
Abstract 
This paper presents a new modeling approach for 
IMP programs with operator component matrix 
(OCM) model, which can be used in IMP program 
diagnosis. Using this model and model-based di-
agnosis method, some logic errors can be found in 
IMP programs. The model  can also be extended to 
all kinds of imperative programs. The advantages of 
this diagnosis method lie in its simple and regular 
presentation, uniform diagnosed objects, usage of 
isomorphism assumptions  in structure, and usage of 
assertions about the expected program. These ad-
vantages make diagnoses more accurate, and even 
help to correct the faults by mutation of operator 
components. 

1 Introduction 
Model-based diagnosis was first proposed in 1987 by Reiter 
[Reiter, 1987], this approach is mainly used to diagnose the 
systems composed of some physical components. Applying 
model-based diagnosis to program debugging is still a new 
field. Now, dependency model [Mateis et al., 1999] [Wieland, 
2001] and value-base model [Mateis et al., 2000] are widely 
used in program diagnoses, both of which use program slic-
ing technology [ Wotawa, 2002]: the former considers static 
slices of a program by analysing the dependency between 
variables, and the latter in fact uses dynamic slices depending 
on a special test by computing the valuation trajectory. But 
these methods are not competent in structural errors, and 
always result in very coarse diagnoses, i.e., too many can-
didate diagnoses.   

This paper uses a simple imperative programming lan-
guage—IMP which helps to focus on the important issues 
and avoid considering unnecessary detail. The syntax of IMP 
is shown in [Winskel, 1993]. For IMP programs, we present a 
new modeling approach with OCM, which can be used in 
IMP program diagnosis. Using this model and  model-based 
diagnosis method, some logic errors can be found in IMP 
programs. The model can also be extended to all kinds of 
imperative programs. The advantages of this diagnosis 
method lie in its simple and regular presentation, uniform 
diagnosed objects, the usage of isomorphism assumptions in 

structure, and the usage of assertions about the expected 
program. These advantages make diagnoses more accurate, 
and even help to correct the faults by mutation of operator 
components. 

In this paper, section 2 presents the operator component 
matrix model for programs. Section 3 further analyses the 
dependencies implied in the model, including black-box 
dependency and white-box dependency. Section 4 is the core 
of the paper, it defines such terms as isomorphism, abstract 
program, program specification and breakpoint, and under 
these terms, it also defines the model-based program diag-
nosis problem, diagnosis and conflict etc., and gives an ex-
ample to illustrate them. Section 5 introduces related works, 
and the last section makes a conclusion.   

2 Operator Component Matrix Model 

2.1 Operator Component and 1-variable 
Definition 1. In an n-ary function Fn(x0,x1,…xn-1), we use a 
vector 0 1 1, ,...,n n n

nF F F to denote Fn,  then n
kF (k=0,...n-1) is 

called the k-th operator component of n-ary function Fn.  
So, we can represent Fn(x0,x1,…,xn-1) as 

         0 0 1 1 1 1...n n n
n nF x F x F x                (1) 

      Where “ ” is called as operator-plus , “ ” is called as 
operator-times, and we stipulate that the symbol “ ” has 
associativity and exchangeability, and “ ” has associativity 
and distributivity to “ ”. So, we can also represent (1) as  

0 1 1 0 1[ , ,... ][ , ,... ]n n n T
n nF F F x x x . 

We can prove that the above stipulation is reasonable, 
because under the stipulation, any legal expression in the 
form of operator components has a unique computable form, 
i.e. 0 0 1 1 1 1... n nF x F x F x is computable iff the se-
quence 1 2( , , , )nF F F is a permutation of all the operator 
components of an n-ary function. 
Definition 2. If a domain is composed of a single element 1, 
then we call the variable in the domain as 1-variable. i.e., we 
consider the constant 1 as a special variable.  
Definition 3.  Given two variables x and y, if the value of y is 
independent of x, we call x has a null operator component 
to y, represented as 0. 
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The arithmetic operators of IMP are defined as follows: 
(1) n (x) n x , where n is a constant in N. Especially, 

we call 1 as identical operator component, which can also 
be represented as 1, but note that here 0  is different from 
null operator component 0. 

(2) (x,y)  x+y.    (3)  (x,y)  x y. 
x-y can be derived from   and -1 i.e., 

x-y=x+(-1) y= (x, -1(y))= 0 x ( 1 -1) y. 
Property 1. For a Aexp1, suppose x1, ..., xn are variables in 
a,  then it can be represented in the form of   
      a=F0 1 F1 x1 F2 x2 ... Fn xn , 
where F0, F1, F2, ..., Fn are operator component expressions. 
For instance,  x (2 y+5)=( 1 1 5) 1  0 x  ( 1 0 2)  y 
Property 2.  For any F ,G ,H ,  m,n N 

 F 0=0 F=0, F 1=1 F=F, F 0=0 F=F 
 m n= m n 

2.2 Presentation of Commands 
In  IMP programs, there are five types of commands: skip 
statement (skip), assignment statement (x:=a), compound 
statement (c0;c1), branch statement (if b then c0 else c1) and 
loop statement (while b do c). Here we present these state-
ments in the form of OCM. 
Assignment statement 
Suppose the variable set of a program is 1{ ,..., }nx x then 
from property 1 and definition 3, each a Aexp takes the 
form of  0 1 11 ... n nF F x F x , where Fk=0 if variable xk 
does not occur in a. 
     So, we can denote assignment statement xk:=ak (k=1..n) as  

xk:= 0 1 11 ...k k kn nF F x F x  
or            xk:=[Fk0 Fk1 ... Fkn][1 x1 ... xn]T    . 
      When the program executes the assignment statement 
xk:=ak, only the value of variable xk will be changed. So we 
can consider that it implies such assignment statements as 
follows:     xj:=xj  (j=1,..n, j k),   
i.e.,  xj:= 10 1 0 ... 1 0j nx x x  
     Let X=[1  x1  x2  ...  xn]T, then xk:=ak is equivalent to 

      
0 1

1 0 0
0 1 0

:

0 0 1

k k knF F F
X X , represented as X:=CX 

C is a matrix composed of operator components, such 
matrix is called as operator component matrix, abbreviated 
as OCM. We can treat  C as a state transition matrix. 
Property 3.  The first row of any state transition matrix has 
the form  of  [1  0  ...  0]. 
Property 4.  In any row of any state transition matrix, there is 
at least one operator component that is not 0. 

We label the commands with 1, 2, ..., n by their occur-
rence order in a program. Let X(k-1) be the program state 

                                                 
1 Aexp is the set of arithmetic expressions in IMP. 

before the execution of the k-th command, and X(k) be the 
program state after the execution of the k-th command, then 
X(k)=CkX(k-1),  where Ck is the state transition matrix of the 
k-th command.  The value of an expression a under program 
state X(k) is represented as (a, X(k)). 
Skip statement 
In a unit matrix, if we look number 1 as operator component 
1, and number 0 as operator component 0, we call such ma-
trix as unit OCM, represented as E. We also call the OCM 
composed of all 0 as zero OCM, represented as O.      

So, skip statement (skip) can be represented as X:=EX . 
Presentation of compound statement 
Compound statements take the form of c0;c1. Suppose 
command c0 can be represented as X:=C0X and c1 can be 
represented as X:=C1X, where C0 and C1 are all OCMs, then 
we can represent the command as X:= (C1C0)X . 
Presentation of branch statement 
Branch statements take the form of  if b then c0 else c1. 
Suppose command c0 can be represented as X:=C0X and c1 
can be represented as X:=C1X, where C0 and C1 are all 
OCMs. Then we can represent the command as X:= 
(mC0 (1-m)C1)X, where m=1 when (b,X(0))=true, other-
wise m=0, X(0) is the program state before the execution of 
the command. Note that we look the result of m and 1-m as  
operator component 1 or 0. 
Presentation of loop statement 
Loop statements take the form as  while b do c.  Suppose 
command c can be represented as X:=CX, where C is an 
OCM. Then we can denote the command as  X:= CnX,  where 
n is the number of executions of loop body c (i.e. n= min{k|(b, 
X(k)) =false, k 0}, where X(k) is the program state after the 
k-th execution of command c). 
       According to structural induction, it can be proved that 
any IMP program can be denoted in the form of  X:=CX. We 
call C as the OCM model of the program. 

2.3 An example 
To facilitate analysis, we use an example shown in Fig 1.  
 
1(key point)
1.1 
1.2 

1.3 
1.4 
2 
3 
4(key point)
4.1 
4.2 
5 

if (from  to)  then 
 {start := from ; 

 stop := to} 
     else  
         {start := to;  

stop := from}; 
i:= start; 
s:= 0; 
while (i  stop )  do 

        {s:=s+i;  
 i:= i+1} 

      [end] 
Figure 1:   An IMP program 

   Let X=[1 from to start stop i s]T,  we can get the OCM 
model of the program  
C=C4C3C2C1=(C4.2C4.1)nC3C2(mC1.2C1.1 (1-m)C1.4C1.3) 
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1 0

1 0 0

1 0 0 0 0 0 0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0 0 1 0 0 0 0
0 0 0 1 0 0 0  0 1 0 0 0 0
0 0 0 0 1 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

n

m m

m m

m m

 

where Cl  is  the state transition matrix of the command la-
beled with l; m=1 if ( from to, X(0))=true or else m=0;  
n=min{k|( i   stop, X(4.2,k))=false, k 0}, where X(0) is the 
program state before execution of the command labeled with 
1; X(4.2,k) is the program state after the k-th execution of the 
command labeled 4.2. 
      If a program includes branch statements or loop state-
ments, there are some unknown “constants” appearing in its 
OCM model, such as m, n in the above example. Though 
their values are dependent on a given test case, we still look 
them as formal constants. 

3 Dependency Analysis 

3.1 Black-box Dependency 
Definition 4. Such an operator component  is called a 
characteristic operator component, if it satisfies that 
      = ,  = ,  0=0 = , 0=0 = . 
An OCM K is called the characteristic matrix of C,  if K  is 
constructed by replacing all the operator components in C 
except 0 with  .       
Theorem 1.  For any OCM C1, C2, if K1 and K2 are respec-
tively the characteristic matrix of C1 and C2, then K1K2 is the 
characteristic matrix of C1C2. 
Theorem 2.   For any characteristic matrix K , the chain K, 
K2, K3, ..., Kn satisfies one of the two cases as below: 
(1) N, n>N, Kn=KN; 
(2) N, M, n> N, Kn+M=Kn. 
    Since the set of all characteristic matrixes of a given di-
mension is limited, any chain K, K2, K3, ..., Kn  must reach a 
fixed point or enter into a ring. The theorem indicates that the 
dependency in a loop is definite.   
Definition 5.  Assume that X is the vector of all variables in  
program2 P , C is the OCM model of P, K is the character-
istic matrix of C, then K is called the black-box dependency 
matrix of P. 
      From the example shown in Figure 1, we can get its 
black-box dependency matrix 

      

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

0 0 0 0
0 0 0 0

K
. 

                                                 
2 Here ‘program’ indicates IMP program without special note. 

From K, we can get the dependencies of the final values of 
variables to the initial values of variables; we represent these 
dependencies as  X(n) B KX(0) , where X(n) is the final 
program state, X(0) is the initial program state. For instance, 
we extend the variable s, we can get 

          s(n) B 1 from(0) to(0),  
which means the final value of s is decided by the initial 
value of from, the initial value of to, and the constant value of 
s assigned in the program. Especially, if the black-box de-
pendency of a variable includes the item 1, it shows the 
variable has been assigned with a constant in the program. 
       In the black-box dependency, if we find a variable does 
not appear in the dependencies of any other variables and its 
final value is not concerned about, the variable is usually 
considered useless, which can be deleted from the program.  

3.2 White-box Dependency  
Definition 6.  For an OCM C, after replacing all its operator 
components except 0 and 1 with formal operator compo-
nent represented as [p](p is the label set of the commands 
where the actual operators occur), the new components ma-
trix H is called as the formal matrix of C. The properties of 
[p] are shown as follows: 

     p1,p2,  [p1] [p2]= [p1  p2], [p1] [p2]= [p1  p2], 
[p1] 0=0 [p1]= [p1], [p1] 0=0 [p1]=0  
[p1] 1=1 [p1]= [p1], [p1] 1=1 [p1]= [p1]. 

Definition 7.  Assume that X is the vector of all variables in  
program P , C is the model of P, H is the formal matrix of C,  
then we call H is the white-box dependency matrix of P. 
     From the example shown in Figure 1, we can get its 
white-box dependency matrix 

     

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 [1.3] [1.1] 0 0 0 0
0 [1.4] [1.2] 0 0 0 0

[4.2] [1.1, 2, 4.2] [1.3, 2, 4.2] 0 0 0 0
[4.1, 4.2,3] [1.1, 2, 4.1, 4.2] [1.3, 2, 4.1, 4.2] 0 0 0 0

H
 

From H, we can get the dependency of variables to com-
mands which is represented as  X(n) W HX(0) , where X(n) 
is the final program state, X(0) is the initial program state. For 
any variable in X, we can get its dependency to commands 
from H. For instance, we extend the variable s, and get    

s(n) W [4.1,4.2,3] 1 [1.1,2,4.1,4.2] from(0)  
 [1.3,2,4.1,4.2] to(0).  

Then we establish a set s which is composed of all the 
command labels appearing in the right part, i.e.,  

s = {1.1,1.3,2,3,4.1,4.2}.  
We call  s  as the white-box dependency of variable s, which 
means the final value of s is decided by the command set 
{1.1,1.3,2,3,4.1,4.2}. It can be proved to be equivalent with 
the program slice about the slicing criterion (s, 5) [Wotawa, 
2002]. Note that white-box dependencies include data de-
pendencies and control dependencies which are implied in 
the formal constants related to a branch statement or a loop 
statement.  
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3.3 Complexity analysis  
      In this model, the dimension of each OCM is  (n+1) (n+1) 
where n is the number of variables in the program. It seems 
that the size of  the matrix model would grow quickly with 
the number of variables. However, it is not a big problem, 
because when we diagnose a program, at one time, a diag-
nosed object is generally a program module (a procedure or a 
function) where the number of variables won’t be too big. 
Moreover, we can store all state transition matrixes in the 
dense mode of sparse matrix.  
      

4 Model-based Program Diagnosis  

4.1  Isomorphism Assumption and Abstract Pro-
gram 

Definition 8. Two commands c and c  are isomorphic, rep-
resented as Isomorph(c, c ), iff one of  the following cases is 
satisfied: 

1) c::=skip  c ::=skip;  
2) c::= x:=a0  c ::= y:=a1  x  y  VS(a0) = VS(a1) 

where x  y  means that x and y are the same variable, 
VS(a) means the set of  all the variables in  a;  

3) c::= c0; c1  c ::= c0 ; c1   Isomorph(c0, c0 )  Iso-
morph(c1, c1 ); 

4) c::= if b then c0 else c1  c ::= if b  then c0  else c1   
Isomorph(c0, c0 )  Isomorph(c1, c1 ); 

5) c::= while b do c0  c ::= while b  do c0   Iso-
morph(c0, c0 ). 

Generally, a diagnosed program should be close to an 
expected program. That is to say, it is possible that minor 
revisions will make the diagnosed program correct. So, we 
always suppose that for any diagnosed program, there exists 
a “correct” program which is isomorphic with the diagnosed 
program. This assumption is called isomorphism assump-
tion.  
    In some diagnosed programs, it is possible that some 
variable is lost in the right-side expression of an assignment 
statement, such that the isomorphism assumption cannot hold 
any more. But fortunately, we can extend the expression to a 
new equivalent expression which includes the lost variable 
by adding a null operator component. For instance, if x:=x+i 
is written as x:=x+1 by mistake,  we can extend the expres-
sion x+1 to x+1 0 i. We call this case as extendable iso-
morphism, so it assures that many diagnosed programs are at 
least extendable isomorphic with a correct program. 
Definition 9. For a given program (OCM model), if we re-
place all the operator components of the program with ab-
stract operator components, the new program is called an 
abstract program.  An abstract operator component is only 
a marker which does not refer to any concrete operator com-
ponent. 

For example, there is a command l:  s:=s+i in a program 
(where l is the label), whose model is represented as s:= 

0
(l) s 1

(l) i, and whose abstract model is represented as 
s:= 0

(l) s 1
(l) i, where 0

(l) and 1
(l) are abstract operator 

components. Suppose the mapping from the abstract model 

to the actual model is MAP, then MAP={{( 0
(l), 0

(l)), ( 1
(l), 

1
(l))}}. In order to identify the operator components which 

have the same form, we add the command label to them. 
Suppose the command l:  s:=s+i should be  l:  s:= s i , it is 
known that the abstract model of the “correct” command has 
the same form of the abstract model of the “wrong” com-
mand. Given a mapping MAP ={( 0

(l), 0
(l)), ( 1

(l), 1
(l))}, we 

can get the correct command from the abstract model. 
Under the isomorphism assumption, we can construct 

the abstract model of expected program from the concrete 
model of the diagnosed program by replacing components in 
the concrete model  with abstract components. 

  Note that each extended null operator component must be 
replaced by an abstract operator component in the abstract 
model. 

4.2  Program Specification and Breakpoint 

Program specification  
To further describe the abstract program, we need offer some 
assertions about the static properties of it, each assertion is 
called a program specification [Morgan, 1998]. 
Definition 10.  A program specification  has the form as 
below: 
     ( precond(X), frame(X), postcond(X)), 
where X  is the set of variables, precond(X) is a description 
of the initial state of X, frame(X) indicates a piece of the 
abstract program including X, and postcond(X) gives a de-
scription of the final state of X after the “execution ” of the 
piece of abstract program.   

Note that frame(X) cannot be executed until a concrete 
implementation is given. If slice(X) is a concrete imple-
mentation of frame(X), postcond(X) must come true after 
execution of slice(X) under the condition precond(X), and 
we denote it as  {precond(X)} slice(X){ postcond(X)}. 

For example, to such a specification,  
precond(s, i)={s>0, i>0}, 
frame(s, i)={ s:= 0 s 1 i},  
postcond(s, i)={s>1}, 

slice {s:=s+i} is an implementation of frame(s,i), but slice 
{s:=s i} is not . 
Breakpoint 
The position of a program is called a breakpoint, if where 
there is an assertion. The assertions about the variables in a 
breakpoint are called intermediate results. The value of 
variable x in a breakpoint B is represented as x(B).  

In program diagnosis, a kind of special position is often 
used as breakpoints, and those positions are closely followed 
with a boolean expression, we call them as key points. For 
example, in Figure 1, there are two key points in the positions 
of label 1 and label 4.    

Note that in a runtime of a program, a breakpoint may be 
passed by several times or zero times, but it corresponds to a 
unique position in a program.  

For a given breakpoint, if all test cases should pass it, we 
call the assertions in this breakpoint as invariant (“always”) 
assertion,  otherwise, we call them as  intermittent 
(“sometime”) assertion [ Mayer and Stumptner, 2003].  
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 So, it is known that any program specification must relate 
to two breakpoints, and the program code between the two 
breakpoints must be a legal (compound) command. For 
example, in Figure 1, the codes between breakpoint 1.3 and 
breakpoint 3 are not legal commands. If B1 and B2 are the 
breakpoints related to frame(X), we also represent frame(X) 
as frame(B1,B2, X). If X includes all the variables of the 
program, X can be omitted.   

4.3  Program Diagnosis 
Definition 11. A program diagnosis problem is a triple (SD, 
COMPS, SPECS) where SD is the OCM model of the actual 
program to be diagnosed, COMPS is the set of operator 
components in SD, SPECS is the set of program specifica-
tions. 
Definition 12. Suppose (SD, COMPS, SPECS) is a program 
diagnosis problem. Let AD be the abstract program of SD, 
ACOMPS be the abstract operator components in AD, and 
MAP be the mapping from COMPS to ACOMPS. Then 

COMPS is a diagnosis  iff  there exists MAP : SA  
where  is the set of all operator components and SA is a 
subset of ACOMPS, such that 

 AD  MAP   SPECS    is consistent, and 
 C COMPS\ , MAP  (MAP-1(C))=C. 

     Under isomorphism assumption, AD  SPECS is always 
consistent, that is, the expected program is an interpretation 
of AD.    

Since any operator component corresponds to a com-
mand in the program, components in  indicate the possible 
faults in the program. 
Definition 13. Let  be a diagnosis. If there exists no ’  
such that ’ is also a diagnosis, then  is a minimal diag-
nosis.  
Definition 14. Suppose (SD, COMPS, SPECS) is a program 
diagnosis problem. Let AD be the abstract program of SD, 
ACOMPS be the abstract operator components in AD, and 
MAP be the mapping from COMPS to ACOMPS. Then 
C COMPS is a conflict set iff  for any MAP : 
ACOMPS  where MAP (C)=MAP(C), AD  MAP   
SPECS    is inconsistent. 
Definition 15.  Let C be a conflict set. If there exists no 
C’ C such that C’ is also a conflict set, then C is a minimal 
conflict set.   
Theorem 3.  If C1, C2,... Cn are all minimal conflict sets of 
program P, then all the least hitting sets of {C1, C2,... Cn} are 
minimal diagnoses of P.  

The definitions about hitting set can be found in [Lin et al., 
2003].  
Theorem 4. Suppose PS=(precond(X), frame(B1,B2), post-
cond(X)) is a program specification. Let slice(B1,B2) be the 
implementation of frame(B1,B2) in the diagnosed program P. 
Given a program input,  if (1) the program state in B1 is 
consistent with precond(X), (2) Y is the set of variables 
whose states in B2 are inconsistent with postcond(X) , and (3) 
C is the white-box dependency set of  Y in  slice(B1,B2), then 
C is a conflict set.  
Theorem 5. Suppose PS=(precond(X), frame(B1,B2), post-
cond(X)) be a program specification. Let slice(B1,B2) be the 

implementation of frame(B1,B2) in the diagnosed program P. 
Suppose there is an equation y=f(W(0)) in postcond(X), where 
y X, W X, and W(0) denotes the state of W in B1. If the 
black-box dependency set of y in slice(B1,B2) is not equal to 
W, then the white-box dependency set of y in slice(B1,B2) is a 
conflict set. 
     The conclusions of theorem 4 and 5 are obvious; theorem 
5 is a special case of theorem 4.   

4.4 A Diagnosis Example  

Program diagnosis problem 
Consider the program shown in Figure 1. Suppose command 
4.1 is written as s:=s i by mistake. Then the program diag-
nosis problem is given as below: 
SD=(X,C), 

where X=[1 from to start stop i s]T 
C=C4C3C2C1 

= (C4.2C4.1)nC3C2(mC1.2C1.1 (1-m)C1.4C1.3) 
where Cl denotes the OCM model of the command la-
beled with l in the diagnosed program; 

COMPS={1(1.1), 1(1.2), 1(1.3), 1(1.4), 1(2), 0
(3), 0

(4.1), 1
(4.1), 

0
(4.2), 1

(4.2) }; 
SPECS={PS1, PS2, PS3},  where 
      PS1=( {from to}, frame(1,3), {i=from}), 
      PS2=( {from to}, frame(1,3), {i=to}), 
      PS3=( {i stop}, frame(3,5),  

{i=stop(0)+1, s=(i(0)+stop(0)) (i-i(0))/2}) 
where  i(0) and stop(0) denote respectively the initial values 
of i and stop before the execution of the frame. 

Diagnosis 
AD=(X,F), 

where X=[1 from to start stop i s]T 
F=F4F3F2F1 
=(F4.2F4.1)nF3F2(mF1.2F1.1 (1-m)F1.4F1.3) 

where Fi denotes the abstract OCM model of the com-
mand labeled with l in the expected program;  

ACOMPS={ f (1.1), f (1.2), f (1.3), f (1.4), f (2), f 
(3), f0

(4.1), f1
(4.1), f0

(4.2), 
f1

(4.2) }; 
MAP={ f (1.1)  1(1.1),  f (1.2)  1(1.2) ,  f (1.3)  1(1.4) ,  f (2)  1(2) ,  

f (3)  0
(3) ,  f0

(4.1)  0
(4.1),  f1 

(4.1)  1
(4.1) ,  f0

(4.2)  0
(4.2),  

f1 
(4.2)  1

(4.2) } 
Given a set of  inputs of the diagnosed program 
INPUT={from=6,  to=3} (i.e., from(1)=6 and  to(1)=3)  
which satisfy the precondition of PS2, by running the diag-
nosed program with the inputs, we can get the results of 
i(3)=3 and  to(3)=3, which  are consistent with the postcond 
of PS2. In this case, we cannot get a conflict set.  

We go on checking the other program specifications. By 
observing the values of the variables of the precondition of 
PS3 in breakpoint 3, we get i(3)=3 and  stop(3)=6, which 
satisfy the precondition of PS3. And after applying PS3, s(5) 
should be (3+6) (7-3)/2=18. But s(5) equals to 360 actually, 
so there is a conflict. In frame(3,5), the white-box depend-
ency of s is {3, 4.1, 4.2} which makes a conflict set. If we go 
on observing i, i(5) is always consistent with the postcondi-
tion of PS3, so the white-box dependency of i (i.e., {4.2}) 
must not be included in a conflict set.  If we have another 
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assertion to assure that statement 3 is right, we can finally get 
the diagnosis {4.1}.  

We can correct the faults by mutating some operator 
components in the diagnoses, because the number of operator 
components is very limited except the operator components 

m (m N). Generally, we can assume that Max m 0 where 
Max is a finite number given in advance. When the mutations 
f0

(4.1)  0
(4.1),  f1 

(4.1)  1
(4.1) take place, we can find the 

correct program.  

5. Related Work 
There are a lot of works developed in model-based program 
diagnosis during the years, among which the most important 
work is about program slicing [Wotawa, 2002]. Our model 
gives a new and simpler method of computing program slices 
(i.e. white-box dependency).    

In the presentation of the abstract model of the expected 
program, in order to improve the diagnosis capabilities, 
[Chen et al., 2005] also uses assertions to specify an abstract 
model. But it does not deal with abstraction in program 
structure and it only works on the value-based model. Our 
model has stronger presentation capability, which uses more 
information about the existing program structure under the 
isomorphism assumption.  

In correcting the faults, [Wotawa, 2001] also discusses a 
different mutation method, which cannot assure us of finding 
the correct program by mutation since the mutation scope is 
too large.  
     We have also developed the presentation of an array in the 
form of operator components. For example, array x with 
x[0]=a, x[1]=b, x[2]=c can be represented as x=[0] a [1] b  
[2] c where [0], [1] and [2] are all operator components; 
x[0]:=a can be represented as : [0] [0]ax x  under the 
property [ ] [ ] 0n n , [ ] [ ] [ ]  ( )n m m n m ; expression x[0] 
can be represented as {0} x where {0} is an operator com-
ponent under the property { } [ ] 1n n , { } [ ] 0 ( )n m n m . 
Due to the space limitation, we don’t discuss it in detail. 

6. Conclusion 
This paper presents a new model for IMP programs with 
OCM. OCM model and isomorphism assumption are  the 
basis of abstract programs, and we use the assertions of 
program specifications to describe the abstract programs. 
Acquisition of program specifications is a key problem, 
which needs more knowledge about the expected program. 
Obviously, the more specifications are achieved, the more 
accurate diagnoses are. 
     OCM model has a uniform presentation, which comply 
with the rules for matrix operations. We can got the de-
pendency easily from the OCM model by using characteristic 
operator component and formal operator component.   

Due to the space limitation, we cannot discuss more di-
agnosis cases in detail. For example, we do not consider the 
diagnosis for the condition parts of branch statements and 
loop statements. Generally, we put these conditions into the 
program specifications.  

Moreover, by using black-box dependency and extending 
null operator components, we can find some structural faults 
such as variable missing. In dependency models, structural 
faults always result in the mistakes of program slicing [Wo-
tawa, 2002], thereby result in wrong diagnoses. 
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