
Composition of ConGolog Programs

Sebastian Sardina

School of Computer Science and IT
RMIT University

Melbourne, Australia
sebastian.sardina@rmit.edu.au

Giuseppe De Giacomo

Dipartimento di Informatica e Sistemistica
Sapienza Università di Roma

Roma, Italy
degiacomo@dis.uniroma1.it

Abstract

We look at composition of (possibly nonterminat-
ing) high-level programs over situation calculus ac-
tion theories. Specifically the problem we look at
is as follows: given a library of available ConGolog
programs and a target program not in the library,
verify whether the target program executions be re-
alized by composing fragments of the executions
of the available programs; and, if so, synthesize a
controller that does the composition automatically.
This kind of composition problems have been in-
vestigated in the CS and AI literature, but always
assuming finite states settings. Here, instead, we in-
vestigate the issue in the context of infinite domains
that may go through an infinite number of states as
a result of actions. Obviously in this context the
problem is undecidable. Nonetheless, by exploit-
ing recent results in the AI literature, we devise a
sound and well characterized technique to actually
solve the problem.

1 Introduction

In this paper, we study the composition of possibly nontermi-
nating high-level programs over action theories. We assume:

• an action theory, expressed in the situation calculus [Re-
iter, 2001], describing how actions affect the state of af-
fairs of the domain of interest;

• a library of available high-level programs over such
action theory, expressed in (a significant fragment of)
ConGolog [De Giacomo et al., 2000], and which may
stand for behavioral descriptions of actual devices (e.g.,
a controller for an elevator or a coffee delivery robot),
the capabilities or logic of some services (e.g., a web-
service), or even descriptions of typical operational pro-
cedures in the domain (e.g., a business process); and

• a target program over the same action theory that is not
in the library, expressed again in ConGolog, which may
stand for a behavior of interest that does not directly cor-
respond to any of the available modules.

The problem we investigate is as follows: verify whether, for
a given initial configuration of the world, expressed as a pos-
sibly infinite database (i.e., a categorical theory), the target

program executions can be “realized” by composing frag-
ments of the executions of the available programs so as to
mimic the (virtual) transitions (i.e., elementary steps) of the
target program at each point in time. If so, synthesize a dele-
gator that does the composition automatically.

This kind of composition problem has been investigated
first in the CS literature, e.g., [Berardi et al., 2003; Traverso
and Pistore, 2004; Lustig and Vardi, 2009],1 and then also
in AI, e.g., [De Giacomo and Sardina, 2007; Sardina et al.,
2008], but always assuming finite state settings.2 Here, in-
stead, we investigate the problem in a setting that allows us to
consider potentially infinite domains that may go through an
infinite number of states as actions are performed.

Specifically, we formally define what it means for a set of
ConGolog programs to mimic the transitions of a target pro-
gram, by using a greatest fixpoint second-order formula based
on a suitable adaptation for our context of the formal notion
of Simulation [Milner, 1971; Sardina et al., 2008].

Obviously, in checking such fixpoint formula over
ConGolog programs is undecidable in general. Nonetheless,
by exploiting recent ideas in the AI literature [Pirri and Reiter,
1999; Kelly and Pearce, 2007; Claßen and Lakemeyer, 2008],
we are able to devise a sound and well characterized proce-
dure to solve the problem. The technique is based on three ba-
sic ingredients: (i) computation of the simulation through fix-
point approximates [Tarski, 1955], hoping to be able to com-
pute the fixpoint in a finite number of iterations; (ii) use of the
characteristic graphs introduced by Claßen and Lakemeyer
[2008], to finitely cope with the potential infinite branching
of ConGolog programs (due to ConGolog’s πx.δ construct);
and (iii) use of regression [Reiter, 2001] to get formulas that
talk only about the initial situation, thus allowing us to drop
the action theory and the second-order foundational axioms
for situations altogether.

1Notice that ConGolog has already been considered in the con-
text of web-service composition in [McIlraith and Son, 2002], by ex-
ploiting procedural abstraction. But the form of composition studied
there is profoundly different from the one considered here.

2A notable exception is [Berardi et al., 2005], where programs
were executed over a database which may go through an infinite
set of configuration. However, the techniques proposed there were
again based on being able, under suitable assumptions, to reduce the
setting to a finite state one.

904

2 Preliminaries

The situation calculus is a logical language specifically de-
signed for representing and reasoning about dynamically
changing worlds [Reiter, 2001]. All changes to the world are
the result of actions, which are terms in the language. We de-
note action variables by lower case letters a, action names by
capital letters A, and non-variable action terms by α, possibly
with subscripts. A possible world history is represented by a
term called a situation. The constant S0 is used to denote the
initial situation where no actions have yet been performed.
Sequences of actions are built using the function symbol do,
such that do(a, s) denotes the successor situation resulting
from performing action a in situation s. Relations whose truth
values vary from situation to situation are called fluents, and
are denoted by predicate symbols taking a situation term as
their last argument (e.g., Holding(x, s)).

Within the language, one can formulate action theories that
describe how the world changes as the result of the available
actions. Here, we concentrate on basic action theories [Pirri
and Reiter, 1999; Reiter, 2001]. A basic action theory D is
the union of the following disjoint sets: the foundational,
domain independent, axioms of the situation calculus (Σ);
precondition axioms stating when actions can be legally per-
formed (Dposs); successor state axioms describing how flu-
ents change between situations (Dssa); unique name axioms
for actions (Duna); and axioms describing the initial config-
uration of the world (DS0). A special predicate Poss(a, s) is
used to state that action a is executable in situation s; precon-
dition axioms in Dposs characterize such predicate. In turn,
successor state axioms encode the causal laws of the world
being modelled; they take the place of the so-called effect ax-
ioms, but can also provide a solution to the frame problem.
For example, in a music matchbox setting, a song is pending
to be played if the it has just been requested, via the match-
box interface, and it is available in some CD, or the song was
already pending for playback and the matchbox has not just
started playing it:3

Pending(song, do(a, s)) ≡
(a = requestSong(song) ∧ (∃cd)InDisk(song, cd)) ∨

Pending(song, s) ∧ a �= playBack(song).

Once the dynamical system is modeled as a basic action
theory, one can pose queries about its behavior or evolution
as logical entailment queries relative to the theory.

High-Level Programs. To represent and reason about com-
plex actions or processes obtained by suitably executing
atomic actions, various so-called high-level programming
languages have been defined, such as Golog [Levesque et al.,
1997], which includes usual structured constructs and con-
structs for nondeterministic choices, ConGolog [De Giacomo
et al., 2000], which extends Golog to accommodate concur-
rency, and IndiGolog [Sardina et al., 2004], which provides
means for interleaving planning and execution.

Here we concentrate on a fragment of ConGolog, which
includes most constructs of the language, with the notable
exception of (recursive) procedures:

3Here, we implicitly quantify all free variables universally.

α atomic action
φ? test for a condition
δ1; δ2 sequence
δ1|δ2 nondeterministic branch
πx.δ nondeterministic choice of argument
δ∗ nondeterministic iteration
if φ then δ1 else δ2 endIf conditional
while φ do δ endWhile while loop
δ1‖δ2 concurrency

Above, α is an action term, possibly with parameters, and φ
is situation-suppressed formula, that is, a formula in the lan-
guage with all situation arguments in fluents suppressed. We
denote by φ[s] the situation calculus formula obtained from φ
by restoring the situation argument s into all fluents in φ.

Note the presence of nondeterministic constructs, which
allow the loose specification of programs by leaving “gaps”
that ought to be resolved by the executor. Program δ1|δ2 al-
lows for the nondeterministic choice between programs δ1

and δ2; while πx.δ executes program δ for some nondeter-
ministic choice of a legal binding for variable x (observe that
such a choice is, in general, unbounded). δ∗ performs δ zero
or more times. Program δ1‖δ2 expresses the concurrent exe-
cution (interpreted as interleaving) of programs δ1 and δ2.

As an example, consider the nondeterministic controller
δmatchbox for a music matchbox that serves users’ requests:

while True do
if (¬Playing ∧ (∃song)Pending(song)) then
(πsong, disk)

(Pending(song) ∧ InDisk(song, disk))?;
selectSong(song);
loadDisk(disk);
playBack(song)

else wait
endWhile

That is, when the matchbox is idle and there is a song pending
to be played, the controller selects a song that has been re-
quested and the CD in which the song is, loads such CD, and
starts the playback. When the matchbox is playing a song or
there are no pending songs to be played, the device just waits.
A full music system is modeled by taking program δmusic =
(δmatchbox‖ δEXO), where δEXO = (πa.Exog(a)?; a)∗ rep-
resents the (external) environment, capable of executing any
exogenous action (e.g., requestSong(song)) at anytime.

Formally, the semantics of ConGolog is specified in
terms of single-steps, using the following two predicates
[De Giacomo et al., 2000]: (i) Final(δ, s), which holds if
program δ may legally terminate in situation s; and (ii)
Trans(δ, s, δ′, s′), which holds if one step of program δ in
situation s may lead to situation s′ with δ′ remaining to be ex-
ecuted. The definitions of Trans and Final for the constructs
used in this paper are shown below:

Final(α, s) ≡ False
Final(φ?, s) ≡ φ[s]
Final(δ1; δ2, s) ≡ Final(δ1, s) ∧ Final(δ2, s)
Final(δ1|δ2, s) ≡ Final(δ1, s) ∨ Final(δ2, s)
Final(πx.δ, s) ≡ ∃x.F inal(δ, s)
Final(δ∗, s) ≡ True
Final(δ1‖δ2, s) ≡ Final(δ1, s) ∧ Final(δ2, s)

905

Trans(α, s, δ′, s′) ≡ s′ = do(α, s) ∧ Poss(α, s) ∧ δ′ = True?
Trans(φ?, s, δ′, s′) ≡ False

Trans(δ1; δ2, s, δ
′, s′) ≡

Trans(δ1, s, δ
′
1, s

′) ∧ δ′ = δ′1; δ2 ∨
Final(δ1, s) ∧ Trans(δ2, s, δ

′, s′)
Trans(δ1|δ2, s, δ

′, s′) ≡
Trans(δ1, s, δ

′, s′) ∨ Trans(δ2, s, δ
′, s′)

Trans(πx.δ, s, δ′, s′) ≡ ∃x.Trans(δ, s, δ′, s′)
Trans(δ∗, s, δ′, s′) ≡ Trans(δ, s, δ′′, s′) ∧ δ′ = δ′′; δ∗
Trans(δ1‖δ2, s, δ

′, s′) ≡
Trans(δ1, s, δ

′
1, s

′) ∧ δ′ = δ′1‖δ2 ∨
Trans(δ2, s, δ

′
2, s

′) ∧ δ′ = δ1‖δ′2
Following [Claßen and Lakemeyer, 2008], and differently
form [De Giacomo et al., 2000], the test construct φ?
here does not yield any transition, but it is final when
satisfied. In other words, it is a synchronous version
of the original test construct (it does not allow interleav-
ing). With this choice, the ConGolog constructs for con-
ditional and while-loop, which are based on synchronous
tests, are immediately definable in terms of the other con-
structs: if φ then δ1 else δ2 endIf = φ?; δ1|¬φ?; δ2 and
while φ do δ endWhile = (φ?; δ)∗;¬φ?.

Also, in this paper, we shall require that in programs of the
form πx.δ, the variable x occurs in some non-variable action
term in δ, disallowing the occurrence of x only in tests and as
an action itself. In this way, πx.δ acts as a construct for the
nondeterministic choices of action parameters. Finally, we
assume wlog that each occurrence of the construct πx.δ in a
program uses a unique fresh variable x—no two occurrences
of such a construct use the same variable.

Observe that, since we are not considering recursive pro-
cedures here, we do not need to resort to a second-order def-
inition of Trans and Final, though we still need to consider
programs as terms, cf. [De Giacomo et al., 2000].

From now on, we will denote by Axioms the situation cal-
culus action theory D that formalizes the domain of interest
plus the axioms for Trans and Final.

3 ConGolog Composition

The problem we are interested in is the following. Given a ba-
sic action theory, available programs δ0

1 , . . . , δ0
n, and a target

ConGolog program δ0
t , we want to “execute” δ0

t by concur-
rently executing δ0

1 , . . . , δ0
n, while controlling their interleav-

ing in a suitable way. In other words, we provide to the client
the ability of writing virtual target programs over a specific
domain of interest, but instead of executing such target pro-
grams directly, we actually execute programs from a library
of available programs in a way that mimics the target.

As an example, consider the target program δt =
[(a; b|d; c); h]∗ in an environment where, for simplicity, all
actions are always possible. Such program is virtual, and
assume all we can do is to execute concurrently two avail-
able programs at hand, namely, δ1 = (a; h | c | a; b)∗ and
δ2 = (b | d; h)∗. It is not difficult to see that, by intelligently
scheduling δ1 and δ2, one can realize any execution of δt. For

instance, if δt starts by requesting the execution of action a,
then one should execute δ1 one step by selecting its first non-
deterministic program (a; h); after that δt may only request
action b followed by h, which can be realized by advancing
programs δ2 first and δ1 then; finally, δt may next either stop,
in which case both δ1 and δ2 can be legally stopped as well, or
start again, in which case the two available programs can be
restarted. An analogous argument applies when δt happens
to request action d initially. What is important to note here
is that we do not assume to have control on the way that δt

may (virtually) execute, while we do have control on the way
the available programs are executed. In other words, we have
no control on the interpreter executing δt and δt’s nondeter-
minism is therefore “devilish,” while we have total control on
the interpreter executing the concurrent program δ1‖ . . . ‖δn,
whose nondeterminism is “angelic.”

To side-step the issue of offline vs. online execution of pro-
grams (cf. Conclusion), we assume here to have complete
information on the initial situation, that is, Ds0 is indeed a
possibly infinite database. Observe that while this is obvi-
ously a simplification it does not help wrt the main difficulty
of this setting: programs can be legally nonterminating (they
describe processes), and the number of configurations (pairs
program-situation) a program goes through is potentially in-
finite. Indeed, the number of states the domain of interest
goes through as actions are performed are infinite and unre-
stricted, if not by the action theory. Also, the states of the
programs can be infinite due to the presence of the πx.δ con-
struct, which introduces unbounded branching—there are po-
tentially infinitely many possible remaining programs after
program πx.a(x); δ(x) executes its first action a(x), namely,
δ(t) for each possible term t in the domain. This implies that
the techniques coming from model checking-based verifica-
tion and synthesis that have emerged as effective lately, and
been used for instance in [Sardina et al., 2008], cannot be
applied.

To formally define what it means for a program to “mimic”
another one, we rely on the formal notion of simulation [Mil-
ner, 1971; Sardina et al., 2008]. In our setting, such a no-
tion can be captured by a second-order formula that makes
use of Trans and Final. Specifically, we define the predicate
Sim(δt, δ1, . . . , δn, s) as the largest predicate S satisfying the
condition Θ[S](δt, δ1, . . . , δn, s):

Sim(δt, δ1, . . . , δn, s) ≡
∃S.

(
S(δt, δ1, . . . , δn, s) ∧
∀δt, δ1, . . . , δn, s.Θ[S](δt, δ1, . . . , δn, s)

)
,

where Θ[S](δt, δ1, . . . , δn, s) stands for the following for-
mula:

S(δt, δ1, . . . , δn, s) →
(Final(δt, s) →

∧n
i=1 Final(δi, s)) ∧

(∀δ′t, s
′Trans(δt, s, δ

′
t, s

′) →∨n
i=1[∃δ′i.Trans(δi, s, δ

′
i, s

′) ∧
S(δ′t, δ1, . . . , δi−1, δ

′
i, δi+1, . . . , δn, s′)]).

By Knaster&Tarski Theorem [Tarski, 1955], the predicate
Sim has the following notable properties:
Proposition 1. Sim satisfies the condition Θ, that is,

∀δt, δ1, . . . , δn, s.Θ[Sim](δt, δ1, . . . , δn, s)

906

is valid. Moreover, every predicate S satisfying the condition
Θ is “smaller” than Sim, that is, the following is valid:

S(δt, δ1, . . . , δn, s) → Sim(δt, δ1, . . . , δn, s).

Intuitively, the formula Sim(δt, δ1, . . . , δn, s) says that (i)
if the target program δt may legally terminate in s, so can all
the available programs δ1, . . . , δn; and that (ii) whatever tran-
sition the target program δt may make in the current situation
s, such a transition can be “mimicked” by one of the available
programs δi while the other programs remain still, and at the
next step the same is true again, and again forever.

Once we have defined Sim, it is easy to write a formula that
actually returns the “mimicking” transition:

SimTransi(δt, δ1, . . . , δn, s, δ′t, s
′, δ′i) ≡

Trans(δt, s, δ
′
t, s

′) ∧ Trans(δi, s, δ
′
i, s

′) ∧
Sim(δt, δ1, . . . , δi−1, δ

′
i, δi+1, . . . , δn, s′).

SimTransi(δt, δ1, . . . , δn, s, δ′t, s
′, δ′i) says that a target tran-

sition from (δt, s) to (δ′t, s
′) can be mimicked by legally ad-

vancing the i-th available program to δ′i. By the definitions of
Sim and SimTrans we get:
Proposition 2. The following formula is valid:

Sim(δt, δ1, . . . , δn, s) →
(∀δ′t, s

′.Trans(δt, s, δ
′
t, s

′) →∨n
i=1 ∃δ′i.SimTransi(δt, δ1, . . . , δn, s, δ′t, s

′, δ′i)).

Hence, if Sim(δt, δ1, . . . , δn, s) is currently true, then we
can use the formulas SimTransi to choose how to mimic the
target transitions now, knowing that, in the future, we will be
able to continue mimicking the target. This is the base of an
interpreter that executes the target program by actually del-
egating the target transitions to the available programs, thus
realizing the composition. The interpreter, or delegator, is
shown in Procedure 1.

Procedure 1 DELEGATOR(δt, δ1, . . . , δn)
1: if ¬Sim(δt, δ1, . . . , δn, S0) then
2: fail
3: end if
4: loop
5: if Final(δt, s) then
6: Ask whether to stop
7: if stop then
8: exit
9: end if

10: end if
11: Ask δ′t, s

′ s.t. Trans(δt, s, δ
′
t, s

′)
12: Choose i, δi s.t. SimTransi(δt, δ1, . . . , δn, s, δ′t, s

′, δ′i)
13: Execute the transition from (δi, s) to (δ′i, s

′)
14: δt := δ′t; s = s′; δi := δ′i
15: end loop

Observe that the choices at line 12 are guaranteed to be
possible being Sim(δt, δ1, . . . , δn, S0) true. Also, observe
that, with the assumption of complete information on the ini-
tial situation, all checks on formulas consist in formula evalu-
ation, though over a possibly infinite model (cf. Conclusion).

4 The Technique

It remains to find means to check for Sim(δt, δ1, . . . , δn, s).
Notice that this is a hard problem in general even if we have
complete information on the initial database. The difficulty is
that the interpretation structure to be considered is in general
infinite, while direct algorithms to check for simulation work
only for finite cases.

In order to tackle the infinite case, we follow an approach
inspired by [Pirri and Reiter, 1999; Kelly and Pearce, 2007;
Claßen and Lakemeyer, 2008]: reduce the verification of a
second-order formula wrt the whole basic action theory, to
the verification of a first-order formula that is uniform in the
situation argument, which, in turn, can be regressed to a for-
mula that only talks about the initial situation.

In particular, we devise a procedure that extracts a first-
order formula that is true on the initial database iff the target
program can be simulated by the available programs. Since
such a procedure reduces checking a second-order formula to
checking a first-order one, it may not terminate in general.

The procedure is based on three ingredients, namely, fix-
point approximates, regression, and programs’ characteristic
graphs. We detail each of these ingredients below.

Sim approximates. Approximates Simk(δt, δ1, . . . , δn, s),
for k ≥ 0 say that program δt may be simulated by programs
δ1, . . . , δn in situation s for k steps. Such approximates can
be formally defined by induction as follows:

Sim0(δt, δ1, . . . , δn, s) ≡
(Final(δt, s) →

∧n
i=1 Final(δi, s)).

Simk+1(δt, δ1, . . . , δn, s) ≡
Simk(δt, δ1, . . . , δn, s) ∧
(∀δ′t, s

′.Trans(δt, s, δ
′
t, s

′) →∨n
i=1[∃δ′i.Trans(δi, s, δ

′
i, s

′) ∧
Simk(δ′t, δ1, . . . , δi−1, δ

′
i, δi+1, . . . , δn, s′)]).

Informally, Sim0 merely requires that whenever program δt is
final, so are all programs δ1, . . . , δn; while Simk+1 requires
that δt is in k-simulation with δ1, . . . , δn and that every tran-
sition of δt can be mimicked by some available program δi

and be in k-simulation in the resulting next step.
By Knaster&Tarski classical result on fixpoints approxi-

mates [Tarski, 1955], we get:
Proposition 3. If there exists a k ≥ 0 such that

Simk(δt, δ1, . . . , δn, s) ≡ Simk+1(δt, δ1, . . . , δn, s),

then

Simk(δt, δ1, . . . , δn, s) ≡ Sim(δt, δ1, . . . , δn, s).

We observe that while there is no guarantee that a finite k
exists for the antecedent of this proposition to hold, if it does
exist, then one can use approximates to compute Sim.

Regression. One of the most important features of basic ac-
tion theories is the existence of a sound and complete regres-
sion mechanism for answering queries about situations result-
ing from performing a sequence of actions [Pirri and Reiter,
1999; Reiter, 2001]. In a nutshell, the so-called regression

907

operator R∗ reduces a formula φ about some future situation
to an equivalent formula R∗[φ] about the initial situation S0,
by basically substituting fluent relations with the right-hand
side formula of their successor state axioms.

In this paper, we shall use a simple one-step only variant R
of the standard regression operator R∗ for basic action the-
ories. Let φ be a situation-suppressed formula and α be a
non-variable action term. Then R[φ[do(α, s)]] stands for the
one-step regression of φ through action α, which is in itself a
formula uniform in s. It is straightforward to adapt Pirri and
Reiter [1999]’s regression theorem to get the following result:
Theorem 4. Let D be a basic action theory, φ a situation-
suppressed formula, and α a non-variable action term. Then,

Axioms |= φ[do(α, s)] ≡ R[φ[do(α, s)]].

Furthermore, if α1, . . . , αn are ground non-variable action
terms, then

Axioms |= φ[do(αn, . . . , do(α1, S0) . . .)] iff
DS0 ∪ Duna |= R∗[φ[do(αn, . . . , do(α1, S0) . . .)]].

That is, operator R reduces a formula about situation do(α, s)
to a formula about situation s. By several applications of R,
hence, one can reduce formulas about future situations of S0

to formulas about the initial situation only, which can then be
verified/answered by first-order entailment/evaluation using
only the initial database DS0 and Duna, a much simpler task.

Characteristic graphs. In order to compactly represent all
possible configurations a program δ0 may be in during its
execution, we shall use the so-called characteristic graph
Gδ0 of δ0 introduced by Claßen and Lakemeyer [2008]. The
nodes V in a characteristic graph Gδ0 are tuples of the form
〈δ, χ〉, stating that δ is a possible remaining program dur-
ing δ0’s execution and χ characterizes the conditions under
which δ may terminate (i.e., it is final). The initial node is
v0 = 〈δ0, χ0〉. Edges in Gδ0 stand for single transitions be-
tween program configurations and are labeled with tuples of
the form 〈π�x : α,ψt〉, where α is a non-variable action term
and variables �x may appear free in α and ψt. Roughly speak-
ing, an edge states that a program may evolve into another re-
maining program when one chooses instantiations for �x and
performs action α in a situation where ψt holds.

Figure 1 depicts the characteristic graph for the music sys-
tem example of Section 2. The edge from v0 to v1, for in-
stance, represents those transitions in which a requested song
is selected for playback. For that to happen, the program re-
quires to pick a song and a compact disk such that the song
is currently being requested, it is in the chosen disk, and
the matchbox is currently not playing. Under such circum-
stances, the program may select the song in question, pro-
vided the precondition of such action holds, and evolve to
node v1. The program may next evolve to node v2 by load-
ing the chosen disk, provided the precondition of the loading
action is true. When program is node v0, it executes action
wait whenever there is no song requested for playback or the
matchbox is currently playing a song. Finally, we observe
that in each node, the system program may execute an exoge-
nous actions (e.g., requestSong(song)) and stay in the same
node, that is, in the same program configuration.

v0 v1

v2

〈πsong, disk : selectSong(song),
Requested(song) ∧

InDisk(song, disk) ∧ ¬Playing〉

〈loadDisk(disk), True〉

〈playBack(song), True〉

〈wait,
P laying ∨

¬∃s.Requested(s)〉

	 	

	

v0 = 〈δmusic‖ δEXO, False〉
v1 = 〈(loadDisk(disk); playBack(song))‖ δEXO, False〉
v2 = 〈playBack(song)‖ δEXO, False〉
	 = 〈πa : a, Exo(a)〉

Figure 1: Characteristic graph for program δmusic.

Next propositions can be shown by induction on the pro-
gram structure under the assumption that the variable x from
each construct πx.δ used in δ occurs in an action term of δ.

Proposition 5. Given a node (δ, χ), we have that

Axioms |= χ[s] ≡ Final(δ, s).

Proposition 6. If (δ, χ)
〈π�x:α,ψ〉−→ (δ′, χ′) is an edge, then

Axioms |= ψ[s] ∧ Poss(α, s) ≡ Trans(δ, s, δ′, do(α, s)).

5 The Procedure

Given the target program δ0
t and the available programs

δ0
1 , . . . , δ0

n (wlog we assume that such programs do not share
variables) we compute a relation whose tuples have the form
〈vt, v1, . . . , vn, ϕ〉 where vt, v1, . . . , vn are nodes in the char-
acteristic graphs Gδ0

t
,Gδ0

1
,. . . ,Gδ0

n
respectively, and ϕ is a first-

order formula. Such tuples intuitively mean that the tar-
get program in vt is simulated by the available programs in
〈v1, . . . , vn〉 “iff ϕ holds”.

Procedure 2 SYMSIM(δ0
t , δ0

1 , . . . , δ0
n)

Compute characteristic graphs Gδ0
t
,Gδ0

1
,. . . ,Gδ0

n

X := {〈(δt, χt), (δ1, χ1), . . . , (δn, χn), χt → ∧n
i=1 χi〉 |

(δj , χj) in Gδ0
j
, j ∈ {t, 1, . . . , n}}

Xold := ∅
while X �= Xold do

Xold := X
X := NEXT[X]

end while
return X

Specifically we compute such a relation through the fix-
point procedure in Procedure 2, where the operator NEXT[X]
represents a “one step refinement” of the simulation: it up-
dates the formulas ϕ in the tuples 〈vt, v1, . . . , vn, ϕ〉 through

908

one step of regression while maintaining the simulation Sim.
In other words, X represents the approximates of the simu-
lation, which are refined at each iteration of the procedure.
Formally:

NEXT[X] = {〈vt, v1, . . . , vn, ϕold ∧ ϕnew〉 |
〈vt, v1, . . . , vn, ϕold〉 ∈ X},

where ϕnew stands for the following formula:
∧

vt
π�x αt/ψt−→ v′

t∈Et(
∀�x.ψt[s] ∧ Poss(αt, s) →∨n

i=1

∨
vi

π�y.αi/ψi−→ v′
i∈Ei∧〈v′

t,v1,...,v′
i,...,vn,ϕi〉∈X

∃�y.αt = αi ∧ ψi[s] ∧R[ϕi(do(αi, s))]
)
.

As usual, we assume that
∧

involving zero conjuncts is equal
to True and

∨
involving zero disjuncts is equal to False.

Note that in each iteration there will be at most one tu-
ple 〈vt, v1, . . . , vn, ϕ〉 ∈ X for each 〈vt, v1, . . . , vn〉. Note
also that as soon as we recognize ϕ ≡ false in a tuple
〈vt, v1, . . . , vn, ϕ〉 ∈ X we can stop processing it.

We are now ready to state our core result:
Theorem 7. Let δ0

t , δ0
1 , . . . , δ0

n be ConGolog programs, and
assume that the procedure SYMSIM(δ0

t , δ0
1 , . . . , δ0

n) termi-
nates returning the set X . Then,

Axioms |= Sim(δt, δ1, . . . , δn, s) ≡ ϕ[s],

where 〈(δt, χt), (δ1, χ1), . . . , (δn, χn), ϕ〉 ∈ X .

Proof (Sketch). We show by induction on 	, and exploiting
Proposition 5 and 6, that in the 	-th while iteration performed
by procedure SYMSIM, the following holds:

Axioms |= Sim�(δt, δ1, . . . , δn, s) ≡ ϕ�[s],

where 〈(δt, χt), (δ1, χ1), . . . , (δn, χn), ϕ�〉 ∈ X�. We then
apply Proposition 3. �

By considering Theorem 7 together with the soundness and
completeness of regression (cf. Theorem 4) we get:
Theorem 8. Let δ0

t , δ0
1 , . . . , δ0

n be ConGolog programs. As-
sume that the procedure SYMSIM(δ0

t , δ0
1 , . . . , δ0

n) terminates
returning the set X . Then, for every ground situation term S:

Axioms |=Sim(δt, δ1, . . . , δn, S) iff DS0 ∪ Duna |=R∗[ϕ[S]],

where 〈(δt, χt), (δ1, χ1), . . . , (δn, χn), ϕ〉 ∈ X .

Based on these results, we can define a version of the dele-
gator in Procedure 1 that works by evaluating first-order for-
mulas only, as shown in Procedure 3. Roughly speaking the
new delegator maintains, throughout the execution, the cur-
rent node (in their corresponding characteristic graph) of each
available program (δi, χi) and the target (δt, χt), together
with their current bindings θi and θt, respectively. At every it-
eration, the delegator first checks whether the target program
may be entitled for termination, by checking the formula in
the current target node (line 11). Notice that if this is the case,
then the available programs are also entitled for termination,
since Sim holds. If termination is not an option or is not re-
quested, then the next step is asked to the target module. This

Procedure 3 FOLDELEGATOR(δt, δ1, . . . , δn)
1: Compute X = SYMSIM(δ0

t , δ0
1 , . . . , δ0

n)
2: Let 〈(δ0

t , χ0
t), (δ

0
1 , χ0

1), . . . , (δ
0
n, χ0

n), ϕ0〉 ∈ X
3: if DS0 ∪ DUNA �|= ϕ0[S0] then
4: fail
5: end if
6: for all i ∈ {t, 1, . . . , n} do
7: δi:= δ0

i ; χi:= χ0
i ; θt:= ∅ // initialization

8: end for
9: S:= S0; // init current situation

10: loop
11: if DS0 ∪ DUNA |= R∗[χtθt[S]] then
12: Ask whether to stop // target may stop
13: if stop then
14: exit
15: end if
16: end if

17: Ask δ′t, χ
′
t, θ

′
t s.t. (δt, χt)

π�x αt/ψt−→ (δ′t, χ
′
t) ∈ Et and

DS0 ∪ DUNA |= R∗[ψtθtθ
′
t[S] ∧ Poss(αtθtθ

′
t, S)]

18: Choose i, δ′i, θ
′
i s.t. (a) (δi, χi)

π�y αi/ψi−→ (δ′i, χ
′
i) ∈ Ei;

(b) 〈(δ′t, χ′
t), (δ1, χ1), . . . , (δ′i, χ

′
i) . . . , (δn, χn), ϕ〉 ∈

X; (c) αtθtθ
′
t = αiθiθ

′
i; (d) DS0 ∪ DUNA |=

R∗[ψiθiθ
′
i[S]]; and (e) DS0 ∪ DUNA |=

R∗[ϕ[do(αtθtθ
′
t, S)]]

19: Execute transition from configuration (δiθi, S) to con-
figuration (δ′iθiθ

′
i, do(αtθtθ

′
t, S))

20: S := do(αtθtθ
′
t, S) // new current situation

21: δt := δ′t; χt := χ′
t; θt:=θtθ

′
t; // update target

22: δi := δ′i; χi := χ′
i; θi:=θiθ

′
i; // update program i

23: end loop

amounts to asking for a transition in the target graph, and an
action αt and a binding θ′t (line 17). In step 18, the delega-
tor finds an available program δi such that its current node
can legally transition to a new node by matching the action
αt that has been requested and guaranteeing the simulation
(we know there is at least one such i, since Sim holds). Fi-
nally, the selected program is executed one step accordingly
(line 19), the current situation is updated to include the just
satisfied action αt, and the current nodes and bindings for the
target and program i are updated (line 21-22).

As a direct consequence of Theorems 5, 6, 7, and 4, we
obtain:
Theorem 9. If SYMSIM(δ0

t , δ0
1 , . . . , δ0

n) terminates, then
FOLDELEGATOR(δt, δ1, . . . , δn) is a sound and complete
implementation of DELEGATOR(δt, δ1, . . . , δn).
In other words, for every initial database, FOLDELEGATOR
will produce exactly the same input/output behavior, at each
point in time, of procedure DELEGATOR.

6 Conclusion

In this paper, we looked at the problem of composing a de-
sired high-level program by suitably executing concurrently
a set of available programs at hand. Our technique is able to
handle programs that may not terminate and that run over do-
mains that may go through an infinite number of states. We

909

observe here that if the initial database is finite, then the del-
egator in Procedure 3, which only requires to evaluate first-
order formulas, can be readily implemented using standard
relational database technology.

As mentioned, having complete information on the initial
situation at runtime allowed us to side-step the issue of offline
vs. online executions of high-level programs [Sardina et al.,
2004]. Indeed, under complete information of the initial sit-
uation the two kinds of execution styles coincide. To extend
our approach to deal with incomplete information on the ini-
tial situation, more work has to be done. In particular, while
the delegators in Procedure 1 and Procedure 3 remain for-
mally well-defined (using entailment instead of formula eval-
uation), they may not be able to carry out the composition, as
they may get stuck by not being able to decide the truth value
of a formula. This is a subtle issue, which has been investi-
gated in the context of epistemic feasibility of plans, see e.g.,
in [Sardina et al., 2004], and which becomes crucial also in
our composition context.

The main limitation of the approach proposed here is the
lack of (sufficient) conditions guaranteeing termination of
procedure SYMSIM. Indeed, finding cases for which we have
guarantees of termination of a procedure that eliminates fix-
points (as in this paper, or [Claßen and Lakemeyer, 2008] and
[Kelly and Pearce, 2007]) is an interesting research direction
for future work.

Acknowledgments

We thank the reviewers for their interesting comments. Se-
bastian Sardina was supported by Agent Oriented Soft-
ware and the Australian Research Council (under grant
LP0882234), and the National Science and Engineering Re-
search Council of Canada (under a PDF fellowship).

References

[Berardi et al., 2003] Daniela Berardi, Diego Calvanese,
Giuseppe De Giacomo, Maurizio Lenzerini, and Massimo
Mecella. Automatic composition of e-Services that ex-
port their behavior. In Proceedings of the International
Joint Conference on Service Oriented Computing (IC-
SOC), pages 43–58, 2003.

[Berardi et al., 2005] Daniela Berardi, Diego Calvanese,
Giuseppe De Giacomo, Rick Hull, and Massimo Mecella.
Automatic composition of transition-based semantic web
services with messaging. In Proceedings of the Inter-
national Confernece on Very Large Databases (VLDB),
pages 613–624, 2005.

[Claßen and Lakemeyer, 2008] Jens Claßen and Gerhard
Lakemeyer. A logic for non-terminating Golog programs.
In Proceedings of Principles of Knowledge Representation
and Reasoning (KR), pages 589–599, 2008.

[De Giacomo and Sardina, 2007] Giuseppe De Giacomo and
Sebastian Sardina. Automatic synthesis of new behaviors
from a library of available behaviors. In Proceedings of the
International Joint Conference on Artificial Intelligence
(IJCAI), pages 1866–1871, 2007.

[De Giacomo et al., 2000] Giuseppe De Giacomo, Yves
Lespérance, and Hector J. Levesque. ConGolog, a con-
current programming language based on the situation cal-
culus. Artificial Intelligence Journal, 121(1–2):109–169,
2000.

[Kelly and Pearce, 2007] Ryan F. Kelly and Adrian R.
Pearce. Property persistence in the situation calculus. In
Proceedings of the International Joint Conference on Ar-
tificial Intelligence (IJCAI), pages 1948–1953, 2007.

[Levesque et al., 1997] Hector J. Levesque, Ray Reiter, Yves
Lespérance, Fangzhen Lin, and Richard B. Scherl.
GOLOG: A logic programming language for dynamic do-
mains. Journal of Logic Programming, 31:59–84, 1997.

[Lustig and Vardi, 2009] Yoad Lustig and Moshe Y. Vardi.
Synthesis from component libraries. In Proceedings of the
International Confernece on Foundations of Software Sci-
ence and Computational Structures (FOSSACS), volume
5504 of LNCS, pages 395–409. Springer, 2009.

[McIlraith and Son, 2002] Sheila A. McIlraith and Tran Cao
Son. Adapting Golog for composition of semantic web
service. In Proceedings of Principles of Knowledge Rep-
resentation and Reasoning (KR), pages 482–493, 2002.

[Milner, 1971] Robin Milner. An algebraic definition of sim-
ulation between programs. In Proceedings of the Interna-
tional Joint Conference on Artificial Intelligence (IJCAI),
pages 481–489, 1971.

[Pirri and Reiter, 1999] Fiora Pirri and Ray Reiter. Some
contributions to the metatheory of the situation calculus.
Journal of the ACM, 46(3):261–325, 1999.

[Reiter, 2001] Ray Reiter. Knowledge in Action. Logical
Foundations for Specifying and Implementing Dynamical
Systems. The MIT Press, 2001.

[Sardina et al., 2004] Sebastian Sardina, Giuseppe De Gia-
como, Yves Lespérance, and Hector J. Levesque. On the
semantics of deliberation in IndiGolog – From theory to
implementation. Annals of Mathematics and Artificial In-
telligence, 41(2–4):259–299, August 2004.

[Sardina et al., 2008] Sebastian Sardina, Fabio Patrizi, and
Giuseppe De Giacomo. Behavior composition in the pres-
ence of failure. In Proceedings of Principles of Knowl-
edge Representation and Reasoning (KR), pages 640–650,
2008.

[Tarski, 1955] Alfred Tarski. A lattice-theoretical fixpoint
theorem and its applications. Pacific Journal of Mathe-
matics, 5:285–309, 1955.

[Traverso and Pistore, 2004] Paolo Traverso and Marco Pis-
tore. Automated composition of semantic web services
into executable processes. In Proceedings of the Interna-
tional Semantic Web Conference (ISWC), pages 380–394,
2004.

910

