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Abstract

We show that tools from circuit complexity can be
used to study decompositions of global constraints.
In particular, we study decompositions of global
constraints into conjunctive normal form with the
property that unit propagation on the decomposi-
tion enforces the same level of consistency as a
specialized propagation algorithm. We prove that
a constraint propagator has a a polynomial size de-
composition if and only if it can be computed by a
polynomial size monotone Boolean circuit. Lower
bounds on the size of monotone Boolean circuits
thus translate to lower bounds on the size of de-
compositions of global constraints. For instance,
we prove that there is no polynomial sized decom-
position of the domain consistency propagator for
the ALLDIFFERENT constraint.

1 Introduction

Global constraints are a vital component of constraint toolk-
its. They permit users to model common patterns and to ex-
ploit efficient propagation algorithms to reason about these
patterns. A promising mechanism to implement such global
constraints is to develop decompositions into sets of primi-
tive constraints that do not hinder propagation. For exam-
ple, Bacchus has shown how to decompose global propa-
gators for the generic TABLE constraint, as well as for the
REGULAR, AMONG and SEQUENCE constraints into con-
junctive normal form (CNF) [Bacchus, 2007]. Such decom-
positions can then be used in SAT solvers, allowing us to
profit from techniques like clause learning and backjump-
ing. In recent years, many other decompositions have been
proposed for a wide range of global constraints including
REGULAR and GRAMMAR [Quimper and Walsh, 2006; 2007;
2008; Katsirelos et al., 2008], SEQUENCE [Brand et al.,
2007], PRECEDENCE [Walsh, 2006], CARDPATH and SLIDE
[Bessiere et al., 2008]. Many other global constraints can
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be decomposed using ROOTS and RANGE, which can them-
selves be propagated effectively using some simple decompo-
sitions [Bessiere et al., 2005; 2006a; 2006b]. Finally, many
global constraints specified by automata can be decomposed
into signature and transition constraints without hindering
propagation [Beldiceanu et al., 2005].

This raises the important open question of which global
constraints can be effectively propagated using simple en-
codings [Bessiere and Van Hentenryck, 2003]. We show
that circuit complexity can be used to resolve this question.
Our main result is that there is a polynomial sized decom-
position of a constraint propagator into CNF if and only if
the propagator can be computed by a polynomial size mono-
tone Boolean circuit. It follows therefore that bounds on
the size of monotone Boolean circuits give bounds on the
size of decompositions of global constraints into CNF. For
instance, a super-polynomial lower bound on the size of a
Boolean circuit for perfect matching in a bipartite graph gives
a super-polynomial lower bound on the size of a CNF de-
composition of the domain consistency propagator for the
ALLDIFFERENT constraint. Our results directly extend to
decompositions into CSP constraints of bounded arity with
domains given in extension since such decompositions can
be translated into clauses of polynomial size [Bessiere et al.,
2003]. The tools of circuit complexity are thus useful in un-
derstanding the limits of what we can achieve with decompo-
sitions.

2 Background

CSP. A constraint satisfaction problem (CSP) P consists of
a set of variables X, each of which has a finite domain D(Xi),
and a set of constraints C. An assignment to a variable Xi is
a mapping of Xi to a value j ∈ D(Xi), called literal, and
written Xi = j. We write D(X) (resp. D′(X)) for sets of
literals {Xi = j | Xi ∈ X ∧ j ∈ D(Xi)} (resp. {Xi = j |
Xi ∈ X∧j ∈ D′(Xi)}) and P(D) for the set of all such sets.
An assignment to a set of variables X is a set that contains
exactly one assignment to each variable in X. A constraint
C ∈ C has a scope, denoted scope(C) ⊆ X and allows a
subset of the possible assignments to the variables scope(C),
called solutions of C. A solution of P is an assignment of one
value to each variable such that all constraints are satisfied.

A propagator for a constraint C is an algorithm which takes
as input the domains of the variables in scope(C) and re-
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turns restrictions of these domains. Following [Schulte and
Stuckey, 2004], we can formally define a propagation algo-
rithm as a function:

Definition 1 (Propagator) A propagator f for a constraint
C is a polynomial time computable function f : P(D) →
P(D), such that f is monotone, i.e., D′(X) ⊆ D(X) =⇒
f(D′(X)) ⊆ f(D(X)), contracting, i.e., f(D(X)) ⊆
D(X), and idempotent, i.e., f(f(D(X))) = f(D(X)). If
a literal Xi = j is in D(X)\f(D(X)) then Xi = j does not
belong to any solution of C given D(X). If f detects that C
has no solutions under D(X) then f(D(X)) = ∅.

A propagator detects dis-entailment if when no possible as-
signment is a solution of C then f(D(X)) = ∅. A propagator
enforces domain consistency (DC) when Xi = j ∈ f(D(X))
implies that there exists a solution of C that contains Xi = j.

We also define the consistency checker for a constraint C
as a function that returns 0 when it detects that no possible
assignment is a solution of the constraint and 1 otherwise,
rather than restricting domains.

Definition 2 (Consistency checker) A consistency checker
f for a constraint C is a polynomial time computable function
f : P(D) → {0, 1} such that f is monotone, i.e., D′(X) ⊆
D(X) =⇒ f(D′(X)) ≤ f(D(X)). If f(D(X)) = 0 then
no possible assignment under D(X) is a solution of C.

We can obtain a polynomial time consistency checker fC

of a constraint C from a polynomial time propagator fP for
C and vice versa [Bessiere et al., 2007]. Given the propagator
fP , the corresponding consistency checker fC is defined as:

fC(D(X)) =
{

0 fP (D(X)) = ∅
1 otherwise

(1)

Conversely, given fC , the propagator fP is

fP (D(X)) = D(X) \ {Xi = j | fC(D(X)|Xi=j) = 0} (2)

where D(X)|Xi=j = D(X) \ {Xi = k|k 	= j}.

SAT. The Boolean satisfiability problem (SAT) is a spe-
cial case of the CSP where variables are Boolean. For each
Boolean variable xi there exist two literals xi and xi. Con-
straints in conjunctive normal form (CNF) are disjunctions of
literals, called clauses and sometimes written simply as tuples
of literals.

Unit propagation forces a literal to TRUE if it appears in a
clause where all other literals are FALSE and continues until a
fix-point is reached. If all literals in a clause are made FALSE,
we say that the empty clause is produced. A stronger form of
inference is the failed literal test [Freeman, 1995]. For each
literal l of an unset variable x, the failed literal test sets l to
TRUE, performs unit propagation, checks whether the empty
clause was produced and retracts l and its consequences. If
the empty clause was produced, l is set to FALSE.

A CSP instance can be encoded as a SAT instance. The
most widely used mapping of CSP variables to Boolean vari-
ables is the direct encoding. Each CSP variable Xi with do-
main D(Xi) is encoded in SAT as a set of propositions xi,j ,
Xi ∈ X, j ∈ D(Xi) such that Xi 	= j ⇐⇒ xi,j . The prop-
erty that each CSP variable has at most one value is enforced

by the set of clauses (xi,j , xi,k) for all k ∈ D(Xi), k 	= j and
the property that each CSP variable has at least one value is
enforced by the set of clauses

∨
j∈D(Xi)

xi,j . We denote this
propositional representation of D(X) as Dsat(X).

Note that the propositional representation Dsat(X) repre-
sents the current state of the domains D(X) during search.
This means that when the domains change, we need to be
able to make the corresponding change in the direct encoding.
Consequently, the fact (Xi = j) ∈ D(X) is represented by
xi,j being unset, rather than TRUE. When the value Xi = j
is pruned, then xi,j is set to FALSE. Only when Xi = j
is the only possible assignment for Xi is xi,j set to TRUE.
This means that the same domain can be represented by dif-
ferent partial instantiations of the direct encoding. For exam-
ple, given the CSP variable X1 with initial domain {1, 2, 3},
the instantiation Dsat({X1}) = {x1,2, x1,3} (with x1,1 un-
set) corresponds to the same domain as Dsat({X1}) =
{x1,1, x1,2, x1,3}, which is D({X1}) = {X1 = 1}.

Boolean Circuits. A Boolean circuit S is a directed acyclic
graph (DAG). Each source vertex of the DAG is an input gate
and the unique sink of the DAG is the output gate. Each non-
input vertex is labelled with a logical connective, such as and
(∧), or (∨) and not (¬). An input b to the circuit is an as-
signment of a value 0 or 1 to each input gate.1 The value of a
non-input gate is computed by applying the connective that it
is labelled with to the values of its ancestor gates. The value
of the circuit S(b) is the value of its output gate.

Any polynomial time decision algorithm can be encoded
as a Boolean circuit of polynomial size for a fixed length in-
put [Papadimitriou and Steiglitz, 1982].

In this paper, we will use a restriction of Boolean circuits to
∧-gates and ∨-gates, called monotone circuits. The family of
functions that are computable by monotone circuits is exactly
all the monotone Boolean functions. Note that there exist
families of polynomial time computable monotone Boolean
functions such that the smallest monotone circuit that com-
putes them is super-polynomial in size [Razborov, 1985].

Definition 3 (Monotone Boolean function) A Boolean
function f is monotone iff f(b) = 0 implies f(b′) = 0 for
all b′ ≤ b, where ≤ is the pairwise vector comparison, i.e.,
b′i ≤ bi for all i.

A consistency checker fC , previously defined as a mono-
tone function over sets, can also be formalised as a monotone
Boolean function whose input is the characteristic function of
the set D(X). Literals Xi = j are mapped to arguments bi,j

of the function, with bi,j = 1 iff Xi = j ∈ D(X). We use
Db(X) to denote the setting of the bi,j inputs for a given set
of domains D(X).

3 Properties of CNF decompositions

In this section, we define formally a CNF decomposition of
a propagator and of a consistency checker. As with propa-
gators and consistency checkers [Bessiere et al., 2007], we
show that there exists a polynomial time conversion between

1This is in contrast to TRUE and FALSE for SAT variables.
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the CNF decompositions of a propagator and of the corre-
sponding consistency checker.
Definition 4 (CNF Decomposition of a propagator) A
CNF decomposition of a propagation algorithm fP is a
formula in CNF CP over variables x ∪ y such that

• The input variables x are the propositional representa-
tion Dsat(X) of D(X) and y is a set of auxiliary vari-
ables whose size is polynomial in |x|.

• xi,j is set to FALSE by unit propagation if and only if
Xi = j /∈ fP (D(X)).

• Unit propagation on CP produces the empty clause
when fP (D(X)) = ∅.

Example 1 To illustrate Definition 4, consider a TABLE con-
straint over the variables X1, X2 with D(X1) = D(X2) =
{a, b} and the satisfying assignments: {〈a, a〉 , 〈b, b〉 〈a, b〉}.
[Bacchus, 2007] decomposes such a TABLE constraint into
CNF using the following set of clauses:
x1a ⇒ y1 ∨ y3 x2a ⇒ y1 y1 ⇒ x1a y1 ⇒ x2a

x1b ⇒ y2 x2b ⇒ y2 ∨ y3 y2 ⇒ x1b y2 ⇒ x2b

y3 ⇒ x1a y3 ⇒ x2b y1 ∨ y2 ∨ y3

where x = {xi,j}, i ∈ {1, 2}, j ∈ {a, b} is the propo-
sitional representation Dsat(X) of D(X) and y = {yi},
i ∈ {1, 2, 3} are auxiliary variables that correspond to satis-
fying tuples. Note that we have extended Bacchus’s encoding
with the clause (y1 ∨ y2 ∨ y3) to detect failure. Suppose the
value a is removed from the domain of X1. The assignment
x1a = FALSE forces the variable y1 to FALSE, which in turn
causes the variable x2a to FALSE, removing the value a from
the domain of X2 as well.

In example 1, we have decomposed a constraint into
clauses by introducing variables. In general, an encod-
ing might be exponentially bigger if auxiliary variables are
not used (e.g., the parity function [Darwiche and Marquis,
2002]).
Definition 5 (CNF Decomposition of a consistency
checker) A CNF decomposition of a consistency checker fC

is a CNF CC over variables x ∪ y ∪ {z} such that
• The input variables x are the propositional representa-

tion Dsat(X) of D(X) and y is a set of auxiliary vari-
ables whose size is polynomial in |x|. The variable z is
the output variable.

• Unit propagation on CC never forces any variable from
x or generates the empty clause if no variable in y is
set externally to CC , i.e., every variable y ∈ y is either
unset or forced by a clause in CC .

• z is set to FALSE by unit propagation if and only if
fC(D(X)) = 0.

Example 2 Consider the TABLE constraint from Example 1.
We construct a CNF decomposition of a consistency checker
using the CNF decomposition of a propagator. The clauses
that cause pruning of input variables domains are removed
and the last clause is augmented with the output variable z to
avoid generation of the empty clause in the case of failure:

y1 ⇒ x1a y1 ⇒ x2a y2 ⇒ x1b y2 ⇒ x2b

y3 ⇒ x1a y3 ⇒ x2b y1 ∧ y2 ∧ y3 ⇒ z

In this case, if the value a is removed from the domain of
X1, unit propagation will not deduce that a has to be re-
moved from the domain of X2. Consider instead the case
when the values a and b are removed from the domains of
X1 and X2, respectively. The literals x1a = FALSE and
x2b = FALSE force the auxiliary variables y1, y2 and y3 to be
FALSE. Therefore, the output variable z is forced to FALSE,
signalling that the TABLE constraint does not have a solution
under D(X).

In example 2, we transformed the propagator of example 1
into a consistency checker in an ad-hoc manner. The next
theorem shows that this can be done in a generic way. We
give a polynomial transformation of CNF decompositions of
a propagator into consistency checkers This mirrors the re-
sults of [Bessiere et al., 2007] for CNF decompositions.

Theorem 1 There exists a polynomial time and space con-
version between the CNF decomposition of a propagator fP

and that of the corresponding consistency checker fC .

Proof: (→) We construct CC as a transformation of CP

such that the output variable z of CC is FALSE iff unit propa-
gation on CP produces the empty clause.

Let the set of clauses of CP be c1 . . . cm. For each variable
p ∈ x∪y, we introduce 2 variables pt and pf in CC so that pt

and pf are true if p is forced to TRUE or FALSE, respectively:

p =⇒ pt p =⇒ pf (3)

Then, we simulate unit propagation for each clause ck by
replacing it with 3 implications2 that contain the variables pt

and pf rather than p. For example, to simulate unit propaga-
tion for the clause c1 = (p, q, r), we replace it with

pf ∧ qf =⇒ rf pf ∧ rt =⇒ qt qf ∧ rt =⇒ pt (4)

Unit propagation on (4) can never derive the empty clause,
because the true and false values of p are encoded in differ-
ent variables pt and pf , which may be true simultaneously.
When this happens, unit propagation on CP would generate
the empty clause, therefore we must set the output variable z
to FALSE, using the following clauses:

pt ∧ pf =⇒ z (5)

The union of the clauses (3), (4) and (5) is a CNF decompo-
sition of fC with size O(|x∪y|+|CP |) = O(|CP |), therefore
the transformation is polynomial.

(←) We outline the proof here. We replicate the equa-
tion (2) by simulating the failed literal test on CC∪{(z)}. For
each literal xi,j we create a copy of CC , denoted by CC |xi,j

,
in which all literals xi,k, k 	= j are FALSE. We use CC |xi,j

to record the results of unit propagation when Xi = j. When
unit propagation sets the output variable zxi,j

of the copy
CC |xi,j to FALSE then the propositional literal xi,j is made
FALSE by the additional clause (zxi,j =⇒ xi,j).

2We assume that formulas are given in 3-CNF form. We can
convert any CNF formula to 3-CNF, increasing its size by at most a
constant factor and without hindering unit propagation [Garey and
Johnson, 1979, section 3.1.1].
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The decomposition CP is then the union of the copies of
CC and the clauses (zxi,j =⇒ xi,j):

CP =
⋃

xi,j∈x

(CC |xi,j
∪ (zxi,j

, xi,j)) (6)

The size of CP is O(|x| · |CC |), therefore the transformation
is polynomial. �

Using the encoding of theorem 1, a CNF decomposition
of a consistency checker that detects dis-entailment can be
made into a propagator that enforces domain consistency. As
an example, consider the CNF decomposition of a propagator
that detects dis-entailment for the SEQUENCE constraint, pro-
posed in [Bacchus, 2007]. The size of this decomposition is
O(n2), where n is the number of variables in the SEQUENCE
constraint. These variables are binary, hence the transforma-
tion of theorem 1 yields a decomposition of a DC propagator
with size O(n3). This is also the complexity of the DC prop-
agator proposed in [van Hoeve et al., 2006].

Since all definitions of CNF decompositions that we in-
troduced in this section are polynomially equivalent, in the
remainder of this paper we only prove results for CNF de-
compositions of consistency checkers.

4 Equivalence to monotone circuits

In this section, we show our main result, which establishes a
connection between CNF decompositions of constraints and
circuit complexity.

Theorem 2 A consistency checker fC can be decomposed to
a CNF of polynomial size if and only if it can be computed by
a monotone circuit of polynomial size.

The proof of theorem 2 is constructive. We will first show
the reverse direction, using the Tseitin encoding [Tseitin,
1983] of a monotone circuit.

Definition 6 (Tseitin encoding of a Boolean circuit) The
Tseitin encoding of a circuit S into clausal form has one
propositional variable for each input of S and for each
gate of S. W.l.o.g, we assume all gates have fan-in 2. For
each ∧-gate g with inputs x1, x2, the Tseitin encoding
contains the clauses (x1, g), (x2, g), (x1, x2, g) and for each
∨-gate it contains the clauses (x1, g), (x2, g), (x1, x2, g).
Given any complete instantiation of the input variables,
unit propagation on the Tseitin encoding sets the variable
corresponding to the output gate of S to TRUE if the circuit
computes 1 and to FALSE otherwise.

Suppose that a consistency checker fC can be encoded into
a monotone circuit SC of polynomial size. The Tseitin encod-
ing of SC turns out to be a CNF decomposition of fC . This
is a direct consequence of the following lemma.

Lemma 1 Let SC be a monotone circuit and CC be its
Tseitin encoding. Let I be a partial instantiation of the in-
put variables x of CC and b be the corresponding input to
SC , where bi = 0 iff xi ∈ I . Then, unit propagation on CC

with I forces the output variable z to FALSE if and only if
SC(b) = 0.

Proof: (→) This follows from the correctness of the Tseitin
encoding.

(←). Suppose that SC(b) = 0, but the output variable z
is not forced to FALSE by unit propagation under I . Consider
an instantiation I ′ of the input variables of CC , which is the
same as I with unset variables fixed to TRUE. Let y ∈ y ∪
{z} be an auxiliary variable that is unset under I . All such
variables correspond to a gate in SC . Since CC is an encoding
of the monotone circuit SC , y will be set to TRUE under I ′.
This means that the output variable z is also set to TRUE.
By the correctness of the Tseitin encoding, SC(b) = 1, a
contradiction. �

Corollary 1 Let SC be a monotone circuit and CC be its
Tseitin encoding. Let I be a partial instantiation of the
input variables x of CC . Then, unit propagation on CC

with I forces the output variable z to FALSE if and only if
SC(b) = 0, for all b where b is the input to SC that corre-
sponds to any extension of I to a complete instantiation.

Proof: This follows from lemma 1 and the fact that SC is a
monotone circuit. �

Interestingly, lemma 1 cannot be generalised to non-
monotone Boolean circuits. The next example shows that
there exists a non-monotone Boolean circuit S that computes
a monotone function, and a partial instantiation I with b the
corresponding input to S, such that S(b) = 0 but unit propa-
gation on the Tseitin encoding of S under the instantiation I
does not set the output variable to FALSE.

Figure 1 A circuit whose Tseitin encoding is incomplete.

Example 3 Consider the non-monotone circuit S shown in
figure 1. Note that S computes a monotone function.

The Tseitin encoding of S introduces three Boolean vari-
ables g1, g2 and g3 for the gates OR1, OR2 and AND3,
respectively, and the clauses (x1, g1), (x2, g1), (g1, x1, x2),
(x1, g2), (x2, g2), (g2, x1, x2), (g3, g1), (g3, g2), (g1, g2, g3).

Now suppose that I = {x1}. Then, b = {x1 = 0, x2 =
1} and S(b) = 0. Since S computes a monotone function,
all possible extensions of x evaluate to 0. But in the Tseitin
encoding, setting x1 to FALSE does not make any clauses unit,
therefore unit propagation does not set g3 to FALSE. �

We now show the forward direction of theorem 2: every
CNF decomposition CC of a consistency checker fC can be
converted to a monotone circuit that computes fC with at
most a polynomial increase in size.

This transformation exploits two properties of CNF de-
compositions, namely, that only positive literals of input vari-
ables appear in CC , and that unit propagation only makes
auxiliary variables FALSE. We show the former property in
lemma 2 and the latter in lemma 3.
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Lemma 2 Let CC be the CNF decomposition of a consis-
tency checker fC . There exists a polynomial size CNF de-
composition C ′

C of fC such that negative literals of the input
variables do not appear in any clause in C ′

C .

Proof: We construct C ′
C by removing from CC all clauses

that contain a negative literal of an input variable. We show
by contradiction that unit propagation on C ′

C and CC pro-
duces identical results for the output variable z.

Let I be a partial instantiation of the input variables such
that unit propagation on CC under I sets z to FALSE but
leaves z unset on C ′

C . Since unit propagation on CC and C ′
C

produces different results, at least one of the removed clauses
becomes unit under I in CC . By definition, CC never forces
any literal of an input variable, so for any removed clause to
become unit, all the literals of input variables in it have to be
FALSE. Since at least one of these literals is negative, at least
one input variable has to be set to TRUE in I .

We construct another partial instantiation I ′ from I by set-
ting the same literals to FALSE as I and leaving the rest unset,
i.e., I ′ = {xi,j |xi,j ∈ I}. The partial instantiations I and
I ′ represent the same domains D(X), because the mapping
from partial instantiation to domain depends only on the lit-
erals that are FALSE. By this and the fact that CC is a decom-
position of fC , unit propagation on CC under I ′ forces the
output variable z to the same value as under I , FALSE.

Consider the result of unit propagation on C ′
C under I ′. Re-

call that by definition CC does not modify input variables and
I ′ does not have literal set to TRUE by construction. Hence,
none of the clauses that we remove from CC to get C ′

C can
become unit after performing UP on CC under I ′. Hence,
unit propagation in C ′

C under I ′ sets z to FALSE as in CC .
On the other hand, I sets a superset of the literals that I ′ sets,
so unit propagation on C ′

C under I also sets z to FALSE, a
contradiction, since we assumed that C ′

C leaves z unset un-
der I . �

In practice, a CNF decomposition of a consistency checker
may not be self contained and may depend on the existence
of clauses in the direct encoding of variable domains. In this
case, we cannot just remove clauses that contain negative
literals of input variables, as lemma 2 suggests. However,
using the clauses of the direct encoding, we can substitute
negative literals with the disjunction of positive literals. For
instance, consider a variable X2 with the domain {1, 2, 3}
and a clause (x1,1, x2,2, y) in CC . The literal x2,2 can make
this clause unit. The direct encoding of D(X2) includes a
clause (x2,1, x2,2, x2,3). Note that the literal x2,2 is TRUE if
and only if literals x2,1 and x2,3 are FALSE. Therefore, the
literal x2,2 can be replaced with the disjunction (x2,1, x2,3)
and the clause (x1,1, x2,2, y) is transformed to the clause
(x1,1, x2,1, x2,3, y).

The next step is to show that we can transform a CNF de-
composition so that each auxiliary variable is unset or FALSE
for all inputs that make the output variable FALSE. The trans-
formation is a renaming of the auxiliary variables. Lemma 3
describes the property that allows this transformation.

Lemma 3 Let CC be a CNF decomposition of a consis-
tency checker fC over the variables x ∪ y ∪ {z}, I1 =
Dsat

1 (X), I2 = Dsat
2 (X) be the propositional representa-

tions of any two domain settings such that unit propagation
on CC forces z to FALSE under both I1 and I2. For any vari-
able y ∈ y, if y is forced to FALSE (TRUE) by unit propaga-
tion under I1 then it is not forced to TRUE (FALSE) by unit
propagation under I2.

Proof: Let a variable y be forced to TRUE by unit propa-
gation under I1 and to FALSE under I2, but z is FALSE under
both I1 and I2. Consider the partial instantiation I such that
if a variable x ∈ x is FALSE in either I1 or I2, it is also FALSE
in I , otherwise it is unset. Since I fixes a superset of the lit-
erals that are fixed in either I1 or I2, all clauses that became
unit by either I1 or I2 will also be unit in I . Therefore, unit
propagation under I will force at least the union of the sets
of literals forced by I1 and I2. This means that unit propaga-
tion under I will make both y and y TRUE, which generates
the empty clause. This is a contradiction, as CC can never
produce the empty clause. �

Corollary 2 A CNF decomposition CC of a consistency
checker fC over variables x ∪ y ∪ {z}, can be polynomi-
ally converted into a decomposition C ′

C of fC such that every
variable in y is either unset or FALSE when z is FALSE.

Proof: We construct C ′
C from CC by flipping the polarity

of those variables that are set to TRUE when z is FALSE. �

Lemma 2 and corollary 2 allow us to precisely characterize
the form of the clauses in a CNF decomposition.

Corollary 3 Let CC be a CNF decomposition of a consis-
tency checker fC . The variables of CC can be renamed so
that each clause has exactly one negative literal.

Proof: By lemma 2, all input variables are positive literals in
the decomposition and by definition 5 they are never forced
by unit propagation on CC . In addition, by corollary 2, we
can rename the auxiliary variables so that unit propagation on
CC may only ever set them to FALSE. Then, in any clause
that consists of input variables and one auxiliary variable y, y
must be negative, otherwise it may be set to TRUE, a contra-
diction.

Suppose there exists a clause c with two auxiliary variables
y1 and y2 and both are negative in c. Since neither y1 nor y2

can ever be made TRUE, this clause can never become unit
and can be ignored. Suppose the literals of both y1 and y2

are positive in c. Then, if c becomes unit, it makes one of the
auxiliary variables TRUE, a contradiction. Thus, exactly one
of the literals of y1 and y2 is negative in c. The same reason-
ing can be extended to clauses with more than two auxiliary
variables. �

The condition described by corollary 3 is similar to CC

being re-nameable anti-Horn, but is stronger as it requires ex-
actly one negative literal in each clause, rather than at most
one. This condition allows us to build a monotone circuit
from a decomposition, using the construction of the next
lemma.

Lemma 4 Let CC be a CNF decomposition of a consistency
checker fC . Then, there exists a monotone circuit SC of size
O(n|CC |) that computes fC .

Proof: We assume that CC is in the form described in corol-
lary 3.
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Figure 2 Conversion of a CNF decomposition of a consistency checker into a monotone Boolean circuit.
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The inputs of the circuit correspond to the input variables
of CC . For each input variable xi,j of CC , there exists an
input bi,j of SC which is 0 if xi,j is FALSE and 1 otherwise.
Internal gates of the circuit correspond to auxiliary variables
after a certain number of unit propagation steps, using the
same mapping.

We create a circuit with |y| layers 1 . . . |y|. Let c1, . . . , cm

be the clauses of CC . The ith layer of the circuit contains an
∨-gate ci

j for each clause cj , called clause gates and an ∧-gate
yi

k for each auxiliary variable yk, called variable gates. Con-
sider a clause cj which contains y as the sole negative literal
(recall that corollary 3 ensures that this is the case), the pos-
itive literals of input variables xj1 , . . . , xjq and the positive
literals of auxiliary variables yjq+1 , . . . , yjq+r . The inputs of
each gate ci

j are bj1 , . . . , bjq and yi−1
jq+1

, . . . , yi−1
jq+r

. Let the
clauses with yk as the sole negative literal be ck1 , . . . , cks

.
Then, the inputs of each gate yi

k are ci
k1

, . . . , ci
ks

. The out-
put of the circuit is z|y|. Note that in this construction the
inputs of some the gates may not be defined. This is the case,
for example, for the gate c1

i , where the clause ci contains the
positive literals of some auxiliary variables. If this happens
for a clause gate, we omit it, while if it happens for a vari-
able gate, we omit the undefined input. If all the inputs of a
variable gate are undefined, we omit the gate.

This construction computes one breadth first application of
unit propagation at each layer. Specifically, the gate yi

k is 0 iff
yk is forced to FALSE after i or fewer breadth first steps of unit
propagation, while the gate ci

j is 0 iff the negated variable in
cj is forced to FALSE after i or fewer breadth first steps of unit
propagation. We show this by induction. For the first layer,
there exist gates only for clauses with no positive literals of
auxiliary variables. Consider any such gate cj which contains
the negative literal yk. All the propositional variables in cj

except yk are FALSE iff the corresponding inputs are 0. Thus
c1
j is 0 iff yk is FALSE after unit propagation of cj . If many

clauses contain the negative literal yk, then at least one of
them sets yk to FALSE in one breadth first step iff there exists
a clause gate that is 0 and is an input to the variable gate
y1

k, which is an ∧-gate and is thus 0. For the inductive step,
assume that the layers 1 . . . k − 1 compute k − 1 breadth first
steps of unit propagation. The same reasoning as for the base
case shows that the results of unit propagation are correctly
computed for the kth layer. Note that the kth layer may also
contain gates that were omitted at previous levels. Since the

inputs of these gates are correctly computed by the inductive
hypothesis, the gates that are new to the kth layer are also
correctly computed.

To conclude the proof, observe that in the extreme case,
unit propagation will set one more literal at every breadth first
step, thus after |y| steps it must either arrive at a fixpoint or
set all literals. Since the circuit has |y| layers, it will correctly
compute the result of unit propagation on CC . �

We illustrate the construction of lemma 4 with an example.

Example 4 Consider the CNF decomposition CC =
{c1, c2, c3, c4, c5}, where c1 = (x1, x2, y1), c2 =
(x5, x6, y2), c3 = (x4, y1, y2), c4 = (x3, y2, y1), c5 =
(y1, y2, x7, z).

We construct a monotone circuit SC from CC , (figure 2).
For a given instantiation of the input variables, this cir-
cuit computes 0 for the corresponding Boolean inputs if and
only if unit propagation on CC forces the output variable to
FALSE.

The circuit consists of 3 layers, with gates 1 and 2 in the
first layer, 3–8 in the second and gate 9 in the third. The gates
1–6 and 9 are clause gates, while gates 7 and 8 are variable
gates. A strict application of the construction of lemma 4
would also have variable gates in layers 1 and 3, but we omit
them here as they would be single-input gates. Note that in
figure 2, inputs are replicated at each layer to reduce clutter.

We note also that the layered construction of lemma 4 is
necessary. A circuit that attempts to capture unit propagation
on all clauses without using layers would have to contain a
cycle between the gates that compute y1 and y2, because y1

would need to be an input of the clause gate c3 that computes
y2 and y2 would need to an input of the clause gate c4 that
computes y1. Constructing a layered circuit allows us to re-
move such cycles. �

The proof of theorem 2 is now immediate from lemmas 1
and 4. Since CNF decompositions of consistency checkers
can be converted in polynomial time to and from CNF de-
compositions of propagators, theorem 2 also holds for propa-
gators.

5 Non decomposable global constraints

Corollary 4 now uses an existing circuit complexity result to
show that, unsurprisingly, there is no polynomial size CNF
decomposition of the domain consistency propagator for the
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ALLDIFFERENT constraint. This also applies to generaliza-
tions of ALLDIFFERENT, such as GCC.
Corollary 4 There is no polynomial sized CNF decomposi-
tion of the ALLDIFFERENT domain consistency propagator.
Proof: Régin [Régin, 1994] showed that an ALLDIFFERENT
constraint has a solution iff the corresponding bipartite value
graph (i.e., the graph where the node representing a variable
has an edge to every node that represents a value in its do-
main) has a perfect matching. In addition, every bipartite
graph corresponds to the value graph of an ALLDIFFERENT
constraint and DC propagators detect dis-entailment. Thus,
if there exists a polynomial size CNF decomposition of the
ALLDIFFERENT DC propagator, we can construct a mono-
tone circuit that computes whether a bipartite graph has a
perfect matching. But Razborov [Razborov, 1985] showed
that the smallest monotone circuit that computes whether
there exists a perfect matching for a bipartite graph is super-
polynomial in the number of vertices in the graph. Therefore,
the smallest CNF decomposition of the ALLDIFFERENT DC
propagator is super-polynomial in size. �

On the other hand, bound and range consistency propa-
gators of ALLDIFFERENT can be decomposed, as we argue
in [Bessiere et al., 2009].

6 Conclusions and Future Work

In this paper we have shown how the tools of circuit complex-
ity can be used to study decompositions of global propaga-
tors into CNF. Our results directly extend to decompositions
into CSP constraints of bounded arity with domains given in
extension since such decompositions can be translated into
clauses of polynomial size. An interesting next step is to
consider the decomposability of constraint propagators into
more expressive primitive constraints where domains are rep-
resented in logarithmic space via their bounds. CSP solvers
provide this feature which is missing in CNF. We conjecture
that there exists an equivalence between such CSP decompo-
sitions of constraint propagators and monotone arithmetic cir-
cuits that are generalizations of Boolean monotone circuits to
real numbers and gates for addition and multiplication. Since
lower bound results on monotone circuits usually transfer to
monotone arithmetic circuits, this would imply that the do-
main consistency propagator for ALLDIFFERENT cannot be
decomposed to constraints that exploit (exponentially) large
domains.
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