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Abstract

Given an imagebase with tagged images, four types
of tasks can be executed, i.e., content-based im-
age retrieval, image annotation, text-based image
retrieval, and query expansion. For any of these
tasks the similarity on the concerned type of objects
is essential. In this paper, we propose a framework
to tackle these four tasks from a unified view. The
essence of the framework is to estimate similari-
ties by exploiting the interactions between objects
of different modality. Experiments show that the
proposed method can improve similarity estima-
tion, and based on the improved similarity estima-
tion, some simple methods can achieve better per-
formances than some state-of-the-art techniques.

1 Introduction

With the explosive accumulation of digital images, many im-
agebases have been developed. How to organize and search
an imagebase effectively and efficiently poses a big challenge
for researchers. Previous researches on content-based image
retrieval (CBIR) suffer from the big gap between the low-
level visual feature and the high-level semantics. Recently,
much attention has been paid to exploiting some tagged im-
ages to bridge such semantic gap. Actually, given a group of
tagged images, several types of tasks can be executed on an
imagebase, which can be summarized as follows.

• Image-In Image-Out: This corresponds to the content-
based image retrieval task, where the user poses a query
image and then the system returns a set of relevant im-
ages.

• Image-In Text-Out: This corresponds to the image an-
notation task, where the user poses a query image and
then the system returns a set of annotation words.

• Text-In Image-Out: This corresponds to the text-based
image retrieval task, where the user poses a text query
and then the system returns a set of relevant images.
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863 Program (2007AA01Z169), JiangsuSF (BK2008018) and
Jiangsu 333 Program. Currently the second author is pursuing Ph.d.
degree at the University of Massachusetts at Amherst.

• Text-In Text-Out: This corresponds to the query expan-
sion task, where the user poses a text query and then the
system returns some words as hints to help the user to
refine the original query.

Many successful approaches have been proposed for each
type of the above tasks respectively. For example, Translation
Model (TM) [Duygulu et al., 2002], Latent Dirichlet Alloca-
tion (MoM-LDA) [Barnard et al., 2003] and Hidden Markov
Model (2D MHMM) [Li and Wang, 2003] have been used for
image annotation. Cross Media Relevance Model (CMRM)
[Jeon et al., 2003] and Structure-Composition Model [Datta
et al., 2006] have demonstrated their effectiveness for text-
based image retrieval. CBIR [Smeulders et al., 2000] has
been studied thoroughly in pure imagebases which contain
only untagged images, while query expansion [Baeza-Yates
and Ribeiro-Neto, 1999] is a hot topic in pure textbases that
do not involve images.

However, few studies have considered all these tasks from
a unified view. In fact, although these four tasks focus on
different goals, they all involve common basic elements, i.e.,
the blob (the visual feature used to represent an image) , the
word (the unit of an image’s annotation) and the image itself.
Thus, a good estimation of the similarities on these elements
is essential for all these tasks.

The conventional similarity between two blobs (words) is
based on the co-occurrence in images. In other words, two
blobs (words) that tend to appear in the same images are sim-
ilar. However, this similarity could not account for the situa-
tion that two blobs (words) appear in similar but not the same
images. Thus, a more reasonable estimation of similarity be-
tween blobs (words) needs to consider the similarity between
images. Similarly, the similarity between images also relies
on the similarity between blobs (words). It is more reasonable
to consider two images as similar when they contain similar
blobs (words) instead of exactly the same ones. Generally, in
imagebase the similarities between one type of objects (e.g.,
blobs) are inevitably influenced by the similarities between
other type of objects (e.g., images). It is evident that an im-
proved similarity on one type of entity may help to improve
the similarity on another type of entity. Thus, by working
in a unified framework, it may be possible to improve the
similarities of all types of objects by exploiting the interac-
tions among them. Experiments show that, amazingly, sim-
ple methods with the improved similarity can even beat the
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state-of-the-art techniques on the four aforementioned tasks.

Above all, a different strategy is adopted in this paper: in-
stead of designing sophisticated models for each type of the
four tasks respectively, we focus on the common basis of
these tasks, i.e., the similarity of the concerned objects. The
improved estimation of similarity has been obtained through
exploiting the interactions among different objects under a
unified framework.

The rest of paper is organized as follows. Section 2 briefly
reviews some related work. Section 3 proposes the unified
framework for exploiting interactions among objects. Section
4 reports experimental results. Finally, Section 5 concludes.

2 Related Work

Many studies have been conducted for image annotation and
text-based image retrieval. In addition to the work mentioned
in Section 1, Blei and Jordan [2003] proposed the correspon-
dence LDA (Corr-LDA) to model the conditional relationship
between the latent variables and Xing et al. [2005] proposed
the dual-wing harmonium model for image annotation, which
bears the properties of efficient inference and robust topic
mixing. Kang et al. [2006] proposed the Correlated Label
Propagation (CLP) to explicitly model the correlations be-
tween class labels.

Since CMRM and CLP will be used as baselines in our ex-
periments, here we introduce more details. CMRM is a mod-
ification of the relevance based language model. The joint
probability of words and blobs are modelled through accu-
mulating the evidence from the training set. After marginal-
izing this joint probability, the image can be annotated easily.
Unlike previous methods which propagate the class labels in-
dependently, CLP simultaneously co-propagates multiple la-
bels from the training set to the test set and uses an efficient
algorithm to avoid combinatorial explosion.

Kandola et al. [2003] proposed the semantic similarity,
which models the interaction between document and word,
with application to text classification. Lafferty and Zhai
[2001] used the Markov chain to model the same interaction
for text retrieval.

Hardoon et al. [2003] proposed to use Kernel Canonical
Correlation Analysis (KCCA) to learn a semantic represen-
tation for images with associated text. This semantic repre-
sentation can be considered as a new feature space, where
the correlation between the visual features of images and the
associated text of images is maximized. The cross-media re-
trieval can be conducted through first mapping both the query
and images into this semantic space and then calculating the
inner-product between the query and images. The major dif-
ference between KCCA and our method lies in the fact that
the maximization of the correlation between two feature sets
does not necessarily lead to the minimization of the difference
between two similarity matrices of images calculated from
different feature sets. In our method, we implicitly achieve
the latter target through modelling the interactions between
image and text.

Pan et al. [2004] proposed a graph-based method (GCap).
After constructing the graph for each type of objects, a ran-
dom walk with restarts is executed to solve the task in im-

agebase. Guo et al. [2007] explicitly modelled the relations
between blob and word by structural learning techniques. Our
method focuses on the refined similarities of each type of ob-
jects instead of the cross type relations.

3 A Unified Framework

Here, we consider an imagebase consisting of a set of tagged
images T , a set of untagged images U , a set of image blobs
B and a set of annotation words W .

Formally, B = {b1, b2, · · · , bc} where bj is an image
blob; W = {w1, w2, · · · , wd} where wj is an annotation
word. T = {t1, t2, · · · , tm} where ti = (�xi, �yi) is a
tagged image, �xi = [#(b1, ti), #(b2, ti), · · · , #(bc, ti)]

�, �yi =
[#(w1, ti), #(w2, ti), · · · , #(wd, ti)]

�. Here #(bj , ti) indi-
cates the frequency that the blob bj appears in ti, and
#(bj , ti) = 0 if bj does not appear in ti. �xi is the visual rep-

resentation vector of ti
1. Similarly, �yi is the annotation word

vector of ti; #(wj , ti) indicates the frequency the word wj

appears in the annotation of ti, and #(wj , ti) = 0 if wj does
not appear in ti. U = {u1, u2, · · · , ul} where ui = (�zi, φ)
is an untagged image, i.e., the annotation words of the im-
age are not known, �zi = [#(b1, ui), #(b2, ui), · · · , #(bc, ui)]

�.
It is also possible to describe each blob bj and each word
wj by considering its appearances in the images in T as
�bj = [#(bj , t1), #(bj , t2), · · · , #(bj , tm)]� where #(bj , ti) in-
dicates the frequency bj appears in the image ti, and �wj =
[#(wj , t1), #(wj , t2), · · · , #(wj , tm)]� where #(wj , ti) indi-
cates the frequency wj appears in the annotation of the im-

age ti
2. Furthermore, c × m blob-image relation matrix

is denoted as M = [�x1, �x2, · · · , �xm] = [�b1,�b2, · · · ,�bc]
� and

the d × m word-image relation matrix is denoted as N =
[�y1, �y2, · · · , �ym] = [�w1, �w2, · · · , �wd]�3.

3.1 Interactions of Different Types of Objects

Assume SB denotes the similarity matrix of blobs where
SB(i, j) = sim(bi, bj), SW denotes the similarity matrix of
words where SW(i, j) = sim(wi, wj), and ST denotes the
similarity matrix of images where ST(i, j) = sim(ti, tj).
The calculation of the similarities of each type of objects is
summarized in Table 1. Note that the similarity of images can
be calculated based on either blobs or words they contain.

For example, the first row of Table 1 shows the initial sim-
ilarity of two blobs4, which assumes that blobs appearing in
the same images tend to be similar. By further considering the
similarity of images, a refined blob similarity is shown in the
second row, which assumes that blobs appearing in similar
images tend to be similar.

Table 1 clearly shows that the estimations of SB, SW and
ST are influenced by each other. In order to differentiate

1The blob-based representation is widely used for image annota-
tion and retrieval [Duygulu et al., 2002; Jeon et al., 2003].

2Note that bj (wj) is used to denote the blob (word) and �bj (�wj)
is used to denote its corresponding vector representation.

3Similar matrix definition is widely used in collaborative filter-
ing for modelling the user-item relation.

4Here the similarity function is in the form of inner-product, but
note that our basic idea can also be applied to other kinds of similar-
ity functions.
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Table 1: Similarity calculation of different objects.

Object Similarity Calculation Intuition

sim(bi, bj) = �b�i
�bj = Σm

k=1
#(bi, tk)#(bj , tk) SB = MM

� Similar Blobs: Appearing in the same images
Blob

sim(bi, bj) = �b�i ST
�bj = Σm

k1=1
Σm

k2=1
#(bi, tk1

)sim(tk1
, tk2

)#(bj , tk2
) SB = MSTM

� Similar Blobs: Appearing in the similar images

sim(ti, tj) = �x�

i �xj = Σc
k=1

#(bk, ti)#(bk, tj) ST = M
�
M Similar Images: Sharing the same blobs

Image
sim(ti, tj) = �x�

i SB�xj = Σc
k1=1

Σc
k2=1

#(bk1
, ti)sim(bk1

, bk2
)#(bk2

, tj) ST = M
�
SBM Similar Images: Sharing similar blobs

sim(wi, wj) = �w�

i �wj = Σm
k=1

#(wi, tk)#(wj, tk) SW = NN
� Similar Words: Appearing with the same images

Word
sim(wi, wj) = �w�

i ST �wj = Σm
k1=1

Σm
k2=1

#(wi, tk1
)sim(tk1

, tk2
)#(wj, tk2

) SW = NSTN
� Similar Words: Appearing with similar images

sim(ti, tj) = �y�

i �yj = Σd
k=1

#(wk, ti)#(wk, tj) ST = N
�
N Similar Images: Sharing the same words

Image
sim(ti, tj) = �y�

i SW�yj = Σd
k1=1

Σd
k2=1

#(wk1
, ti)sim(wk1

, wk2
)#(wk2

, tj) ST = N
�
SWN Similar Images: Sharing similar words

(a) Type I (b) Type II (c) Type III (d) Type IV

Figure 1: Four types of interactions.

the similarity of images calculated based on their constituent
blobs (as shown in Row 3 and 4 of Table 1) and their annota-
tion words (as shown in Row 7 and 8 of Table 1), we denote
the former as STB

and the latter as STW
. The way of substi-

tuting ST in Table 1 with STB
and STW

defines the following
four types of interactions between blobs, images and words,
as shown in Figure 1:

• Type I: SB = MSTB
M�, SW = NSTB

N�

The interaction is restricted to images and blobs, but its
influence can propagate to words via images.

• Type II: SB = MSTW
M�, SW = NSTW

N�

The interaction is restricted to images and words, but its
influence can propagate to blobs via images.

• Type III: SB = MSTB
M�, SW = NSTW

N�

Blobs and words interact with images separately, and no
information flows between blobs and words.

• Type IV: SB = MSTW
M�, SW = NSTB

N�

There exist complete interactions between blobs, images
and words, and the information can flow among all types
of objects.

Following the directed edges in Figure 1, we formalize the
iterative similarity updates with respect to each type of in-
teractions, where the similarity can be decomposed into the
initial similarity without any interaction with other types of
objects and the refined similarity from other objects based on
the interactions between objects.

• Type I:

S
(n)
B

= (1 − λ1)S
(0)
B

+ λ1MS
(n−1)
TB

M
�

(1a)

S
(n)
TB

= (1 − λ2)S
(0)
TB

+ λ2M
�
S

(n−1)

B M (1b)

S
(n)
W

= (1 − λ3)S
(0)
W

+ λ3NS
(n−1)
TB

N
�

(1c)

S
(n)
TW

= (1 − λ4)S
(0)
TW

+ λ4N
�
S

(n−1)

W N (1d)

• Type II:

S
(n)
B

= (1 − λ1)S
(0)
B

+ λ1MS
(n−1)
TW

M
�

(2a)

S
(n)
TB

= (1 − λ2)S
(0)
TB

+ λ2M
�
S

(n−1)

B M (2b)

S
(n)
W

= (1 − λ3)S
(0)
W

+ λ3NS
(n−1)
TW

N
�

(2c)

S
(n)
TW

= (1 − λ4)S
(0)
TW

+ λ4N
�
S

(n−1)

W N (2d)

• Type III:

S
(n)
B

= (1 − λ1)S
(0)
B

+ λ1MS
(n−1)
TB

M
�

(3a)

S
(n)
TB

= (1 − λ2)S
(0)
TB

+ λ2M
�
S

(n−1)

B M (3b)

S
(n)
W

= (1 − λ3)S
(0)
W

+ λ3NS
(n−1)
TW

N
�

(3c)

S
(n)
TW

= (1 − λ4)S
(0)
TW

+ λ4N
�
S

(n−1)

W N (3d)

• Type IV:

S
(n)
B

= (1 − λ1)S
(0)
B

+ λ1MS
(n−1)
TW

M
�

(4a)

S
(n)
TB

= (1 − λ2)S
(0)
TB

+ λ2M
�
S

(n−1)

B M (4b)

S
(n)
W

= (1 − λ3)S
(0)
W

+ λ3NS
(n−1)
TB

N
�

(4c)

S
(n)
TW

= (1 − λ4)S
(0)
TW

+ λ4N
�
S

(n−1)

W N (4d)

Here, 0 < λ1, λ2, λ3, λ4 < 1, which balance the contri-
bution of the refined similarities and the initial similarities
S

(0)
B

= MM�, S
(0)
TB

= M�M, S
(0)
W

= NN�, S
(0)
TW

= N�N.

One question arises: Do the similarity refinement con-
verge? In the following, we prove the convergence of the
refinement of SB,SW,STB

and STW
. Since Type IV interac-

tion is the most complicated one among the four interactions,
we provide the convergence analysis of SB for Type IV as an
example. The result is summarized in the following proposi-
tion. Similar results can be obtained for the other similarities
for different types of interactions, and will be presented in a
longer version.

Proposition 1. Let C = (λ1λ2λ3λ4)
1

2 MN�NM�, whose
eigenvalues are {e1, e2, · · · , ec}. If |ei| < 1 (i = 1, · · · , c),

then lim
n→∞

(
S

(n)
B

− S
(n−1)
B

)
= 0.
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Proof.

S
(n)
B

− S
(n−1)
B

= λ1M
(
S

(n−1)
TW

− S
(n−2)
TW

)
M�

= λ1λ4MN�

(
S

(n−2)
W

− S
(n−3)
W

)
NM�

= λ1λ4λ3MN�N
(
S

(n−3)
TB

− S
(n−4)
TB

)
N�NM�

= λ1λ4λ3λ2MN�NM�

(
S

(n−4)
B

− S
(n−5)
B

)
MN�NM�

= · · · = Cp
(
S

(q)
B

− S
(q−1)
B

)
Cp

where n = 4p + q (q = 1, · · · , 4).
Since C is a symmetric matrix, which can be decomposed

as C = QDQ�, where Q is an orthogonal matrix and D is a
diagonal matrix whose diagonal elements are the eigenvalues
of C. Substituting C in the above equation yields

S
(n)
B

− S
(n−1)
B

= QDpQ�

(
S

(q)
B

− S
(q−1)
B

)
QDpQ� .

Since |ei| < 1 (i = 1, · · · , c), lim
p→∞

Dp = 0. Therefore, we

have lim
n→∞

(S
(n)
B

− S
(n−1)
B

) = 0. �

Based on the convergence of the similarities, we further
derive the close-form solution of all the similarities for each
interaction type. Due to space limitation, we only provide the
derivation of SB for Type IV and the other derivation will be
presented in a longer version.

By plugging Eqs.(4b)∼(4d) into Eq.(4a) in Type IV,
Eq.(4a) can be rewritten as

S
(n)
B

= R + CS
(n−4)
B

C (5)

where

R=(1 − λ1)S
(0)
B

+ λ1(1 − λ4)MS
(0)
TW

M� +

λ1λ4(1 − λ3)MN�S
(0)
W

NM� +

λ1λ4λ3(1 − λ2)MN
�
NS

(0)
TB

N�NM
� (6)

If |ei| < 1 (i = 1, · · · , c), by Proposition 1, assume that

the sequence S
(n)
B

converges to S∗

B
. When n → ∞, since

C = QDQ� and D = diag(e1, e2, · · · , ec), we obtain

S
(∗)
B

− QDQ�S
(∗)
B

QDQ� = R . (7)

With some algebra, we obtain the solution for Eq. 7 as:

S
(∗)
B

= Q
((

Q�RQ
)
� Σ

)
Q� (8)

where Σ = [σij ]c×c, σij = (1 − eiej)
−1; � is element-wise

matrix multiplication.
Note that in many real tasks, data can be normalized before

the similarity learning process to ensure the convergence.

3.2 Tackling the Four Tasks with Refined
Similarities

We address how to use the refined SB and SW after ex-
ploiting multi-modal interactions to tackle the four image-text
tasks as we mentioned in Section 15.

5Since these four tasks mainly concern about untagged images,
the similarity matrices of tagged images, i.e., STB

and STW
, are

not used, but these matrices are obviously very useful for other tasks
such as clustering tagged images.

Table 2: Simple methods to tackle the four tasks with the
improved similarities.

Task: Content-based Image Retrieval

Input: Image Query qimg

Output: A rank of ui in U
Process: a) For each ui = (�zi, φ) in U , scorei = getScore(�qimg, �zi, SB)

b) Sort scorei decreasingly to get the rank of ui

Task: Image Annotation

Input: Image Query qimg , the number of nearest neighbors k
Output: A rank of wi in W
Process: a) For each ti = (�xi, �yi) in T , scorei = getScore(�qimg , �xi, SB)

b) Sort scorei decreasingly to get a rank of ti . If ti belongs to the top k

of this rank, set δi = 1

k
;otherwise, set δi = 0.

c) �h = Σm
i=1

δi�yi

d) Sort the element of �h decreasingly to get the rank of wi.

Task: Text-based Image Retrieval

Input: Text Query qtxt , the number of nearest neighbors k
Output: A rank of ui in U
Process: a) For each ui = (�zi, φ) in U , repeat steps a)-c) of Image Annotation to

get corresponding �hi, scorei = getScore(�qtxt, �hi, I)
% I is identity matrix

b) Sort scorei decreasingly to get the rank of ui

Task: Query Expansion

Input: Text Query qtxt

Output: A rank of wi in W
Process: a) For each wi in W , construct �wi as a d × 1 vector with the ith position

as 1 and the other positions as 0, scorei = getScore(�qtxt, �wi, SW)
b) Sort scorei decreasingly to get the rank of wi

For content-based image retrieval and image annotation,
the input is an image query qimg whose vector representa-
tion is �qimg = [ #(b1, qimg), #(b2, qimg), · · · , #(bc, qimg)]�.
For text-based image retrieval and query expansion, the in-
put is a text query qtxt whose vector representation is �qtxt =
[#(w1, qtxt), #(w2, qtxt), · · · , #(wd, qtxt)]

�. We apply simple
methods shown in Table 2 to solve these tasks based on the
refined similarities SB and SW.

In Table 2, the function getScore(�v1, �v2,S) first uses S to
obtain the “expanded” representations of �v1, �v2, where �v′1 =
�v1 × S and �v′2 = �v2 × S, and then, computes the score based
on certain similarity measurement between �v′1 and �v′2.

4 Experiments

We use the database in [Duygulu et al., 2002] in our experi-
ments. This database contains 5,000 images from 50 COREL
Stock Photo CDs, each of which contains 100 images on a
topic. 499 image blobs are generated through image segmen-
tation using normalized cuts and region clustering using k-
means. The number of blobs contained in each image ranges
from 1 to 10. 374 words are used to annotate the images,and
the number of words in each image ranges from 1 to 5. The
training set consists of 4,500 images and the test set consists
of 500 images. We use the training set as the tagged images
and regard the test set as untagged images.

As shown in Table 2, the outputs of the four tasks are all
ranks. Thus, we use the standard non-interpolated mean aver-
age precision (MAP) and precision at 10 (P@10) to measure
the performance. MAP measures the precision of the whole
ranking list and P@10 reflects the precision of the top 10 el-
ements in the ranking list. Details can be found in [Baeza-
Yates and Ribeiro-Neto, 1999].
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Figure 2: The influence of λ0

First, we focus on content-based image retrieval, image
annotation and text-based image retrieval. In our experi-
ments, we compare the performance of using different values
of SB for these three tasks. The ‘Baseline’ method does not
consider the relations between blobs and assume two images
are similar when they contain the same blobs, thus the identity
matrix is used for SB, i.e., SB = I. The ‘Initial’ method uses
the initial value of SB, i.e., SB = SB

(0) = MM�. The ‘Type
I’, ‘Type II’ and ‘Type IV’ methods use the final similarity
generated by the interactions of Type I, Type II and Type IV
6, i.e., SB = SB

(∗). By comparing ‘Baseline’ with ‘Initial’
and ‘Type I/II/IV’, we can show the effect of considering the
relations between blobs.

For ‘Type I/II/IV’, the parameters λ1 to λ4 are simply set
to the same value, denoted by λ0. We set λ0 = 0.5, which
implies that for any type of objects, its own similarity and
the influence from other types of objects are equally impor-
tant. Other values of λ0 will be studied at the end of this sec-
tion. For ‘Baseline’, ‘Initial’ and ‘Type I/II/IV’, when they
are used to solve image annotation and text-based image re-
trieval tasks, the number of nearest neighbors k is set as 100
using the validation set (see Table 2). To avoid decompos-
ing a large matrix, we normalize the matrices into probability
transition matrices and conduct random walk solution itera-
tively7.

CMRM, CLP and SVM are the state-of-the-art techniques
for image annotation. Using the strategy of Datta et al.
[2006], these methods can also be applied to content-based
image annotation and text-based image annotation. GCap
can be used for all these three tasks. For CMRM, the param-
eters α and β are set to 0.1 and 0.9, respectively, which are
the best parameters tuned on validation set. For CLP, the pa-
rameter β is set to 0.9 based on the validation set. For SVM,
we use LibSVM with default parameters. For GCap, the pa-

6In Type III, SB is the same as Type I and SW is the same as
Type II, thus we do not report the performance of Type III.

7This iterative approach converges quickly. For example, for
Type I interaction, it converges in no more than 10 iterations.

Table 3: Comparison of MAP and P@10 on different tasks.
(TBIR: Text-Based Image Retrieval; CBIR: Content-Based Image

Retrieval; the best performance of each column is bolded.)

Tasks: CBIR Img Annotation TBIR Query Expansion

MAP P@10 MAP P@10 MAP P@10 MAP P@10

Baseline 0.274 0.365 0.320 0.176 0.154 0.109 N/A N/A

Initial 0.289 0.408 0.356 0.185 0.197 0.138 0.567 0.373

Type I 0.289 0.410 0.355 0.185 0.193 0.135 0.603 0.410

Type II 0.295 0.412 0.362 0.186 0.202 0.138 0.615 0.397

Type IV 0.294 0.415 0.362 0.185 0.203 0.137 0.603 0.410

CMRM 0.291 0.385 0.333 0.168 0.164 0.112 N/A N/A

CLP 0.287 0.381 0.302 0.164 0.164 0.112 N/A N/A

SVM 0.284 0.397 0.305 0.161 0.139 0.097 N/A N/A

GCap 0.278 0.361 0.318 0.172 0.159 0.113 0.559 0.378

rameter c which balances the probability of random walking
and restarting is very similar to λ0 of our method. c is first
selected as 0.7 according to Pan et al. [2004]’s suggestion
and the influence of c is studied with λ0 at the end of this
section. In general, the performance of these state-of-the-art
techniques provides a good baseline.

In the experiments on content-based image retrieval,
queries consisting of 500 images in the test set and images
sharing some annotation words with the query are regarded as
relevant images. In the experiments on image annotation, for
the returned rank of annotation words, a word is regarded as
relevant if it is in the annotation of the query image. We also
use 500 images in the test set as queries. For text-based image
retrieval, an image is regarded as relevant to the text query if
its annotation contains all the query words. The query set
consists of 179 one-word queries, 385 two-word queries, 176
three-word queries and 24 four-word queries. These queries
appear at least two times in the annotations in imagebase. The
performances of our methods and the state-of-the-art tech-
niques for these three tasks are reported in Table 3.

Table 3 shows that for these three tasks, ‘Type I/II/IV’ and
‘Initial’ consistently and significantly outperform the other
compared methods. Such an observation indicates that con-
sidering the relation between blobs is beneficial. Compar-
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ing ‘Type I/II/IV’ and ‘Initial’, we can find that exploiting
the interactions between different types of objects can fur-
ther improve the performance achieved by exploiting the re-
lation between blobs. Such superiority is obvious in terms of
MAP rather than P@10, which suggests that exploiting multi-
modal interactions can help improve the ranks of some “hard-
to-identified” relevant items and hence result in a better over-
all ranking list. Comparing three interaction types, we can
observe ‘Type II/IV’ consistently perform better than ’Type
I’. Recall that in ‘Type I’, information never flows back from
“words” to the other interacting types. Since information in
blobs might be less reliable than words due to the semantic
gap, it is natural for ‘Type II/IV’ to be superior.

Second, we study query expansion. This task requires the
involvement of the user, thus it is difficult to measure the per-
formance of this task directly. Instead, we attempt to measure
SW, which is essential for query expansion. As mentioned
above, the experimental database contains 50 topics. The cor-
relation of words based on their distributions over these 50
topics is used to assign each word a ground truth rank of the
other words according to their relatedness to the concerned
word. Note that this topic information is only used here for
evaluation purpose and is not used for any other step. Here,
we simply regard the top 5 words of each word’s ground truth
rank as relevant and the others are irrelevant. Then, we mea-
sure how good the word-to-word relations reflected by SW

are. The ‘Baseline’ method could not be applied here, since
SW = I is not helpful for query expansion. The ‘Initial’
method uses SW = NN�. The ‘Type I/II/IV’ methods use
SW = SW

(∗) generated by the interactions of Type I/II/IV.
Only GCap is evaluated here, since other compared methods
are not applicable to query expansion. The average perfor-
mance is reported in Table 3. Similar to the other three tasks,
for query expansion, every interaction type performs signifi-
cantly better than ‘Initial’ and GCap.

In the experiments, λ0 is fixed to 0.5. Now we study the
influence of different λ0 on the performance of the proposed
method. The performance of GCap with different c is also
reported for comparison. CMRM is used here for reference.
The results are provided in Figure 2. It is obvious that with
different λ0, our proposed method almost always outperforms
CMRM and GCap, except that when λ0 ≥ 0.8, GCap per-
forms better than ‘Type I/IV’ in terms of P@10. Note that
‘Type I/IV’ still perform better than GCap in terms of MAP.
It suggests that even if ‘Type I/IV’ might put fewer relevant
words in the first 10 words of the ranking list, the ranks as-
signed to the relevant words can still be higher than that as-
signed by GCap to yields better MAP.

5 Conclusion

Given an imagebase which contains tagged images, four
types of tasks can be executed, i.e., content-based image
retrieval, image annotation, text-based image retrieval, and
query expansion. For any of these tasks the similarity on the
concerned type of objects is essential. Usually three major
types of objects in an imagebase are image blobs, annotation
words and images. Since these objects have strong interac-
tions, it is reasonable to refine the similarity of one type of

objects with the help of that of another type of objects.
In this paper, we propose a unified framework to model

such interactions. Experiments show that, with the similarity
refined by the proposed method, simple methods can outper-
form the state-of-the-art methods.

Currently we represent each image as a group of blobs. Ex-
tending our proposal to other representations is an interesting
issue for future work. Automatically selecting the parameters
λ1-λ4 for different types of interactions is another interesting
future work.
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