished by a scan
on two contiguous files from the disk. EMVI is able to solve
larger problems than classical dynamic programming, albeit,
somewhat slowly.

Partitioned external memory value iteration (PEMVI) [Dai
et al., 2008] is a much faster external memory algorithm. It
first partitions the state space into non-overlapping partition
blocks, and then iteratively backs up states per block till con-
vergence. PEMVI is able to make efficient use of I/O by back-
ing up a state more than once per I/O iteration, so it converges
faster than EMVI by a magnitude. However, PEMVI assumes
a given valid partition, i.e., one in which each partition block
can be backed up in memory. In this work, the partitions are
designed with human input by applying the manually chosen
XOR constraints in a domain dependent way. Specifying a
partition of the state space is added burden on the domain

designer and takes away from the vision of AI planning. In
this paper, we focus on generating the partitions automati-
cally making the overall planner completely automated and
capable of solving large problems using additional storage in
the external memory.

2.3 State Abstraction in Deterministic Domains

Edelkamp & Helmert [1999] use automatically-constructed
domain invariants to produce a compact encoding1 of the
problem. These invariants were used by Zhou & Hansen
[2006] as XOR groups to define state abstractions for struc-
tured duplicate detection in external-memory search algo-
rithms. Zhou & Hansen also defined the locality heuristic
as a criterion for choosing a suitable state abstraction. This
paper generalizes the notion of XOR groups, adapts them to
probabilistic domains, and investigates additional partitioning
heuristics, which are more relevant to probabilistic domains.

3 A Theory of XOR Groups

While there is an exponential number of ways to partition the
state space, we focus on structurally meaningful partitions,
which can be represented compactly. We use the key notion
of XOR groups developed by Zhou and Hansen, but, gener-
alize it as follows: A set of formulae forms an XOR group
if exactly one formula in the set is true in any state reach-
able from the start state. For example, for any formula ϕ, the
set {ϕ,¬ϕ} represents an XOR group. For another example
consider the Explosive-Blocksworld domain with two block
constants, b1 and b2. The fact that either a block (say b1) is
clear or else it must have another block on it can be repre-
sented as an XOR group: {clear(b1), on(b1, b1), on(b2, b1)}.
Sometimes it is clearer to think of an XOR group as a log-
ical formula. We can write this XOR group logically as
clear(b1) ⊕ on(b1, b1) ⊕ on(b2, b1). It is easy to see that
an XOR group compactly represents a partition of the state
space, where each partition block contains all the states satis-
fying a single formula (exclusive disjunct) in the group.

Our definition of an XOR-group is more general than the
original one by Zhou and Hansen — they only allowed pos-
itive literals in an XOR group. On the other hand we accept
any complex formula in our definition of XOR-groups.

In order to achieve a compact representation, it is conve-
nient to specify XOR groups using first-order logic. This is
facilitated by introducing some syntactic sugar, an exclusive
quantifier ∃1, to the logic. Intuitively, ∃1x ϕ(x) means that
there exists exactly one constant that satisfies ϕ(x), that is,
exclusively quantified is represented as ∃1x. With this nota-
tion, a large XOR group can be represented by a short logical
formula. For example, if there were many blocks in the do-
main, then the XOR group shown previously would get quite
long, but this notation allows a compact specification:

∃1b [clear(b1) ⊕ on(b, b1)].

Note that this group is specific to the specific
block, b1, but there is a similar group for b2:
{clear(b2), on(b1, b2), on(b2, b2)}. These two XOR

1Encoding here refers to converting the PDDL description of the
domain to an explicit state representation.
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Figure 1: Flow chart of our planning system

groups can be represented, by adding a new, universally
quantified, variable b′:

∀b′∃1b [clear(b′) ⊕ on(b, b′)].

If we ground this formula (assuming a universe of two
blocks), we get a formula, whose conjuncts corresponds to
an XOR group each.

(clear(b1) ⊕ on(b1, b1) ⊕ on(b2, b1)) ∧
(clear(b2) ⊕ on(b1, b2) ⊕ on(b2, b2))

We define a set of formulae F balanced under an action
a if in each of its probabilistic outcomes, a’s effects either (i)
do not change the truth value of any formula in F or (ii) make
exactly one of the formulae in F true, while making another
(previously true) formula in F false.
Necessary and Sufficient Conditions: A set of grounded
formulae F forms a XOR group if and only if F satisfies the
following two conditions:

1. Exactly one ϕ ∈ F is satisfied in the initial state.
2. For every ground action a that is executable in the reach-

able part of the state space, F is balanced under a.

These constraints help us efficiently evaluate whether a
candidate set of formulae is indeed an XOR group or not.

4 Algorithm

Our planning system contains several pieces, shown in Fig-
ure 1. First, it performs static analysis of the domain and
identifies the various XOR groups present in it. The external-
memory reachability analysis detects irrelevant parts of the
state space. Additionally, it samples a subset of the reach-
able space, which facilitates the next phase (searching for a
partition) by estimating the sizes of various partitions. Then
it searches in the space of partitions, represented using the
XOR groups, to construct a valid partition. Next, the encod-
ing module scans the reachable state space and computes a
much more compact string representation for each state based
on the XOR groups. It also prepares the data structures neces-
sary for PEMVI, such as distributing all states into disk files,
one for each partition block, etc. Finally we apply PEMVI
over this encoding of states and the chosen partition.

4.1 Domain Analysis

Our original definition of XOR groups is very general, but,
searching over such a general space of formulae may not be
practical, so we add two constraints in our search for XOR
groups: 1) All formulae in an XOR group must be literals
(instead of a general Boolean formula). 2) all terms in a

Algorithm 1 Xorify(P)
1: Input: P = 〈p1, p2, . . . , pk〉 (a list of predicates)
2: // compute candidate XORs
3: XF ← ∅
4: A← {aij}|i=1..k where aij is jth argument of pi

5: C ← set of all possible type-sensitive equivalence relations of
A (Algo 2)

6: for all equivalence relations c ∈ C do
7: ϕ ← XOR of all predicates in P such that two arguments

are represented by the same variable name iff they lie in the
same equivalence class ∈ c

8: add ϕ to XF
9:

10: for all ϕ ∈ XF do
11: AA← set of all arguments in ϕ
12: open← {emptyset}
13: while open is not empty do
14: delete the first set, E , from open
15: if (∀x∈Ex)(∃1y∈AA−E y)[ϕ] is an XOR formula then

16: output (∀x∈Ex)(∃1y∈AA−E y)[ϕ]
17: goto line 10
18: for all a ∈ AA− E do
19: E ′ ← E ∪ {a}
20: if E ′ /∈ open then
21: append E ′ at the end of open

first-order XOR formula must either be universally quantified
or exclusively quantified (i.e., they can’t be constants). In
theory, these assumptions may result in missing some XOR
groups, but, our experiments demonstrate that our method
yields useful XOR groups for all planning benchmarks. Sim-
ilar results were reported in [Zhou and Hansen, 2006].

We identify XOR groups by performing static domain
analysis — first finding first-order XOR formulae and later
grounding them to construct the final set. In the process we
use a new term: We say a set of literals, P , is fully balanced
(balanced for short) if it is balanced under all ground actions.
This is faster to check than the necessary XOR conditions
which quantify over executable actions. A balanced set of
literals is minimal if no proper subset is also balanced. We
denote the set of arguments of a predicate p by args(p).
Finding First-Order XOR Groups: At the highest level,
our algorithm searches through syntactic XOR formulae in
first-order logic and looks for candidates that satisfy the XOR
conditions of the previous section. Suppose we want to con-
struct an XOR formula such that each literal corresponds to a
predicate from the list P . Note that each predicate ∈ P may
be in its positive or negated form and two predicates ∈ P may
be the same2. Such a P is the input to the Algorithm 1.

Algorithm 1 first computes all possible variable bindings
(Lines 3-8). For example, suppose P = 〈clear(·), on(·, ·)〉.
Then the three arguments in P could be bound to the same
variable name: clear(x)⊕on(x, x); all different variable
names: clear(x)⊕on(y, z) or the two intermediate cases. All
such cases will lead to different final XOR formulae. To com-
pute this we consider all possible type-sensitive equivalence
relations for the set of arguments and assign the same vari-
able name if two arguments lie in the same equivalence class

2This is necessary in searching for XOR groups of the form
∀b[clear(b)⊕ ¬clear(b)]
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Algorithm 2 Compute Type-Sensitive Equivalence Relation
1: Input: A (a set of arguments) k (the number of types)
2: distribute arguments by type into sets A1, . . . , Ak.
3: for each type ti do
4: Ri ← EquivReln(Ai)
5: return the Cartesian product of R1, . . . , Rk

6:
7: Function EquivReln(B)
8: if B = emptyset then
9: return a singleton that contains emptyset

10: else
11: x← last element in B
12: R← EquivReln(B − {x})
13: Rnew ← emptyset
14: for every relationR ∈ R do
15: for every equivalence class D ∈ R do
16: Dnew ← D ∪ {x}
17: add ((R∪ {Dnew})−D) to Rnew

18: addR∪ {{x}} to Rnew

19: return Rnew

(line 7). We define a type-sensitive equivalence relations of a
set of arguments A to be a set of non-empty, non-overlapping
subsets of arguments whose union is A, with the constraint
that elements in one equivalence class must have the same
type. For example, if A = {b1, b2, c1, c2} (two blocks and
two colors) then type sensitive equivalence relation of A is
{{b1, b2}, {c1, c2}}, {{b1}, {b2}, {c1, c2}}, {{b1, b2}, {c1},
{c2}}, {{b1}, {b2}, {c1}, {c2}}. Algorithm 2 outlines a
method to compute this set.

Given this candidate XOR formula, ϕ, whose variables are
not quantified so far, we wish to find a set, E , from all ar-
guments of ϕ, such that 1) when all arguments in E are uni-
versally quantified and all arguments in args(ϕ) − E are ex-
clusively quantified, a correct XOR group results; and 2) no
proper subset of E meets condition 1. For all E that meet con-
dition 1 we say E xorifies φ. We call a set that meets both
condition 1 and 2 a minimal xorifier.

To find this set of arguments we perform a breadth-first
search over all subsets of args(ϕ), starting from the empty
set (lines 12-21 in Algo 1). Expanding a node adds another
argument to the current node. The goal is a minimal set E
that xorifies ϕ. Running this algorithm on different P yields
several first order XOR formulae. Finally, we ground these to
get the concrete XOR groups.

As an illustration, consider a modified Explosive-
Blocksworld, where blocks are colored. Consider a world
with two pigment constants, red and blue, and an initial state,
which specifies that initially b1 and b2 are red and blue re-
spectively. The only action to modify a block’s color is paint:

(:action paint
:parameters (?b - block ?c ?nc - pigment)
:precondition (color ?b ?c)
:effect (and (color ?b ?nc)

(not (color ?b ?c))))

To find the minimal set using just the predicate color(b, c)
we start the search with E = ∅ (line 12). ∅ does not xorify
color, since the XOR formula ∃1b∃1c [color(b, c)] does not
hold, because, both blocks have some color in the initial
state. The algorithm then looks for sets of size 1. Consider

E = {c}, or equivalently an XOR group ∀c∃1b [color(b, c)].
This means there exists exactly one block of each color.
Although the initial state satisfies this condition, the paint
action may violate it. So it does not xorify color. But
E = {b} xorifies color, since it means every block must
have exactly one color. This minimal xorifier leads to two
ground xor groups: color(b1, red) ⊕ color(b1, blue) and
color(b2, red) ⊕ color(b2, blue).

Our algorithm for computing XOR groups has marked dif-
ferences from the previous version by Edelkamp & Helmert.
We call their version EH algorithm. In particular, EH algo-
rithm (1) did not handle any XOR formulae with negated
predicates, and (2) required exactly one argument in the
whole formula to be exclusively quantified, hence they can-
not infer properties like ∀x[loves(x, x) ⊕ depressed(x)], or
∀pkg∃1truck∃1city[on(pkg, truck) ⊕ in(pkg, city)]. We
implemented an extension of algorithm that additionally finds
simple negated XOR groups like ∀b[clear(b) ⊕ ¬clear(b)].

4.2 External-Memory Reachability Analysis

Often the state space reachable from the start state and the
state space expressed by the PPDDL description are of ex-
tremely varied sizes. For example, the Blocksworld problems
have orders of magnitude more unreachable states than reach-
able ones, because the PPDDL description allows for several
blocks on top of a block, whereas the semantics of the domain
given the typical initial states does not. We perform reachabil-
ity analysis to focus computation only on the relevant subset
of the states. Since the state spaces can be huge we implement
an external memory version, which is a layered BFS that uses
delayed duplicate detection [Korf, 2003]. Our optimizations
enable the search algorithm to switch automatically between
the in-memory (when a search frontier can fit in the memory)
algorithm, and the external-memory version.
Sampling: Additionally, we build a random subset of the
reachable state space by sampling each state with a uniform
probability x. This subset helps us in estimating the sizes of
partition blocks and its transitions in the next phase.

4.3 Search for Partitions

Recall that a valid partition is one in which partition blocks
can be backed up in memory. In this phase we search for
a valid partition by successively applying the XOR groups
computed by domain analysis.

Choosing a good partition is vital for PEMVI algorithm,
since it can massively save on the computation time, as well
as memory requirements. In our previous work, we proposed
two desirable heuristics that can be used to assess the quality
of a partition — locality and coherence [Dai et al., 2008].
Coherence favors a partition whose total percentage of intra-
block state transitions is the greatest among all transitions,
and therefore optimizes the information flow to achieve faster
convergence. Locality prefers a partition that has the lower
number of successor blocks, so it makes loading successor
blocks less I/O costly. In this paper we define a new heuristic,
balance, which prioritizes a partition that shrinks the memory
requirement of PEMVI most significantly, thus it can help
reach a valid partition as early as possible.

However, evaluating these heuristics requires computing
these criteria, e.g., percentage of intra-block transitions, for
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the reachable space, an endeavor too ambitious to undertake.
We exploit our sampled state space to make this tractable.
With the (unknown) partition block size l, the size of the sam-
pled space in that block follows a Binomial distribution(l, x)
under some reasonable assumptions. If sampling generates
a subspace of size r, then l follows a negative binomial
distribution(r, x), with mean μ = r/x and standard devia-
tion σ =

√
r(1 − x)/x. This distribution, according to the

central limit theorem [Rice, 2001], is approximately Normal.
The size l has a very slight probability (≈ 0.1%) of being
greater than μ + 3σ. We use this number to be the upper
bound while estimating l. We estimate the number of transi-
tions into a block and other criteria in a similar fashion.

Given a heuristic (any of these above), ideally, we will enu-
merate all partitions and evaluate them based on the heuristic
value to get the best partition. Unfortunately, if there are n
XOR groups in the domain, the total number of possible par-
titions is 2n. Moreover, evaluating a partition, even though
made feasible by the use of sampled state space, is still quite
time-consuming (see Section 5 for details). For this reason,
we trade off optimality for time and use greedy search by
picking the XOR group that has the best heuristic estimate at
each partitioning step. In the experiments section we empiri-
cally compare these three heuristics and develop a strategy to
maximize the algorithm performance.

Sometimes the partitioning process itself exhausts the
available memory. The block transition table is a table that
represents the successor block relations between all partition
blocks. In our implementation, we represent the table as an
adjacency list, and store it in memory. When the algorithm
generates too many partition blocks then the block transition
table overflows and we terminate the algorithm with failure.

4.4 Encoding

Based on our set of XOR groups we can encode the state
space into a compact representation. For ease of illustration
we describe the case when all domain features are Boolean.
In such a case a naive encoding will use a bit-string whose
length equals the number of the features. To reduce this fur-
ther we can define a single multi-valued feature for an XOR
group of k literals and the total number of bits needed for that
feature will be log2 k and we will save on k − log2 k bits.
In our encoding algorithm, we define these features greedily
for each XOR group and remove all the participating ground
predicates. We continue this process until all XOR groups are
exhausted. We are left with a set of multi-valued features that
we newly defined and some Boolean features (for the original
ground predicates that didn’t participate in any XOR group).
We use this representation for a compact encoding of a state.

5 Experiments

We address the following questions: (1) How do the differ-
ent heuristics (viz. locality, coherence and balance) compare
with each other? (2) Does our general algorithm for find-
ing XOR groups produce better XOR groups compare to EH
algorithm? Does our algorithm scale? (3) How does the qual-
ity of automatically-generated partitions compare to those
that are manually generated? (4) Does automatic partitioning

Algorithm 3 Search for Partition
1: input: S (state space),R (the set of XOR groups)
2: // Ptn means a partition, bk means a partition block
3: Ptn← {bk|bk = S}
4: backtrack ← false
5: d← 0
6: while Ptn is not valid do
7: if backtrack = false then
8: pick a greedy r ∈ R using coherence heuristic
9: d← d + 1

10: else
11: pick a greedy r ∈ R using balance heuristic
12: modify Ptn by partitioning Ptn using r
13: if block transition table overflows then
14: backtrack ← true
15: if d ≥ 0 then
16: d← d− 1
17: backtrack to partition depth d AND goto 6
18: else
19: return fail
20: return Ptn
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Figure 2: Running time of PEMVI using partitions created by dif-
ferent heuristics (missing points means problem not solved).

scale to large problems in IPC domains? (5) Does the use of
simple-negated XOR groups benefit the partitioning process?

We implemented our automatic partitioning algorithms and
PEMVI using C++. We evaluated our planner using an In-
tel(R) Core(TM)2 CPU processor with 2GB RAM and a
60GB SATA II (300MB/s) hard disk.
Comparing Heuristics: We first performed control experi-
ments in order to determine which of locality, coherence and
balance is the best heuristic. Using a suite of six problems
from three domains, we ran PEMVI with partitions generated
by following each heuristic’s guidance. We measured over-
all running time (partition generation + policy construction)
with a cut-off of 10 hours. Figure 2 shows the time taken on
a log scale. Apart from the smallest problem, coherence out-
performed the other heuristics, which often failed to generate
partitions that could solve the problem within the time limit.

Moreover, when we tested on even larger Explosive-
Blocksworld problems, we observed that none of the heuris-
tics enabled PEMVI to generate a solution within 10 hours.
However, balance seemed to get closest in the sense that it
was able to generate a valid partition (just not one that could
be solved within the limit). In contrast, the other heuristics
exhausted memory while just trying to find a valid heuristic.

These and other observations suggest a hybrid strategy. We
partition greedily using the coherence heuristic, until either
we find a valid partition or we reach a state where further
partitioning will cause overflow of the block transition table.
In this latter case we backtrack, trying the balance heuristic
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Algo Blocksworld Drive Elevator Schedule
Old 1 2 1 3
New 1 3 2 3

Ex-Blocksworld Tireworld U-Drive Zeno
Old 3 1 2 3
New 3 1 3 5

Table 1: Number of XOR formulae found by Edelkamp & Helmert
(Old) and ours (New) in IPC-06 domains.

CPU (s) I/O (s) Memory (MB)
Manual partition 2,894 1,489 1,681

Automatic partition 2,414 1,729 1,574

Table 2: PEMVI Running time and Memory usage.

at the previous decision points. We use this hybrid scheme in
all further experiments (Algorithm 3).
Comparing domain analysis algorithms: We now com-
pare the performance of our new algorithm for finding XOR
formulae (Algorithm 1) with the EH algorithm. For all the
problems that we tried, both algorithm ran very fast (finished
in less than 1 second). As expected, the new algorithm con-
sistently found a superset of XOR formulae. Table 1 shows
that our algorithm finds additional XOR formulae in 50% of
the domains. With the new set of XOR formulae, PEMVI
managed to solve Zeno p5 in 23% of the time, with 53% of
memory compared to using the smaller set of XOR formulae
found by the EH algorithm.
Quality of Automatic Partitioning: We now compare
the partition generated by our algorithm with the Explo-
sive Blocksworld partition devised manually in our previous
work [Dai et al., 2008]. That partition recursively applied a
grounding of the ∃1b [clear(b′)⊕on(b, b′)] XOR group, using
a new block b′ at each level.

In contrast, automatic partitioning starts by picking
the same XOR group, but at the next level it picks a
group that differentiates different locations of b′, namely
∃1b [holding(b′) ⊕ on(b′, b)] (whether b′ is in hand, or on
top of another block). By considering these two related XOR
groups as a pair, the resulting partition gets a better perfor-
mance, as we show below.

We compare the two partition schemes by averaging over
four 7-block Explosive Blocksworld problems, whose aver-
age number of reachable states is 9,649,979. Table 2 com-
pares the performance of the two partitioning approaches,
which each found a valid partition at level 2 on every prob-
lem. We observe that on average automatic partitioning
solves problems slightly faster (5.5%) and with slight less
memory (6.4%). When tested on even larger (8- and 9-block)
problems, manual partitioning failed completely, overflowing
its block transition table. In contrast, automatic partitioning
solved these problems handily (Table 3).
Scalability: We evaluated our system on problems from 8
domains from IPC-06 [ipc, 2006]. Since problems in Drive
and Unrolled-Drive are extremely small, we do not report
those results. Table 3 lists some of the large problems solved
by our algorithm.3 For each problem, we also report the size
of its reachable state space, time spent performing reacha-
bility and partitioning, I/O time and CPU time consumed by

3The ones with * are not original IPC problems
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Figure 3: Example of an MDP which would be expensive to solve
if s1 is mistakenly placed in a partition which doesn’t contain s2.

PEMVI, as well as the planner’s peak memory usage. As an
external memory algorithm, the convergence of PEMVI on
these problems is relatively fast (usually within a couple of
hours). This shows the great power of our automated tech-
niques in solving large probabilistic planning problems.
Simple-Negated XOR Groups: We also find that very few
XOR groups are present in some domains. For them we de-
cided to use simple-negated XOR groups, of the form {l,¬l},
where l is a grounded literal. This modification especially
helps in Blocksworld and Tireworld, since they have very few
XOR groups with complex structure.

Results show that, for the four Tireworld problems we
tried, using simple-negated XOR groups lead to faster con-
vergence (average 50.0% speedup, but most useful on small
problems). For the Blocksworld domain, failure to consider
simple-negated groups does not slow convergence on small
problems (e.g., 5-blocks). However, on larger problems (e.g.
6-blocks and larger), we were unable to find a solution with-
out using simple-negated groups. We conclude that simple-
negated groups is very important in generating a partition, es-
pecially when the non-trivial XOR groups are too sparse. So,
overall their use makes the algorithm more robust to a wide
variety of domains.

6 Related Work

Automatic partitioning in logically-specified planning do-
mains was introduced by Zhou and Hansen [2006]. They use
a partition to reduce the size of the states that are checked for
finding duplicate states during systematic, external-memory
searches. Static partitioning over non-logical probabilistic
domains was used by Wingate and Seppi [2005]. They manu-
ally form a partition and solve each partition block iteratively,
in order to expedite classical dynamic programming.

Our idea of automatic partitioning is related to variable
resolution [Moore and Atkeson, 1995; Dean et al., 1997;
Munos and Moore, 2000; 2002]. Variable resolution tries to
automatically and dynamically group similar states as an ab-
stract state, solves the abstract MDP, and uses the solution
to the abstract MDP as an approximation. However, we aim
to solve the original MDP optimally, and thus our approach
differs from them in a fundamental way. Our emphasis is
on creating a partition that minimizes the total time (I/O +
backup) for optimal policy construction whereas they aim at
partitions that achieves better approximation. However, dy-
namic partitioning is not I/O efficient, and does not guarantee
that the abstract MDP fits in the memory.

7 Limitations and Future Work

PEMVI can be very sensitive to the quality of partition. For
instance, consider Figure 3, in which s1 and s2 form a cy-
cle with probability 0.9. Dynamic programming may need
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Problem Reachable States Reachability Partition PEMVI (I/O) PEMVI (CPU) Memory (M)
Blocksworld p5 103,096 47 40 120 872 148

Elevator p15 538,316 990 893 220 898 877
Schedule p5 5,062,359 1,984 1,893 2,413 1,161 1,980

Zeno p5 5,223,057 3,456 3,187 1,340 13,918 448
Ex-Blocksworld α* 21,492,777 8,215 8,574 5,267 806 1,212

Tireworld p15 29,664,846 9,908 8,534 27,423 6,197 1,359
Ex-Blocksworld β* 42,899,585 16,656 16,059 10,926 1,527 580

Table 3: PEMVI running time (in seconds) and memory usage on some large problems in IPC-06 domains.

many iterations of backups for computing the correct values
for both states. If s1 and s2 end up in two different parti-
tion blocks, this translates into a large number of I/O itera-
tions, which can be very costly! Note that if the two states are
in the same block it is not a problem, since PEMVI already
performs multiple backups within a block in each I/O itera-
tion. In our experiments, we found that cycles of this type
are pervasive especially in Explosive-Blocksworld problems.
In practice, our automatic partitioning algorithm sometimes
falls into traps and finds a partition that cannot be solved. In
the future, we plan to resolve this issue by exploring dynamic
repartitioning. If one partition fails, i.e., is taking a long time
to converge, we can detect the cycles responsible for slow
convergence and generate a new valid partition in which the
states on those cycles are assigned to the same partition block.

8 Conclusions

This paper makes several contributions. First, we demon-
strate the practicality of automatically partitioning proba-
bilistic planning problems by implementing a completely au-
tonomous, domain-independent MDP solver, which can op-
timally handle as yet unsolved problems in several IPC-06
domains.

Second, our algorithm uses a novel approach for generat-
ing XOR groups, which generalizes those of [Edelkamp and
Helmert, 1999; Zhou and Hansen, 2006].

Third, we propose a new heuristic, balance, for guiding the
search for partitions and introduce a sampling method for its
efficient computation.

Finally, we present several experiments: comparing three
partitioning heuristics, comparing our algorithm to compute
XOR groups with previous work, showing that automatic par-
titioning can beat manual methods, and demonstrating the
utility of simple-negated groups.
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