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Abstract

We introduce coalitional games with beliefs (CGBs), a
natural generalization of coalitional games to environ-
ments where agents possess private beliefs regarding the
capabilities (or types) of others. We put forward a model
to capture such agent-type uncertainty, and study coali-
tional stability in this setting. Specifically, we introduce a
notion of the core for CGBs, both with and without coali-
tion structures. For simple games without coalition struc-
tures, we then provide a characterization of the core that
matches the one for the full information case, and use it
to derive a polynomial-time algorithm to check core non-
emptiness. In contrast, we demonstrate that in games
with coalition structures allowing beliefs increases the
computational complexity of stability-related problems.
In doing so, we introduce and analyze weighted voting
games with beliefs, which may be of independent inter-
est. Finally, we discuss connections between our model
and other classes of coalitional games.

1 Introduction

In many multi-agent scenarios, agents have individual goals,
but need to form teams (coalitions) in order to achieve those
goals. When agents are selfish, i.e., aim to optimize their own
utility, stability of the resulting coalitions becomes a major
issue: if agents constantly switch coalitions to improve their
payoffs, no task will ever be completed. Such settings are of-
ten modeled using coalitional games [Myerson, 1991], which
provide a rich framework for the study of cooperation (see,
e.g., [Shehory and Kraus, 1995]). In particular, coalitional
stability can be studied using the notion of the core, which is
one of the main solution concepts in coalitional games.

While providing a solid theoretical foundation for the anal-
ysis of multi-agent scenarios, traditional models of coali-
tional game theory fail to capture certain important aspects
of interaction between intelligent agents. In particular, real-
world agents often embark on the task of forming coali-
tions while having incomplete information or possessing pri-
vate beliefs about the capabilities (or types) of potential part-
ners. Hence, in multi-agent applications, we would like to
be able to reason about coalition formation and coalitional
stability under uncertainty. Nevertheless, until recently, the

latter did not receive much attention from the game the-
ory community (an important exception is a paper of My-
erson [1984], which, however, approaches this issue from a
mechanism design perspective). The last few years have seen
some progress on this problem, with a number of models
for coalition formation under incomplete information being
proposed [Chalkiadakis and Boutilier, 2004; Myerson, 2007;
Ieong and Shoham, 2008]. However, all of these papers as-
sume that agent beliefs about other agents’ types are repre-
sented as probability distributions over possible types. This
assumption is not realistic in scenarios where agents may not
be well-informed or sophisticated enough to describe their
beliefs in this way. Moreover, as the number of agents grows,
such models can quickly become computationally intractable.
For example, in disaster management or multi-robot explo-
ration scenarios, agents usually have beliefs about others’ ca-
pabilities, but may not have time and/or bandwidth to check
if these beliefs are correct and update them properly.

To address these issues, in this paper we propose a sim-
plified approach to modeling incomplete information. Our
model is based on the following idea. Sometimes, an agent’s
belief about another agent’s type can be best described by a
single element of the type space, which represents the for-
mer agent’s best guess about the latter agent’s type. While
the agents realize that their information may be imprecise,
they are unwilling or unable (e.g., due to time and space con-
straints) to estimate the chances of other agents having a dif-
ferent type, so they operate based on these guesses. In this
paper, we provide a formal model for this type of scenario.
While it can be viewed as a special case of the probabilis-
tic model mentioned above, our model provides important
advantages from both cognitive and computational perspec-
tive. Indeed, as argued above, it may be easier for an agent
to formulate a single guess about another agent’s capabilities
than to come up with a distribution that fully describes them.
Also, in our model each agent’s beliefs can be compactly rep-
resented as a vector of types, one for each other agent. Fi-
nally, we are able to prove a number of characterization and
complexity results for our setting that seem to be difficult to
state—and prove—in the general probabilistic model.

The rest of this paper is organized as follows. After intro-
ducing the nesessary notation and definitions, we describe our
model. We then generalize the well-known notion of a sim-
ple game to our setting, and provide a characterization of the
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core of such games in the setting where coalition structures
are not allowed, i.e., the agents are required to form a sin-
gle team. Simple games are ones in which the value of each
coalition is known (or, in our setting, is believed) to be either
0 or 1 (rather than any real number). While less expressive
than general games, they still capture a wide range of realis-
tic scenarios and have been studied in the context of multi-
agent systems (see, e.g., [Bachrach and Rosenschein, 2007;
Elkind et al., 2007]). Our characterization result matches the
existing characterization result for the core of simple games
without beliefs, and allows us to derive a polynomial-time al-
gorithm for checking whether a given outcome is in the core,
or whether the core is non-empty. Thus, we show that intro-
ducing beliefs in simple games without coalition structures
does not increase the complexity of core-related problems.

In contrast, we then demonstrate that when coalition struc-
tures are allowed, i.e., agents can split into several teams,
the complexity of core-related problems can increase dramat-
ically. Specifically, we focus on weighted voting games with
beliefs, a natural generalization of the classic weighted vot-
ing games (WVGs) [Taylor and Zwicker, 1999] to our set-
ting. The computational complexity of WVGs when coali-
tion structures are allowed has been studied in [Elkind et al.,
2008a]. In particular, [Elkind et al., 2008a] show that when
the weights of all players are polynomially bounded, there is a
polynomial-time algorithm for checking if a given outcome is
in the CS-core (a generalization of the concept of the core to
games with coalition structures), and leave open the complex-
ity of checking the non-emptiness of the CS-core. In this pa-
per, we demonstrate that both of these problems become com-
putationally hard in the setting with beliefs. These results pro-
vide a complexity-theoretic separation between games with
and without beliefs in the setting with coalition structures.
Moreover, they contribute to our understanding of weighted
voting games with beliefs. Such games provide perhaps the
simplest possible model for joint task execution by a team of
selfish agents under incomplete information, and are there-
fore interesting in their own right, constituting an important
base case in this area. We conclude the paper by positioning
our model with respect to other classes of coalitional games,
and pointing out directions for future research.

2 Preliminaries and Notation

A (transferable-utility) coalitional game G = (N ; u) is given
by a set of players N = {1, . . . , n} and a utility function
u : 2N → R. The function u maps every subset, or coalition,
of players S to a real number u(S), which is called the value
of S. Intuitively, u(S) is the profit that the members of S can
attain by working together.

This definition can be extended to the setting where each
player may have a type, and the payoff of a coalition is
determined not only by the list of its members, but also
by their types. Formally, a coalitional game with types
G = (N ; T1, . . . , Tn; u) is described by: (a) a set of play-
ers N = {1, . . . , n}; (b) for each player i, a set Ti of this
player’s possible types; we require ⊥ �∈ Ti for all i ∈ N ; and
(c) a utility function u : T1 ∪ {⊥} × . . . × Tn ∪ {⊥} → R.
Given an input vector (T1, . . . , Tn), Ti ∈ Ti ∪ {⊥}, the func-

tion u outputs the value of the coalition S = {i | Ti �= ⊥}
when each i ∈ S has type Ti ∈ Ti. Note that Ti = ⊥ is
used to denote the fact that player i does not appear in a given
coalition. We write �T to denote (T1, . . . , Tn).

As an example, consider the setting where each player has
either skill A or skill B, but not both, and a coalition has
value 1 if it has at least k1 players with skill A and at least k2

players with skill B, and 0 otherwise. This scenario can be
modeled by a coalitional game with types where Ti = {A, B}
for all i ∈ N , and u(T1, . . . , Tn) = 1 if and only if |{i | Ti =
A}| ≥ k1 and |{i | Ti = B}| ≥ k2.

A coalitional game is called monotone if u(S) ≥ u(S′) for
all S ⊆ N and all S′ ⊂ S. A monotone game is called simple
if u(S) ∈ {0, 1} for all S ⊆ N . In such games, we say that
S wins if u(S) = 1 and S loses otherwise.

An important special class of simple games is that of
weighted voting games (WVGs). A WVG is described by
its set of players N , a vector of players’ weights w =
(w1, . . . , wn), wi ∈ R for i ∈ N , and a threshold q ∈ R;
we write G = (N ;w; q). The utility function u(S) of a game
G = (N ;w; q) is given by u(S) = 1 iff

∑
i∈S wi ≥ q.

In some cases, the only acceptable outcome of a game is
the formation of the grand coalition, i.e., the coalition of all
players N . However, in many multi-agent scenarios it is more
natural for agents to split into groups so that each group per-
forms its own task. This is captured by the notion of a coali-
tion structure, which is a partition CS = {C1, . . . , Ck} of the
set of agents N , i.e., (a) Ci ∩ Cj = ∅ for all i, j = 1, . . . , k,
i �= j, and (b) ∪k

i=1C
i = N . Note that our description of a

coalitional game as G = (N ; u) does not prescribe whether
the grand coalition should form; rather, each coalitional game
induces two different games: one where coalition structures
are not permitted and one where they are.

The utility function u does not specify how the members
of a coalition should divide the value of this coalition. This
is captured by the notion of an imputation. In games with-
out coalition structures, an imputation is simply a way to dis-
tribute the value of the grand coalition. That is, we say that
a vector p = (p1, . . . , pn) is an imputation in a game with-
out coalition structures if (a) pi ≥ 0 for all i ∈ N , and (b)∑

i∈N pi = u(N). In a game with coalition structures, an
imputation should distribute the value of each coalition in the
coalition structure. That is, we say that p = (p1, . . . , pn) is
an imputation for a coalition structure CS = {C1, . . . , Ck}
if (a) pi ≥ 0 for all i ∈ N , and (b)

∑
i∈Cj pi = u(Cj) for

all j = 1, . . . , k. Note that the value of each coalition in
the coalition structure has to be distributed among its mem-
bers, i.e., inter-coalitional transfers are not allowed. We write
p(S) to denote

∑
i∈S pi, and use similar notation for other

n-dimensional vectors throughout the paper.
An important consideration in coalitional games is that of

stability, which is usually captured by the notion of the core.
Roughly speaking, an outcome of a game is stable if no set
of players wants to deviate from it. In games without coali-
tion structures, an outcome of a game can be identified with
an imputation. Hence, in such games, the core of a game
G = (N ; u) is defined as the set of all imputations p such
that p(S) ≥ u(S) for any S ⊆ N . In games with coalition
structures, an outcome is a pair (CS ,p), where CS is a coali-
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tion structure and p is an imputation for CS . In this setting,
the core of a game G = (N ; u) consists of all pairs (CS ,p)
such that CS is a partition of N , p is an imputation for CS ,
and p(S) ≥ u(S) for any S ⊆ N . In what follows, we refer
to the core of a game with coalition structures as its CS-core,
and reserve the term core for games without coalition struc-
tures.

3 Coalitional Games with Beliefs

In this section, we introduce our model for coalitional games
with beliefs. These games are based on coalitional games with
types. However, in our model the players’ types are not public
information. Instead, each player knows his own type and, in
addition, has a belief about each other player’s type.

Definition 1. A coalitional game with beliefs G =
(N ; �T ; u;b1, . . . ,bn) is given by a coalitional game with
types G′ = (N ; �T ; u) and, for each player i ∈ N , a vec-
tor bi = (bi(1), . . . , bi(n)) of that player’s beliefs, where
bi(j) ∈ Tj denotes i’s belief about player j’s type. We denote
(b1, . . . ,bn) by �b. We refer to G′ as the associated game
with types of the game G and write G = (G′, �b).

Note that we do not explicitly specify the players’ true
types; rather, we assume that i’s belief about its own type
is correct, i.e., bi(i) is player i’s true type. In fact, all of our
subsequent results hold true in the case where agents do not
know their own true types but only have beliefs about them.

A player i can form a belief about the value of every pos-
sible coalition S based on his beliefs about individual play-
ers’ types by computing u(T1, . . . , Tn), where Tj = bi(j) for
j ∈ S and Tj = ⊥ for j �∈ S. We will denote i’s belief about
the value of a coalition S by ui(S).

As argued above, this model is inspired by Bayesian coali-
tional games with agent-type uncertainty [Chalkiadakis and
Boutilier, 2004; Chalkiadakis et al., 2007], but with an im-
portant difference. In contrast to that work, we do not as-
sume here that the agents’ beliefs are probabilistic. Instead,
the agents have “point” beliefs about the type of others. This
is a natural assumption in many real-world situations, where
probabilistic beliefs are simply not available to the agents,
or where reasoning about the full joint distribution over the
possible type vectors of all potential coalitions is a practical
impossibility for computational reasons.

Now, to describe an outcome of a coalitional game with
beliefs, we need to generalize the notion of imputation to this
setting. This task is complicated somewhat by the fact that the
players may have different beliefs about the value of the coali-
tion to be formed. To tackle this, we adopt an approach used
in previous work on coalitional games with uncertainty [Suijs
and Borm, 1999; Chalkiadakis and Boutilier, 2004; Chalki-
adakis et al., 2007]. Namely, the players have to agree on the
shares of the total payoff that each of them is going to get
rather than the actual payoff amounts.

Definition 2. We say that d = (d1, . . . , dn) is a demand vec-
tor for a coalition structure CS = {C1, . . . , Ck} in a game
G = (N ; �T ; u; �b) if di ≥ 0 for i ∈ N and d(Cj) = 1 for
each Cj ∈ CS . Given a demand vector d, the expected pay-

off pi of a player i ∈ Cj is given by diui(Cj); we refer to
p = (p1, . . . , pn) as the expected payoff vector for d.

Similarly to the case of coalitional games with types, we
can identify the outcome of a game without coalition struc-
tures with a demand vector for {N}. In a game with coalition
structures, an outcome is a pair of the form (CS ,d), where
CS is a partition of N and d is a demand vector for CS . We
are now ready to define the core and the CS-core of a coali-
tional game with beliefs.

Definition 3. Given a game G = (N ; �T ; u; �b) the core of G
consists of all demand vectors d such that for any coalition
S and any demand vector d′ for {S, N \ S} there exists an
i ∈ S such that d′

iui(S) ≤ pi. The CS-core of G consists
of all pairs (CS ,d) such that CS is a partition of N , d is
a demand vector for CS , and for any coalition S and any
demand vector d′ for {S, N \ S} there exists an i ∈ S such
that d′iui(S) ≤ pi.

Intuitively, this definition says that a demand vector d (re-
spectively, a pair (CS ,d)) is stable if there is no set S and a
demand vector for S which would provide each player in S
with a higher expected payoff than d (respectively, (CS ,d)).

4 Simple Games with Beliefs

In this section, we define simple coalitional games with be-
liefs and show that the core of such games can be charac-
terized in essentially the same way as the core of (standard)
simple games. Moreover, we demonstrate that this charac-
terization can be used to construct a polynomial-time algo-
rithm for checking whether the core is non-empty or whether
a given demand vector is in the core.

For the rest of the section, we only consider games without
coalition structures. Recall that in such settings an outcome of
a game is simply a demand vector d that satisfies d(N) = 1.

We start by generalizing the notions of monotone and
simple games to games with types and games with beliefs.
Namely, we say that a game G = (N ; �T ; u) is mono-
tone if u(T1, . . . , Tn) ≤ u(T ′

1, . . . , T
′
n) for any two vectors

(T1, . . . , Tn), (T ′
1, . . . , T

′
n) such that for all i ∈ N either

Ti = T ′
i or Ti = ⊥. That is, in a monotone game adding

players to a coalition (while keeping the types of the other
coalition members unchanged) cannot lower the value of a
coalition. Furthermore, we say that G is simple if it is mono-
tone and u(T1, . . . , Tn) ∈ {0, 1} for all Ti ∈ Ti ∪ {⊥} and
all i ∈ N . Finally, we say that a coalitional game with beliefs
G = (G′; �b) is monotone (respectively, simple) if its associ-
ated game with types G′ is monotone (respectively, simple).

It turns out that for simple games with beliefs, the defini-
tion of the core can be simplified considerably.
Proposition 1. A demand vector d is in the core of a simple
game with beliefs G if and only if any coalition S ⊆ N such
that ui(S) = 1 for all i ∈ S satisfies p(S) = 1.

Proof. Suppose that d is in the core of G. Consider any
coalition S such that ui(S) = 1 for all i ∈ S. Clearly,
p(S) ≤ p(N) =

∑
i∈N diui(N) ≤ 1; we will show that

p(S) ≥ 1. Suppose that p(S) < 1 and set ε = 1−p(S)
|S| . Con-

struct a demand vector d′ for {S, N\S} by setting d′i = pi+ε
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for i ∈ S, d′i = 1
|N\S| for i ∈ N \ S; clearly, we have

d′(S) = d′(N \ S) = 1. Moreover, we have d′i > pi for all
i ∈ S. As ui(S) = 1 for all i ∈ S, this implies ui(S)d′i > pi

for all i ∈ S, a contradiction with the definition of the core.
Hence, p(S) ≥ 1, as required.

Conversely, suppose that d is not in the core of G. Then,
according to Definition 3 there exists a coalition S and a de-
mand vector d′ for {S, N \ S} such that pi < ui(S)d′i for all
i ∈ S. For this to be the case, it has to be true that ui(S) = 1
for all i ∈ S. Therefore, we have pi < d′i for all i ∈ S.
As d′(S) = 1, this implies p(S) < 1. That is, S satisfies
p(S) < 1, ui(S) = 1 for all i ∈ S, as required.

In simple games without beliefs, there is a very natural
characterization of the core that relies on the notion of veto
players. A player i is said to be a veto player in a game
G = (N ; u) if any S ⊆ N such that u(S) = 1 satisfies
i ∈ S. By monotonicty, this is equivalent to requiring that
u(N \ {i}) = 0. One can then describe the core as follows.
Theorem 1. [Taylor and Zwicker, 1999] The core of a simple
game G = (N ; u) is non-empty if and only if G has a veto
player. Moreover, a payoff vector p is in the core of G if and
only if pi = 0 for any i that is not a veto player in G.

We will now show that this result can be extended to simple
games with beliefs. First, we have to generalize the notion of
a veto player to our setting.
Definition 4. A player i is said to be a veto player in a simple
game with beliefs G = (N ; �T ; u; �b) if for any S ⊆ N \ {i}
we have uj(S) = 0 for some j ∈ S.

That is, i is a veto player if it impossible to form a coalition
not involving i so that all of its members believe that this
coalition will succeed. It turns out that one can efficiently
verify whether a given player is a veto player.
Theorem 2. Consider a simple game with beliefs G =
(N ; �T ; u; �b) such that for all S ⊆ N and all i ∈ N one
can compute ui(S) in time at most B. Then the algorithm
A(G, i) given in Fig. 1 correctly decides whether a player i
is a veto player in G and runs in time O(n2B).

Proof. Our algorithm starts with the coalition S = N \ {i}
and successively removes players who do not believe that the
current coalition can succeed. By monotonicity, they would
not believe that any subset of the current coalition can suc-
ceed either, so no such player can be a member of a coalition
S ⊆ N \ {i} that satisfies uj(S) = 1 for all j ∈ S. After
all such players have been deleted, we either obtain an empty
coalition (in which case there is no coalition not involving i
that believes in its own success, i.e., i is a veto player), or
the remaining coalition S satisfies uj(S) = 1 for all j ∈ S,
i.e., i is not a veto player. The bound on the running time is
immediate from the description of the algorithm.

Note that, unlike in games without beliefs, it is not suffi-
cient to check whether N \ {i} is a winning coalition: it can
happen that N \ {i} contains a player who is sceptical about
its success and therefore does not provide a witness that i is
not a veto player, while a smaller coalition S ⊂ N \{i} does.

We now prove an analogue of Theorem 1 in our setting.

S = N \ {i}; flag = ⊥;
while flag = ⊥ and S �= ∅ do

flag = �; k0 = 0;
for each k ∈ S

if flag = � and uk(S) = 0
k0 = k; flag = ⊥;

endif
endfor
if k0 �= 0 then S = S \ {k0};

endwhile
if S = ∅ output "i is a veto player";
else output "i is not a veto player";

Figure 1: A(G, i) checks whether i is a veto player in G.

Theorem 3. The core of a simple coalitional game with be-
liefs G = (N ; �T ; u; �b) is non-empty if and only if G has a
veto player. Moreover, a demand vector d is in the core of G
if and only if di = 0 for any i that is not a veto player in G.

Proof. First, suppose that G has a veto player i. Consider a
demand vector d that satisfies di = 1, dj = 0 for j �= i. Con-
sider any coalition S such that uj(S) = 1 for all j ∈ S. By
definition of a veto player, we have i ∈ S. By monotonicity,
we have ui(N) = 1, so p(S) ≥ pi = diui(N) = 1. Hence,
d is in the core.

Conversely, suppose that G has no veto players. Consider
a demand vector d. We have d(N) = 1, so d has at least
one non-zero coordinate. Fix any i with di > 0. Since i
is not a veto player, there is a coalition S ⊆ N \ {i} such
that uj(S) = 1 for all j ∈ S. Moreover, we have p(S) ≤
p(N \ {i}) = 1− pi < 1. Hence, d is not in the core. As this
is true for any demand vector d, G has an empty core.

The argument above also demonstrates that any demand
vector d with di > 0 for a non-veto player i is not in the core,
thus proving the second part of the theorem.

Theorem 3 provides an efficient algorithm for checking
whether the core is non-empty or whether a given demand
vector is in the core. Indeed, we can first check, for each
player i ∈ N , if i is a veto player (by Theorem 2, this can
be done in polynomial time). The core is non-empty if the
answer is “yes” for at least one i ∈ N . Furthermore, to check
if d is in the core, we can check if di > 0 for any non-veto
player i; if the answer is “yes”, d is not in the core. We sum-
marize these observations in the following theorem.
Theorem 4. Given a simple coalitional game with beliefs G
and a demand vector d, one can check in polynomial time if
G has an empty core, or if d is in the core of G.

5 Computational Complexity: The Case of

Weighted Voting Games with Beliefs

In this section, we consider the complexity of computing the
CS-core in simple games with beliefs. It is known that even in
full-information settings the CS-core is computationally more
demanding than the core [Elkind et al., 2008a]. We will now
show that introducing beliefs adds another layer of complex-
ity: for weighted voting games some natural CS-core-related
problems that are polynomial-time solvable in the absense of
beliefs become computationally intractable when beliefs are
introduced.
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We start by specializing the concept of coalitional games
with beliefs to WVGs. For these games, it is natural to iden-
tify a player’s type with his weight. Players may also have
beliefs about the threshold. However, there is no loss of gen-
erality in assuming that the threshold is publicly known: a
game (N ;w; q) has the same set of winning coalitions as the
game (N ; αw; αq), and therefore we can rescale all beliefs
so that the players have the same belief about the threshold.

Hence, we say that a weighted voting game with beliefs is
given by a set of players N = {1, . . . , n}, n belief vectors
b1, . . . ,bn, where bi = (bi(1), . . . , bi(n)) describes the be-
liefs of player i about the weights of the other players, and a
threshold q; we write �b = (b1, . . . ,bn) and G = (N ; �b; q).
We will abuse notation by writing bi(S) =

∑
j∈S bi(j). The

utility function of a WVG with beliefs G = (N ; �b; q) satis-
fies ui(S) = 1 if bi(S) ≥ q, and ui(S) = 0 otherwise. In the
computational problems considered in the rest of this section,
we assume that bi(j) ∈ Z for all i, j ∈ N .

[Elkind et al., 2008a] shows that many natural problems
related to the CS-core are computationally hard when the
weights are given in binary. However, for the important spe-
cial case where all weights are polynomial in the number of
agents, it gives a polynomial-time algorithm for checking if
a given outcome is in the CS-core. Interestingly, it turns out
that in our setting this problem is hard even if all weights are
believed to be at most n (the number of players). This illus-
trates that introducing beliefs results in a quantifiable increase
in the computational complexity of the problem.

Theorem 5. Given a game G = (N ; �b; q) and an outcome
(CS ,d), it is coNP-complete to decide whether (CS ,d) is in
the CS-core of G, even if bi(j) ≤ n for all i, j ∈ N .

Proof. Let p be the expected payoff vector for (CS ,d).
Clearly, if an outcome is not in the CS-core of G, one can eas-
ily prove this by exhibiting a coalition S such that p(S) < 1
but bi(S) ≥ q (and hence ui(S) = 1) for all i ∈ S. It fol-
lows that our problem is in coNP. To show coNP-hardness, we
will demonstrate that the complementary problem of check-
ing whether (CS ,d) is not in the CS-core of G is NP-hard.
To this end, we provide a reduction from a classic NP-hard
problem CLIQUE [Garey and Johnson, 1990].

An instance of CLIQUE is given by an undirected graph
G = (V,E), |V | = t, and an integer k. It is a “yes”-instance
if G contains a clique (a complete subgraph) of size at least k
and a “no”-instance otherwise. Given an instance of CLIQUE,
we construct an instance of our problem as follows.

Suppose that V = {v1, . . . , vt}. We create n = 2t
players u1, . . . , ut, v1, . . . , vt and set q = k. The play-
ers’ beliefs about each other’s weights are defined as fol-
lows. For i = 1, . . . , t, we set bui

(vi) = k, bui
(vj) = 0 for

j = 1, . . . , t, j �= i, bui
(uj) = 0 for j = 1, . . . , t. Further-

more, for i = 1, . . . , t we set bvi
(ui) = k−1, bvi

(uj) = 0 for
j = 1, . . . , t, j �= i, and bvi

(vj) = 1 if i = j or (vi, vj) ∈ E
and bvi

(vj) = 0 otherwise.
Let CS = {C1, . . . , Ct}, where for i = 1, . . . , t we

set Ci = {ui, vi}. Observe that we have bui
(Ci) = k,

bvi
(Ci) = k, i.e., each player believes that he belongs to

a winning coalition. Finally, for i = 1, . . . , t set dui
=

1 − 1/(k + 1), dvi = 1/(k + 1). Clearly, d is a demand
vector for CS , and the corresponding expected payoff vector
p satisfies pui

= dui
, pvi

= dvi
for i = 1, . . . , t.

One can show that (CS ,d) is in the CS-core of our game if
and only if the graph G does not have a clique of size at least
k. The proof is omitted due to space restrictions.

Remark 1. We can show that the problem remains coNP-
complete even if bi(j) ∈ {0, 1} for all i, j ∈ N .

Another computational problem considered in [Elkind et
al., 2008a] is that of checking whether the CS-core of a WVG
is non-empty. Specifically, [Elkind et al., 2008a] shows that
this problem is hard if the weights are given in binary. How-
ever, it leaves open the question of whether this problem re-
mains intractable if weights are polynomial in the number of
players. We will now show that the corresponding problem
for WVGs with beliefs is NP-hard even if all weights are at
most linear in the number of players.

Theorem 6. It is NP-hard to check if a game G = (N ; �b; q)
has a non-empty CS-core, even if bi(j) ≤ n for all i, j ∈ N .

Proof. The reduction is from PARTITION INTO TRIANGLES
(PT) [Garey and Johnson, 1990]. An instance of PT is given
by a graph G = (V,E), |V | = 3t. It is a “yes”-instance if G
can be partitioned into triangles, i.e., there is a family of sets
V1, . . . , Vt ⊂ V such that (1) |Vi| = 3 for all i = 1, . . . , t;
(2) ∪t

i=1Vi = V ; (3) each Vi is a triangle, i.e., for any i =
1, . . . , t and any u, w ∈ Vi we have (u, w) ∈ E. Otherwise,
it is a “no”-instance.

Fix an instance G = (V,E) of PT with V = {v1, . . . , v3t}.
Let N ′ = {1, . . . , 3t}, N ′′ = {3t+1, 3t+2, 3t+3}, and set
N = N ′∪N ′′. Let q = 6t+1. For i, j ∈ N ′, set bi(j) = 3t if
i = j or (vi, vj) ∈ E and bi(j) = 0 otherwise. Furthermore,
set bi(j) = 3t and bj(i) = 1 for all i ∈ N ′, j ∈ N ′′. Finally,
set bi(j) = 3t for all i, j ∈ N ′′. Let G = (N ; �b; q).

Suppose that G is a “yes”-instance of PT, and let
{V1, . . . , Vt} be the corresponding partition. Consider the
outcome (CS ,d), where CS = {C1, . . . , Ct, Ct+1}, Ci =
{j | vj ∈ V i} for i = 1, . . . , t, Ct+1 = N ′′, and di = 1

3 for
all i ∈ N . It is not hard to see that (CS ,d) is in the CS-core
of G. Conversely, if G cannot be partitioned into triangles, G
has an empty CS-core; the proof is omitted for brevity.

6 Discussion

Recall that in transferable utility games (TU games), the
worth of each coalition is given by a single number, which
is the total payoff available to the members of this coalition;
this payoff can be freely distributed between the members of
that coalition. In contrast, in non-transferable utility games
(NTU games), the worth of a coalition C, |C| = k, is de-
scribed by a vector of length k, which, for each player i ∈ C,
describes the utility that i derives from participating in C. In
such games, players cannot make payments to each other.

We constructed coalitional games with beliefs on the ba-
sis of TU games. Perhaps surprisingly, it turns out that they
share certain features with both TU games and NTU games.
Indeed, in the spirit of TU games, the players have to agree
on how to distribute the profits achieved by a coalition; this
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agreement is captured by the demand vector. On the other
hand, since each player in our games assigns his own utility to
a coalition to be formed, he may not be able to transfer some
of this utility to other players, especially if these players are
much more pessimistic about the value of this coalition. This
is of course in the spirit of NTU games. To give a simple ex-
ample, consider a game in which u1({1}) = 0, u2({2}) = 1,
u1({1, 2}) = 10, u2({1, 2}) = 0. Player 1 is eager to form a
coalition with player 2, and would gladly offer a lion’s share
of its value (believed to be 10) to him. However, there is no
demand vector that will make this proposal attractive for 2.

In fact, if the demand vectors for each coalition were fixed
in advance (i.e., for each potential coalition S and each mem-
ber of that coalition i player i’s share of S’s profit was part
of the game description rather than subject to negotiation
between the members of S), coalitional games with beliefs
would be equivalent to (hedonic) NTU games: player i’s
value for a coalition S would be given by diui(S). In con-
trast, in this paper we allow the players to negotiate the pay-
offs resulting from an expected outcome. This provides the
players more flexibility and is therefore more natural in in-
complete information scenarios.

We now describe two well-known classes of games that
bear certain similarities to the weighted voting games with
beliefs considered in the previous section. We hope that this
discussion will help the reader appreciate the properties of
our model, and its differences from existing related models.

Vector weighted voting games. In k-vector weighted voting
games [Taylor and Zwicker, 1999; Elkind et al., 2008b], the
value of each coalition is determined using a set of k weight
vectors w1, . . . ,wk and k thresholds q1, . . . , qk: a coalition
S is considered to be winning if it wins in each of the com-
ponent games, i.e., we have wi(S) ≥ qi for i = 1, . . . , k.
The similarity with WVGs with beliefs is obvious: in those
games, too, the value of each coalition is determined using a
set of weight vectors (one for each player). However, while
in vector WVGs the number of weight vectors used to deter-
mine the value of each coalition is given exogenously (i.e.,
it is fixed to k independently of the coalition), in WVGs with
beliefs the number (and the actual list) of weight vectors is de-
termined endogenously: only the weight vectors (i.e., beliefs)
of the coalition’s members have to be taken into account.

Additively separable hedonic games. Additively separable
hedonic games are described by a weighted directed graph
whose vertices are players, and the weight wij of an edge
(i, j) corresponds to the utility i extracts from being in a
coalition with j; note that we may have wij �= wji. Given
a coalition S, the payoff of a player i ∈ S is given by
pi =

∑
j∈S wij . While the weight wij appears to play a simi-

lar role to the belief bi(j) in the WVGs with beliefs, there are
two important differences between these classes of games.
First, as argued above, additively separable games are NTU
games, while WVGs with beliefs are not. Second, there is no
notion of a threshold in additively separable games.

A related class of TU games is defined by Deng and Pa-
padimitriou [1994]: the games considered in this paper are
also represented by a weighted (undirected) graph, and the
value of a coalition S is determined as u(S) =

∑
i,j∈S wij .

WVGs with beliefs are different from those games as well:
the games of [Deng and Papadimitriou, 1994] allow for arbi-
trary transfers of utility between players, and do not involve
any notion of a threshold.

7 Conclusions

In this paper, we developed a model for coalitional games
with beliefs, which allows us to reason about coalition forma-
tion under uncertainty while being significantly less complex
than the more general Bayesian models. We proved a char-
acterization result for the core of simple games with beliefs,
which matches the known result for the setting without be-
liefs, and can be used to derive polynomial-time algorithms
for core-related problems. On the other hand, we showed that
incomplete information can increase the complexity of the
CS-core-related problems. In doing so, we introduced and
analyzed weighted voting games with beliefs, which provide
a convenient model for simple task allocation scenarios under
uncertainty, and are therefore of independent interest.

We believe that our results provide a natural framework for
modeling the behavior of selfish agents under incomplete in-
formation. Also, we hope they will prove useful for studying
more sophisticated incomplete information scenarios, such as
the full Bayesian setting.
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