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Abstract

Canonical correlation analysis (CCA) and partial
least squares (PLS) are well-known techniques
for feature extraction from two sets of multi-
dimensional variables. The fundamental difference
between CCA and PLS is that CCA maximizes the
correlation while PLS maximizes the covariance.
Although both CCA and PLS have been applied
successfully in various applications, the intrinsic
relationship between them remains unclear. In this
paper, we attempt to address this issue by showing
the equivalence relationship between CCA and or-
thonormalized partial least squares (OPLS), a vari-
ant of PLS. We further extend the equivalence re-
lationship to the case when regularization is em-
ployed for both sets of variables. In addition, we
show that the CCA projection for one set of vari-
ables is independent of the regularization on the
other set of variables. We have performed exper-
imental studies using both synthetic and real data
sets and our results confirm the established equiva-
lence relationship. The presented analysis provides
novel insights into the connection between these
two existing algorithms as well as the effect of the
regularization.

1 Introduction

Canonical correlation analysis (CCA) [Hotelling, 1936] is
commonly used for finding the correlations between two sets
of multi-dimensional variables. CCA seeks a pair of lin-
ear transformations, one for each set of variables, such that
the data are maximally correlated in the transformed space.
As a result, it can extract the intrinsic representation of the
data by integrating two views of the same set of objects. In-
deed, CCA has been applied successfully in various applica-
tions [Hardoon et al., 2004; Vert and Kanehisa, 2003], includ-
ing regression, discrimination, and dimensionality reduction.

Partial least squares (PLS) [Wold and et al., 1984] is a fam-
ily of methods for modeling relations between two sets of
variables. It has been a popular tool for regression and clas-
sification as well as dimensionality reduction [Rosipal and
Krämer, 2006; Barker and Rayens, 2003], especially in the

field of chemometrics. It has been shown to be useful in situ-
ations where the number of observed variables (or the dimen-
sionality) is much larger than the number of observations. In
its general form, PLS creates orthogonal score vectors (also
called latent vectors or components) by maximizing the co-
variance between different sets of variables. Among the many
variants of PLS, the orthonormalized PLS (OPLS) [Worsley
et al., 1997; Arenas-Garcia and Camps-Valls, 2008], a popu-
lar variant of PLS, is studied in this paper.

In essence, CCA finds the directions of maximum correla-
tion while PLS finds the directions of maximum covariance.
Covariance and correlation are two different statistical mea-
sures for quantifying how variables covary. It has been shown
that there is a close connection between PLS and CCA in dis-
crimination [Barker and Rayens, 2003]. In [Hardoon, 2006]

and [Rosipal and Krämer, 2006], a unified framework for PLS
and CCA is developed, and CCA and OPLS can be consid-
ered as special cases of the unified framework by choosing
different values of regularization parameters. However, the
intrinsic equivalence relationship between CCA and OPLS
has not been studied yet.

In practice, regularization is commonly employed to penal-
ize the complexity of a learning model and control overfitting.
It has been applied in various machine learning algorithms
such as support vector machines (SVM). The use of regu-
larization in CCA has a statistical interpretation [Bach and
Jordan, 2003]. In general, regularization is enforced for both
sets of multi-dimensional variables in CCA, as it is generally
believed that the CCA solution is dependent on the regular-
ization on both variables.

In this paper, we study two fundamentally important prob-
lems regarding CCA and OPLS: (1) What is the intrinsic re-
lationship between CCA and OPLS? (2) How does the reg-
ularization affect CCA and OPLS as well as their relation-
ship? In particular, we formally establish the equivalence re-
lationship between CCA and OPLS. We show that the dif-
ference between the CCA solution and the OPLS solution is
a mere orthogonal transformation. Unlike the discussion in
[Barker and Rayens, 2003] which focuses on discrimination
only, our results can be applied for regression and discrimi-
nation as well as dimensionality reduction. We further extend
the equivalence relationship to the case when regularization
is applied for both sets of variables. In addition, we show that
the CCA projection for one set of variables is independent
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of the regularization on the other set of variables, elucidat-
ing the effect of regularization in CCA. We have performed
experimental studies using both synthetic and real data sets.
Our experimental results are consistent with the established
theoretical results.

Notations

Throughout this paper the data matrices of the two views
are denoted as X = [x1, · · · , xn] ∈ R

d1×n and Y =
[y1, · · · , yn] ∈ R

d2×n, respectively, where n is the number
of training samples, d1 and d2 are the data dimensionality
correspond to X and Y , respectively. We assume that both X
and Y are centered in terms of columns, i.e.,

∑n
i=1

xi = 0

and
∑n

i=1
yi = 0. I denotes the identity matrix, and A† is

the pseudo-inverse of matrix A.

2 Background

2.1 Canonical Correlation Analysis

In canonical correlation analysis (CCA) two different repre-
sentations of the same set of objects are given, and a pro-
jection is computed for each representation such that they are
maximally correlated in the dimensionality-reduced space. In
particular, CCA computes two projection vectors, wx ∈ R

d1

and wy ∈ R
d2 , such that the correlation coefficient

ρ =
wT

x XY T wy√
(wT

x XXT wx)(wT
y Y Y T wy)

(1)

is maximized. Multiple projections of CCA can be computed
simultaneously by solving the following problem:

max
Wx,Wy

tr
(
WT

x XY T Wy

)
(2)

subject to WT
x XXT Wx = I, WT

y Y Y T Wy = I,

where each column of Wx ∈ R
d1×� and Wy ∈ R

d2×� cor-
responds to a projection vector and � is the number of pro-
jection vectors computed. Assume that Y Y T is nonsingular.
The projection Wx is given by the � principal eigenvectors of
the following generalized eigenvalue problem:

XY T (Y Y T )−1Y XT wx = ηXXT wx, (3)

where η is the corresponding eigenvalue.
In regularized CCA (rCCA), a regularization term is added

to each view to stabilize the solution, leading to the follow-
ing generalized eigenvalue problem [Hardoon et al., 2004;
Shawe-Taylor and Cristianini, 2004]:

XY T (Y Y T + λyI)−1Y XT wx = η(XXT + λxI)wx, (4)

where λx > 0 and λy > 0 are the two regularization parame-
ters.

2.2 Orthonormalized Partial Least Squares

While CCA maximizes the correlation of data in the
dimensionality-reduced space, partial least squares (PLS)
maximizes their covariance [Barker and Rayens, 2003; Rosi-
pal and Krämer, 2006]. In this paper, we consider orthonor-
malized PLS (OPLS) [Worsley et al., 1997], which does not

consider the variance of one of the two views. It has been
shown to be competitive with other PLS variants [Worsley
et al., 1997; Arenas-Garcia and Camps-Valls, 2008]. OPLS
computes the orthogonal score vectors for X by solving the
following optimization problem:

max
W

tr(WT XY T Y XT W ) (5)

subject to WT XXT W = I.

It can be shown that the columns of the optimal W are given
by the � principal eigenvectors of the following generalized
eigenvalue problem:

XY T Y XT w = ηXXT w. (6)

It follows from the discussion above that the computation of
the projection of X in OPLS is directed by the information
encoded in Y . Such formulation is especially attractive in the
supervised learning context in which the data are projected
onto a low-dimensional subspace directed by the label infor-
mation encoded in Y . Thus, OPLS can be applied for super-
vised dimensionality reduction.

Similar to CCA, we can derive regularized OPLS (rOPLS)
by adding a regularization term to XXT in Eq. (6), leading
to the following generalized eigenvalue problem:

XY T Y XT w = η
(
XXT + λxI

)
w. (7)

3 Relationship between CCA and OPLS

We establish the equivalence relationship between CCA and
OPLS in this section. In the following discussion, we use the
subscript cca and pls to distinguish the variables associated
with CCA and OPLS, respectively. We first define two key
matrices for our derivation as follows:

Hcca = Y T (Y Y T )−
1

2 ∈ R
n×d2 , (8)

Hpls = Y T ∈ R
n×d2 . (9)

3.1 Relationship between CCA and OPLS without
Regularization

We assume that Y has full row rank, i.e., rank(Y ) = d2.

Thus, (Y Y T )−
1

2 is well-defined. It follows from the above
discussion that the solutions to both CCA and OPLS can be
expressed as the eigenvectors corresponding to the top eigen-
values of the following matrix:

(XXT )†(XHHT XT ), (10)

where H = Hcca for CCA and H = Hpls for OPLS. We next
study the solution to this eigenvalue problem.

Solution to the Eigenvalue Problem

We follow [Sun et al., 2008] for the computation of the prin-
cipal eigenvectors of the generalized eigenvalue problem in
Eq. (10). Let the singular value decomposition (SVD) [Golub
and Loan, 1996] of X be

X = UΣV T = U1Σ1V
T
1

, (11)

where U ∈ R
d1×d1 and V ∈ R

n×n are orthogonal, U1 ∈
R

d1×r and V1 ∈ R
n×r have orthonormal columns, Σ ∈
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R
d1×n and Σ1 ∈ R

r×r are diagonal, and r = rank(X). De-
note

A = Σ−1

1
UT

1
XH = Σ−1

1
UT

1
U1Σ1V

T
1

H = V T
1

H ∈ R
r×d2 .

(12)
Let the SVD of A be A = PΣAQT , where P ∈ R

r×r and
Q ∈ R

d2×d2 are orthogonal and ΣA ∈ R
r×d2 is diagonal.

Then we have
AAT = PΣAΣT

APT . (13)

Lemma 1. The eigenvectors corresponding to the top �
eigenvalues of (XXT )†(XHHT XT ) are given by

W = U1Σ
−1

1
P�, (14)

where P� consists of the first �(� ≤ rank(A)) columns of P .

Proof. We can decompose (XXT )†(XHHT XT ) as fol-
lows:

(XXT )†(XHHT XT )

= U1Σ
−2

1
UT

1
XHHT XT

= U1Σ
−1

1
AHT V1Σ1U

T
1

= U

[
Ir

0

]
Σ−1

1
AAT Σ1 [Ir 0] UT

= U

[
Σ−1

1
AAT Σ1 0
0 0

]
UT

= U

[
Σ−1

1
P 0

0 I

] [
ΣAΣT

A 0
0 0

] [
PT Σ1 0

0 I

]
UT ,

where the last equality follows from Eq. (13). It is clear that
the eigenvectors corresponding to the top � eigenvalues of
(XXT )†(XHHT XT ) are given by

W = U1Σ
−1

1
P�.

This completes the proof of the lemma.

The Equivalence Relationship

It follows from Lemma 1 that U1 and Σ1 are determined by
X . Thus the only difference between the projections com-
puted by CCA and OPLS lies in P�. To study the property of
P�, we need the following lemma:

Lemma 2. Let Acca = V T
1

Hcca and Apls = V T
1

Hpls with
the matrix A defined in Eq. (12). Then the range spaces of
Acca and Apls are the same.

Proof. Let the SVD of Y be

Y = UyΣyV T
y , (15)

where Uy ∈ R
d2×d2 , Vy ∈ R

n×d2 , and Σy ∈ R
d2×d2 is

diagonal. Since Y is assumed to have full column rank, all
the diagonal elements of Σy are positive. Thus,

Acca = V T
1

Hcca = V T
1

VyUT
y

Apls = V T
1

Hpls = V T
1

VyΣyUT
y .

It follows that Acca = AplsUyΣ
−1

y UT
y and Apls =

AccaUyΣyUT
y . Thus, the range spaces of Acca and Apls are

the same.

With this lemma, we can explicate the relationship between
the projections computed by CCA and OPLS.

Theorem 1. Let the SVD of Acca and Apls be

Acca = PccaΣAcca
QT

cca,

Apls = PplsΣApls
QT

pls,

where Pcca, Ppls ∈ R
r×rA , and rA = rank(Acca) =

rank(Apls). Then there exists an orthogonal matrix R ∈
R

rA×rA such that Pcca = PplsR.

Proof. It is clear that PccaPT
cca and PplsP

T
pls are the orthog-

onal projections onto the range spaces of Acca and Apls, re-

spectively. It follows from lemma 2 that both PccaPT
cca and

PplsP
T
pls are orthogonal projections onto the same subspace.

Since the orthogonal projection onto a subspace is unique
[Golub and Loan, 1996], we have

PccaPT
cca = PplsP

T
pls. (16)

Therefore,

Pcca = PccaPT
ccaPcca = PplsP

T
plsPcca = PplsR,

where R = PT
plsPcca ∈ R

rA×rA . It is easy to verify that

RRT = RT R = I .

If we retain all the eigenvectors corresponding to nonzero
eigenvalues, i.e., � = rA, the difference between CCA and
OPLS lies in the orthogonal transformation R ∈ R

rA×rA . In
this case, CCA and OPLS are essentially equivalent, since an
orthogonal transformation preserves all pairwise distances.

3.2 Relationship between CCA and OPLS with
Regularization

In the following we show that the equivalence relationship es-
tablished above also holds when regularization is employed.
We consider the regularization on X and Y separately.

Regularization on X

It follows from Eqs. (4) and (7) that regularized CCA (rCCA)
and regularized OPLS (rOPLS) compute the principal eigen-
vectors of the following matrix:

(XXT + λI)−1(XHHT XT ). (17)

Lemma 3. Define the matrix B ∈ R
r×d2 as

B = (Σ2

1
+ λI)−1/2Σ1V

T
1

H (18)

and denote its SVD as B = PBΣBQT
B , where PB ∈ R

r×r

and QB ∈ R
d2×d2 are orthogonal, and ΣB ∈ R

r×d2 is diag-
onal. Then the eigenvectors corresponding to the top � eigen-
values of matrix (XXT + λI)−1(XHHT XT ) are given by

W = U1(Σ
2

1
+ λI)−1/2PB�, (19)

where PB� consists of the first �(� ≤ rank(B)) columns of
PB .
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Proof. We can decompose (XXT + λI)−1(XHHT XT ) as
follows:

(XXT + λI)−1(XHHT XT )

= U1(Σ
2

1
+ λI)−1Σ1V

T
1

HHT V1Σ1U
T
1

= U1(Σ
2

1
+ λI)−1/2(Σ2

1
+ λI)−1/2Σ1V

T
1

HHT

V1Σ1(Σ
2

1
+ λI)−1/2(Σ2

1
+ λI)1/2UT

1

= U1(Σ
2

1
+ λI)−1/2BBT (Σ2

1
+ λI)1/2UT

1

= U

[
Ir

0

]
(Σ2

1
+ λI)−1/2BBT (Σ2

1
+ λI)1/2 [Ir 0] UT

= U

[
(Σ2

1
+ λI)−1/2BBT (Σ2

1
+ λI)1/2 0

0 0

]
UT

= U

[
(Σ2

1
+ λI)−1/2PB 0

0 I

] [
ΣBΣT

B 0
0 0

]
[
PT

B (Σ2

1
+ λI)1/2 0
0 I

]
UT .

Thus, the eigenvectors corresponding to the top � eigenval-
ues of (XXT + λI)−1(XHHT XT ) are given by U1(Σ

2

1
+

λI)−1/2PB�.

Following Lemma 3 we can show that the equivalence re-
lationship between CCA and OPLS also holds when the reg-
ularization on X is applied. The main results are summarized
in Lemma 4 and Theorem 2 below (proofs are similar to the
ones in Lemma 2 and Theorem 1).

Lemma 4. Let Bcca = (Σ2

1
+ λI)−1/2Σ1V

T
1

Hcca and

Bpls = (Σ2

1
+ λI)−1/2Σ1V

T
1

Hpls. Then the range spaces
of Bcca and Bpls are the same.

Theorem 2. Let the SVD of Bcca and Bpls be

Bcca = PB
ccaΣ

B
cca(QB

cca)
T ,

Bpls = PB
plsΣ

B
pls(Q

B
Bpls)

T ,

where PB
cca, PB

pls ∈ R
r×rB , and rB = rank(Bcca) =

rank(Bpls). Then there exists an orthogonal matrix RB ∈
R

rB×rB such that PB
cca = PB

plsR
B .

Regularization on Y

When Y Y T is singular, a regularization term can be applied
in CCA to overcome this problem, resulting in the eigende-
composition of following matrix:

(XXT )†XY T (Y Y T + λI)−1Y XT . (20)

The above formulation corresponds to a new matrix Hrcca for
rCCA defined as:

Hrcca = Y T (Y Y T + λI)−1/2. (21)

We establish the equivalence relationship between CCA and
OPLS when the regularization on Y is applied.

Lemma 5. Let Hcca, Hpls, and Hrcca be defined as in
Eqs. (8), (9), and (21), respectively. Then the range spaces
of Hcca, Hpls, and Hrcca are the same.

Proof. The proof follows directly from the definitions.

Lemma 5 shows that the regularization on Y does not
change the range space of Acca. Thus, the equivalence re-
lationship between CCA and OPLS still holds. Similarly, the
regularization on Y does not change the range space of Bcca

when a regularization on X is applied. Therefore, the estab-
lished equivalence relationship holds when regularization on
both X and Y is applied.

4 Analysis of the Equivalence Relationship

Regularization is a commonly-used technique to penalize the
complexity of a learning model and it has been applied in
various machine learning algorithms such as support vector
machines (SVM) [Schölkopf and Smola, 2002]. In particu-
lar, regularization is crucial to kernel CCA [Hardoon et al.,
2004] so that the trivial solutions are avoided. Moreover, the
use of regularization in CCA has natural statistical interpre-
tations [Bach and Jordan, 2003]. We show in this section
that the established equivalence relationship between CCA
and OPLS provides novel insights into the effect of regular-
ization in CCA. In addition, it leads to a significant reduction
in computations involved in CCA.

In general, regularization is applied on both views in CCA
[Shawe-Taylor and Cristianini, 2004; Hardoon et al., 2004],
since it is commonly believed that the CCA solution is de-
pendent on both regularizations. It follows from Lemma 5
that the range space of Hrcca is invariant to the regularization
parameter λy . Thus, the range spaces of Acca and Apls are
the same and the projection for X computed by rCCA is in-
dependent of λy . Similarly, we can show that the projection
for Y is independent of the regularization on X . Therefore,
an important consequence from the equivalence relationship
is that the projection of CCA for one view is independent of
the regularization on the other view.

Recall that the CCA formulation reduces to a generalized
eigenvalue problem as in Eq. (3). A potential problem with
this formulation is that we need to compute the inverse of the
matrix Y Y T ∈ R

d2×d2 , which may cause numerical prob-
lems. Moreover, the dimensionality d2 of the data in Y can be
large, such as in content-based image retrieval [Hardoon and
Shawe-Taylor, 2003] where the two views correspond to text
and image data that are both of high-dimensionality, and thus
computing the inverse can be computationally expensive. An-
other important consequence of the established equivalence
relationship between CCA and OPLS is that if only the pro-
jection for one view is required and the other view is only
used to guide the projection on this view, then the inverse of
a large matrix can be effectively avoided.

The established equivalence relationship between CCA
and OPLS leads to a natural question: what is the essential
information of Y used in the projection of X in CCA? Re-
call that given any matrix H , Theorem 1 holds if R(H) =
R(Y T ), i.e., the “intrinsic” information captured from Y is
the range space R(Y T ). It follows from the above analysis
that some other dimensionality reduction algorithms can be
derived by employing a different matrix H to capture the in-
formation from Y . In OPLS such information is encoded as
Hpls = Y T . We plan to explore other structures based on the
matrix Y .
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Table 1: The value of ‖WccaW
T
cca − WplsW

T
pls‖2 under different values of the regularization parameters for the synthetic data

set. Each row corresponds to different values of λx and each column corresponds to different values of λy .

λx\λy 0 1.0e-006 1.0e-005 1.0e-004 1.0e-003 1.0e-002 1.0e-001 1.0e+000 1.0e+001 1.0e+002 1.0e+003 1.0e+004

0 9.7e-018 9.5e-018 1.1e-017 1.0e-017 9.5e-018 9.7e-018 1.0e-017 1.1e-017 9.9e-018 1.1e-017 1.1e-017 1.1e-017

1.0e-006 8.7e-018 8.6e-018 8.5e-018 8.9e-018 8.7e-018 8.3e-018 8.7e-018 8.7e-018 9.7e-018 8.4e-018 8.6e-018 1.1e-017

1.0e-005 9.1e-018 9.4e-018 9.2e-018 9.2e-018 9.7e-018 1.0e-017 9.9e-018 9.0e-018 9.6e-018 9.4e-018 1.1e-017 1.1e-017

1.0e-004 8.8e-018 1.0e-017 9.0e-018 8.7e-018 9.4e-018 8.5e-018 8.6e-018 9.6e-018 9.6e-018 1.0e-017 8.8e-018 1.0e-017

1.0e-003 9.0e-018 1.0e-017 8.7e-018 9.2e-018 8.9e-018 9.3e-018 8.7e-018 8.9e-018 8.7e-018 9.0e-018 9.8e-018 9.0e-018

1.0e-002 9.2e-018 8.9e-018 9.0e-018 9.2e-018 8.3e-018 9.4e-018 9.3e-018 8.6e-018 8.9e-018 9.2e-018 1.1e-017 9.4e-018

1.0e-001 9.6e-018 9.5e-018 8.7e-018 1.0e-017 1.0e-017 8.5e-018 9.9e-018 9.0e-018 9.8e-018 8.5e-018 9.2e-018 1.0e-017

1.0e+000 9.6e-018 9.9e-018 8.3e-018 9.1e-018 9.1e-018 9.5e-018 8.8e-018 9.1e-018 9.1e-018 9.0e-018 9.7e-018 9.0e-018

1.0e+001 9.1e-018 8.6e-018 8.1e-018 8.6e-018 8.5e-018 9.6e-018 9.0e-018 8.4e-018 8.3e-018 8.7e-018 9.0e-018 8.9e-018

1.0e+002 9.1e-018 7.2e-018 6.7e-018 7.7e-018 8.4e-018 8.0e-018 7.6e-018 7.8e-018 8.0e-018 7.2e-018 7.2e-018 7.1e-018

1.0e+003 3.5e-018 3.2e-018 3.5e-018 3.6e-018 3.2e-018 3.4e-018 3.3e-018 3.3e-018 3.2e-018 3.1e-018 3.0e-018 3.6e-018

1.0e+004 8.0e-019 7.6e-019 7.2e-019 7.0e-019 6.8e-019 7.3e-019 7.9e-019 7.3e-019 8.0e-019 7.3e-019 7.5e-019 8.3e-019

−6 −5 −4 −3 −2 −1 0 1 2 3 4
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

A
U
C

logλ
x

CCA
OPLS

Figure 1: Comparison of CCA and OPLS in terms of AUC
on the scene data set as the regularization parameter λx on X
varies from 1e-6 to 1e4.

5 Empirical Evaluation

We use both synthetic and real data sets to verify the theoret-
ical results established in this paper. We compare CCA and
OPLS as well as their variants with regularization.

5.1 Synthetic Data

In this experiment, we generate a synthetic data set with the
entries of X and Y following the standard normal distribu-
tion, and set d1 = 1000, d2 = 100, and n = 2000.

We compute ‖WccaWT
cca − WplsW

T
pls‖2 under different

values of the regularization parameter, where Wcca and Wpls

are the projection matrices computed by CCA and OPLS, re-
spectively. Recall from Theorems 1 and 2 that the subspaces
generated by CCA and OPLS are equivalent if ‖WccaWT

cca −
WplsW

T
pls‖2 = 0 holds. Note that the regularization on Y

is not considered for OPLS. We thus compare CCA with a
pair of regularization values (λx, λy) to OPLS with λx > 0.
We vary the values of λx and λy from 1e-6 to 1e4 and the
results are summarized in Table 1. We can observe that the
difference ‖WccaW

T
cca−WplsW

T
pls‖2 is less than 1e-16 in all

cases, which confirms Theorems 1 and 2.
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U
C

logλ
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CCA
OPLS

Figure 2: Comparison of CCA and OPLS in terms of AUC
on the scene data set as the regularization parameter λy on Y
varies from 1e-6 to 1e4.

5.2 Real-world Data

In this experiment, we use two multi-label data sets scene
and yeast to verify the equivalence relationship between CCA
and OPLS. The scene data set consists of 2407 samples of
dimension 294, and it includes 6 labels. The yeast data set
contains 2417 samples of 103-dimension and 14 labels. For
both data sets, we randomly choose 700 samples for train-
ing. A linear SVM is applied for each label separately in the
dimensionality-reduced space, and the mean area under the
receiver operating characteristic curve, called AUC over all
labels is reported.

The performance of CCA and OPLS on the scene data set
as λx varies from 1e-6 to 1e4 is summarized in Figure 1. Note
that in this experiment we only consider the regularization
on X . It can be observed that under all values of λx, the
performance of CCA and OPLS is identical. We also observe
that the performance of CCA and OPLS can be improved by
using an appropriate regularization parameter, which justifies
the use of regularization on X .

We also investigate the performance of CCA and OPLS
with different values of λy and the results are summarized
in Figure 2. We can observe that the performance of both
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Figure 3: Comparison of CCA and OPLS in terms of AUC
on the yeast data set as the regularization parameter λx on X
varies from 1e-6 to 1e4.

methods is identical in all cases, which is consistent with our
theoretical analysis. In addition, we observe that the perfor-
mance of CCA remains the same as λy varies, showing that
the regularization on Y does not affect its performance.

We perform a similar experiment on the yeast data set, and
the results are summarized in Figures 3 and 4, from which
similar conclusions can be obtained.

6 Conclusions and Future Work

In this paper we establish the equivalence relationship be-
tween CCA and OPLS. Our equivalence relationship eluci-
dates the effect of regularization in CCA, and results in a sig-
nificant reduction of the computational cost in CCA. We have
conducted experiments on both synthetic and real-world data
sets to validate the established equivalence relationship.

The presented study paves the way for a further analysis of
other dimensionality reduction algorithms with similar struc-
tures. We plan to explore other variants of CCA using dif-
ferent definitions of the matrix H to capture the information
from the other view. One possibility is to use the most impor-
tant directions encoded in Y by considering its first k prin-
cipal components only, resulting in robust CCA. We plan to
examine the effectiveness of these CCA extensions in real-
world applications involving multiple views.
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