
Abstract
This paper presents a new modeling approach for
IMP programs with operator component matrix
(OCM) model, which can be used in IMP program
diagnosis. Using this model and model-based di-
agnosis method, some logic errors can be found in
IMP programs. The model can also be extended to
all kinds of imperative programs. The advantages of
this diagnosis method lie in its simple and regular
presentation, uniform diagnosed objects, usage of
isomorphism assumptions in structure, and usage of
assertions about the expected program. These ad-
vantages make diagnoses more accurate, and even
help to correct the faults by mutation of operator
components.

1 Introduction
Model-based diagnosis was first proposed in 1987 by Reiter
[Reiter, 1987], this approach is mainly used to diagnose the
systems composed of some physical components. Applying
model-based diagnosis to program debugging is still a new
field. Now, dependency model [Mateis et al., 1999] [Wieland,
2001] and value-base model [Mateis et al., 2000] are widely
used in program diagnoses, both of which use program slic-
ing technology [Wotawa, 2002]: the former considers static
slices of a program by analysing the dependency between
variables, and the latter in fact uses dynamic slices depending
on a special test by computing the valuation trajectory. But
these methods are not competent in structural errors, and
always result in very coarse diagnoses, i.e., too many can-
didate diagnoses.

This paper uses a simple imperative programming lan-
guage—IMP which helps to focus on the important issues
and avoid considering unnecessary detail. The syntax of IMP
is shown in [Winskel, 1993]. For IMP programs, we present a
new modeling approach with OCM, which can be used in
IMP program diagnosis. Using this model and model-based
diagnosis method, some logic errors can be found in IMP
programs. The model can also be extended to all kinds of
imperative programs. The advantages of this diagnosis
method lie in its simple and regular presentation, uniform
diagnosed objects, the usage of isomorphism assumptions in

structure, and the usage of assertions about the expected
program. These advantages make diagnoses more accurate,
and even help to correct the faults by mutation of operator
components.

In this paper, section 2 presents the operator component
matrix model for programs. Section 3 further analyses the
dependencies implied in the model, including black-box
dependency and white-box dependency. Section 4 is the core
of the paper, it defines such terms as isomorphism, abstract
program, program specification and breakpoint, and under
these terms, it also defines the model-based program diag-
nosis problem, diagnosis and conflict etc., and gives an ex-
ample to illustrate them. Section 5 introduces related works,
and the last section makes a conclusion.

2 Operator Component Matrix Model

2.1 Operator Component and 1-variable
Definition 1. In an n-ary function Fn(x0,x1,…xn-1), we use a
vector 0 1 1, ,...,n n n

nF F F to denote Fn, then n
kF (k=0,...n-1) is

called the k-th operator component of n-ary function Fn.
So, we can represent Fn(x0,x1,…,xn-1) as

 0 0 1 1 1 1...n n n
n nF x F x F x (1)

 Where “ ” is called as operator-plus , “ ” is called as
operator-times, and we stipulate that the symbol “ ” has
associativity and exchangeability, and “ ” has associativity
and distributivity to “ ”. So, we can also represent (1) as

0 1 1 0 1[, ,...][, ,...]n n n T
n nF F F x x x .

We can prove that the above stipulation is reasonable,
because under the stipulation, any legal expression in the
form of operator components has a unique computable form,
i.e. 0 0 1 1 1 1... n nF x F x F x is computable iff the se-
quence 1 2(, , ,)nF F F is a permutation of all the operator
components of an n-ary function.
Definition 2. If a domain is composed of a single element 1,
then we call the variable in the domain as 1-variable. i.e., we
consider the constant 1 as a special variable.
Definition 3. Given two variables x and y, if the value of y is
independent of x, we call x has a null operator component
to y, represented as 0.

Operator Component Matrix Model for IMP Program Diagnosis

Zhao-Fu Fan Yunfei Jiang
Department of Computer Science

School of Information Science and Technology
Sun Yat-Sen University

No. 135 Xingang Xi Rd, Guangzhou, 510275, China
fanzhaofu@163.com

IJCAI-07
354

The arithmetic operators of IMP are defined as follows:
(1) n (x) n x , where n is a constant in N. Especially,

we call 1 as identical operator component, which can also
be represented as 1, but note that here 0 is different from
null operator component 0.

(2) (x,y) x+y. (3) (x,y) x y.
x-y can be derived from and -1 i.e.,

x-y=x+(-1) y= (x, -1(y))= 0 x (1 -1) y.
Property 1. For a Aexp1, suppose x1, ..., xn are variables in
a, then it can be represented in the form of
 a=F0 1 F1 x1 F2 x2 ... Fn xn ,
where F0, F1, F2, ..., Fn are operator component expressions.
For instance, x (2 y+5)=(1 1 5) 1 0 x (1 0 2) y
Property 2. For any F ,G ,H , m,n N

 F 0=0 F=0, F 1=1 F=F, F 0=0 F=F
 m n= m n

2.2 Presentation of Commands
In IMP programs, there are five types of commands: skip
statement (skip), assignment statement (x:=a), compound
statement (c0;c1), branch statement (if b then c0 else c1) and
loop statement (while b do c). Here we present these state-
ments in the form of OCM.
Assignment statement
Suppose the variable set of a program is 1{ ,..., }nx x then
from property 1 and definition 3, each a Aexp takes the
form of 0 1 11 ... n nF F x F x , where Fk=0 if variable xk
does not occur in a.
 So, we can denote assignment statement xk:=ak (k=1..n) as

xk:= 0 1 11 ...k k kn nF F x F x
or xk:=[Fk0 Fk1 ... Fkn][1 x1 ... xn]T .
 When the program executes the assignment statement
xk:=ak, only the value of variable xk will be changed. So we
can consider that it implies such assignment statements as
follows: xj:=xj (j=1,..n, j k),
i.e., xj:= 10 1 0 ... 1 0j nx x x
 Let X=[1 x1 x2 ... xn]T, then xk:=ak is equivalent to

0 1

1 0 0
0 1 0

:

0 0 1

k k knF F F
X X , represented as X:=CX

C is a matrix composed of operator components, such
matrix is called as operator component matrix, abbreviated
as OCM. We can treat C as a state transition matrix.
Property 3. The first row of any state transition matrix has
the form of [1 0 ... 0].
Property 4. In any row of any state transition matrix, there is
at least one operator component that is not 0.

We label the commands with 1, 2, ..., n by their occur-
rence order in a program. Let X(k-1) be the program state

1 Aexp is the set of arithmetic expressions in IMP.

before the execution of the k-th command, and X(k) be the
program state after the execution of the k-th command, then
X(k)=CkX(k-1), where Ck is the state transition matrix of the
k-th command. The value of an expression a under program
state X(k) is represented as (a, X(k)).
Skip statement
In a unit matrix, if we look number 1 as operator component
1, and number 0 as operator component 0, we call such ma-
trix as unit OCM, represented as E. We also call the OCM
composed of all 0 as zero OCM, represented as O.

So, skip statement (skip) can be represented as X:=EX .
Presentation of compound statement
Compound statements take the form of c0;c1. Suppose
command c0 can be represented as X:=C0X and c1 can be
represented as X:=C1X, where C0 and C1 are all OCMs, then
we can represent the command as X:= (C1C0)X .
Presentation of branch statement
Branch statements take the form of if b then c0 else c1.
Suppose command c0 can be represented as X:=C0X and c1
can be represented as X:=C1X, where C0 and C1 are all
OCMs. Then we can represent the command as X:=
(mC0 (1-m)C1)X, where m=1 when (b,X(0))=true, other-
wise m=0, X(0) is the program state before the execution of
the command. Note that we look the result of m and 1-m as
operator component 1 or 0.
Presentation of loop statement
Loop statements take the form as while b do c. Suppose
command c can be represented as X:=CX, where C is an
OCM. Then we can denote the command as X:= CnX, where
n is the number of executions of loop body c (i.e. n= min{k|(b,
X(k)) =false, k 0}, where X(k) is the program state after the
k-th execution of command c).
 According to structural induction, it can be proved that
any IMP program can be denoted in the form of X:=CX. We
call C as the OCM model of the program.

2.3 An example
To facilitate analysis, we use an example shown in Fig 1.

1(key point)
1.1
1.2

1.3
1.4
2
3
4(key point)
4.1
4.2
5

if (from to) then
 {start := from ;

 stop := to}
 else
 {start := to;

stop := from};
i:= start;
s:= 0;
while (i stop) do

 {s:=s+i;
 i:= i+1}

 [end]
Figure 1: An IMP program

 Let X=[1 from to start stop i s]T, we can get the OCM
model of the program
C=C4C3C2C1=(C4.2C4.1)nC3C2(mC1.2C1.1 (1-m)C1.4C1.3)

IJCAI-07
355

1 0

1 0 0

1 0 0 0 0 0 0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

n

m m

m m

m m

where Cl is the state transition matrix of the command la-
beled with l; m=1 if (from to, X(0))=true or else m=0;
n=min{k|(i stop, X(4.2,k))=false, k 0}, where X(0) is the
program state before execution of the command labeled with
1; X(4.2,k) is the program state after the k-th execution of the
command labeled 4.2.
 If a program includes branch statements or loop state-
ments, there are some unknown “constants” appearing in its
OCM model, such as m, n in the above example. Though
their values are dependent on a given test case, we still look
them as formal constants.

3 Dependency Analysis

3.1 Black-box Dependency
Definition 4. Such an operator component is called a
characteristic operator component, if it satisfies that
 = , = , 0=0 = , 0=0 = .
An OCM K is called the characteristic matrix of C, if K is
constructed by replacing all the operator components in C
except 0 with .
Theorem 1. For any OCM C1, C2, if K1 and K2 are respec-
tively the characteristic matrix of C1 and C2, then K1K2 is the
characteristic matrix of C1C2.
Theorem 2. For any characteristic matrix K , the chain K,
K2, K3, ..., Kn satisfies one of the two cases as below:
(1) N, n>N, Kn=KN;
(2) N, M, n> N, Kn+M=Kn.
 Since the set of all characteristic matrixes of a given di-
mension is limited, any chain K, K2, K3, ..., Kn must reach a
fixed point or enter into a ring. The theorem indicates that the
dependency in a loop is definite.
Definition 5. Assume that X is the vector of all variables in
program2 P , C is the OCM model of P, K is the character-
istic matrix of C, then K is called the black-box dependency
matrix of P.
 From the example shown in Figure 1, we can get its
black-box dependency matrix

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

0 0 0 0
0 0 0 0

K
.

2 Here ‘program’ indicates IMP program without special note.

From K, we can get the dependencies of the final values of
variables to the initial values of variables; we represent these
dependencies as X(n) B KX(0) , where X(n) is the final
program state, X(0) is the initial program state. For instance,
we extend the variable s, we can get

 s(n) B 1 from(0) to(0),
which means the final value of s is decided by the initial
value of from, the initial value of to, and the constant value of
s assigned in the program. Especially, if the black-box de-
pendency of a variable includes the item 1, it shows the
variable has been assigned with a constant in the program.
 In the black-box dependency, if we find a variable does
not appear in the dependencies of any other variables and its
final value is not concerned about, the variable is usually
considered useless, which can be deleted from the program.

3.2 White-box Dependency
Definition 6. For an OCM C, after replacing all its operator
components except 0 and 1 with formal operator compo-
nent represented as [p](p is the label set of the commands
where the actual operators occur), the new components ma-
trix H is called as the formal matrix of C. The properties of
[p] are shown as follows:

 p1,p2, [p1] [p2]= [p1 p2], [p1] [p2]= [p1 p2],
[p1] 0=0 [p1]= [p1], [p1] 0=0 [p1]=0
[p1] 1=1 [p1]= [p1], [p1] 1=1 [p1]= [p1].

Definition 7. Assume that X is the vector of all variables in
program P , C is the model of P, H is the formal matrix of C,
then we call H is the white-box dependency matrix of P.
 From the example shown in Figure 1, we can get its
white-box dependency matrix

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 [1.3] [1.1] 0 0 0 0
0 [1.4] [1.2] 0 0 0 0

[4.2] [1.1, 2, 4.2] [1.3, 2, 4.2] 0 0 0 0
[4.1, 4.2,3] [1.1, 2, 4.1, 4.2] [1.3, 2, 4.1, 4.2] 0 0 0 0

H

From H, we can get the dependency of variables to com-
mands which is represented as X(n) W HX(0) , where X(n)
is the final program state, X(0) is the initial program state. For
any variable in X, we can get its dependency to commands
from H. For instance, we extend the variable s, and get

s(n) W [4.1,4.2,3] 1 [1.1,2,4.1,4.2] from(0)
 [1.3,2,4.1,4.2] to(0).

Then we establish a set s which is composed of all the
command labels appearing in the right part, i.e.,

s = {1.1,1.3,2,3,4.1,4.2}.
We call s as the white-box dependency of variable s, which
means the final value of s is decided by the command set
{1.1,1.3,2,3,4.1,4.2}. It can be proved to be equivalent with
the program slice about the slicing criterion (s, 5) [Wotawa,
2002]. Note that white-box dependencies include data de-
pendencies and control dependencies which are implied in
the formal constants related to a branch statement or a loop
statement.

IJCAI-07
356

3.3 Complexity analysis
 In this model, the dimension of each OCM is (n+1) (n+1)
where n is the number of variables in the program. It seems
that the size of the matrix model would grow quickly with
the number of variables. However, it is not a big problem,
because when we diagnose a program, at one time, a diag-
nosed object is generally a program module (a procedure or a
function) where the number of variables won’t be too big.
Moreover, we can store all state transition matrixes in the
dense mode of sparse matrix.

4 Model-based Program Diagnosis

4.1 Isomorphism Assumption and Abstract Pro-
gram

Definition 8. Two commands c and c are isomorphic, rep-
resented as Isomorph(c, c), iff one of the following cases is
satisfied:

1) c::=skip c ::=skip;
2) c::= x:=a0 c ::= y:=a1 x y VS(a0) = VS(a1)

where x y means that x and y are the same variable,
VS(a) means the set of all the variables in a;

3) c::= c0; c1 c ::= c0 ; c1 Isomorph(c0, c0) Iso-
morph(c1, c1);

4) c::= if b then c0 else c1 c ::= if b then c0 else c1
Isomorph(c0, c0) Isomorph(c1, c1);

5) c::= while b do c0 c ::= while b do c0 Iso-
morph(c0, c0).

Generally, a diagnosed program should be close to an
expected program. That is to say, it is possible that minor
revisions will make the diagnosed program correct. So, we
always suppose that for any diagnosed program, there exists
a “correct” program which is isomorphic with the diagnosed
program. This assumption is called isomorphism assump-
tion.
 In some diagnosed programs, it is possible that some
variable is lost in the right-side expression of an assignment
statement, such that the isomorphism assumption cannot hold
any more. But fortunately, we can extend the expression to a
new equivalent expression which includes the lost variable
by adding a null operator component. For instance, if x:=x+i
is written as x:=x+1 by mistake, we can extend the expres-
sion x+1 to x+1 0 i. We call this case as extendable iso-
morphism, so it assures that many diagnosed programs are at
least extendable isomorphic with a correct program.
Definition 9. For a given program (OCM model), if we re-
place all the operator components of the program with ab-
stract operator components, the new program is called an
abstract program. An abstract operator component is only
a marker which does not refer to any concrete operator com-
ponent.

For example, there is a command l: s:=s+i in a program
(where l is the label), whose model is represented as s:=

0
(l) s 1

(l) i, and whose abstract model is represented as
s:= 0

(l) s 1
(l) i, where 0

(l) and 1
(l) are abstract operator

components. Suppose the mapping from the abstract model

to the actual model is MAP, then MAP={{(0
(l), 0

(l)), (1
(l),

1
(l))}}. In order to identify the operator components which

have the same form, we add the command label to them.
Suppose the command l: s:=s+i should be l: s:= s i , it is
known that the abstract model of the “correct” command has
the same form of the abstract model of the “wrong” com-
mand. Given a mapping MAP ={(0

(l), 0
(l)), (1

(l), 1
(l))}, we

can get the correct command from the abstract model.
Under the isomorphism assumption, we can construct

the abstract model of expected program from the concrete
model of the diagnosed program by replacing components in
the concrete model with abstract components.

 Note that each extended null operator component must be
replaced by an abstract operator component in the abstract
model.

4.2 Program Specification and Breakpoint

Program specification
To further describe the abstract program, we need offer some
assertions about the static properties of it, each assertion is
called a program specification [Morgan, 1998].
Definition 10. A program specification has the form as
below:
 (precond(X), frame(X), postcond(X)),
where X is the set of variables, precond(X) is a description
of the initial state of X, frame(X) indicates a piece of the
abstract program including X, and postcond(X) gives a de-
scription of the final state of X after the “execution ” of the
piece of abstract program.

Note that frame(X) cannot be executed until a concrete
implementation is given. If slice(X) is a concrete imple-
mentation of frame(X), postcond(X) must come true after
execution of slice(X) under the condition precond(X), and
we denote it as {precond(X)} slice(X){ postcond(X)}.

For example, to such a specification,
precond(s, i)={s>0, i>0},
frame(s, i)={ s:= 0 s 1 i},
postcond(s, i)={s>1},

slice {s:=s+i} is an implementation of frame(s,i), but slice
{s:=s i} is not .
Breakpoint
The position of a program is called a breakpoint, if where
there is an assertion. The assertions about the variables in a
breakpoint are called intermediate results. The value of
variable x in a breakpoint B is represented as x(B).

In program diagnosis, a kind of special position is often
used as breakpoints, and those positions are closely followed
with a boolean expression, we call them as key points. For
example, in Figure 1, there are two key points in the positions
of label 1 and label 4.

Note that in a runtime of a program, a breakpoint may be
passed by several times or zero times, but it corresponds to a
unique position in a program.

For a given breakpoint, if all test cases should pass it, we
call the assertions in this breakpoint as invariant (“always”)
assertion, otherwise, we call them as intermittent
(“sometime”) assertion [Mayer and Stumptner, 2003].

IJCAI-07
357

 So, it is known that any program specification must relate
to two breakpoints, and the program code between the two
breakpoints must be a legal (compound) command. For
example, in Figure 1, the codes between breakpoint 1.3 and
breakpoint 3 are not legal commands. If B1 and B2 are the
breakpoints related to frame(X), we also represent frame(X)
as frame(B1,B2, X). If X includes all the variables of the
program, X can be omitted.

4.3 Program Diagnosis
Definition 11. A program diagnosis problem is a triple (SD,
COMPS, SPECS) where SD is the OCM model of the actual
program to be diagnosed, COMPS is the set of operator
components in SD, SPECS is the set of program specifica-
tions.
Definition 12. Suppose (SD, COMPS, SPECS) is a program
diagnosis problem. Let AD be the abstract program of SD,
ACOMPS be the abstract operator components in AD, and
MAP be the mapping from COMPS to ACOMPS. Then

COMPS is a diagnosis iff there exists MAP : SA
where is the set of all operator components and SA is a
subset of ACOMPS, such that

 AD MAP SPECS is consistent, and
 C COMPS\ , MAP (MAP-1(C))=C.

 Under isomorphism assumption, AD SPECS is always
consistent, that is, the expected program is an interpretation
of AD.

Since any operator component corresponds to a com-
mand in the program, components in indicate the possible
faults in the program.
Definition 13. Let be a diagnosis. If there exists no ’
such that ’ is also a diagnosis, then is a minimal diag-
nosis.
Definition 14. Suppose (SD, COMPS, SPECS) is a program
diagnosis problem. Let AD be the abstract program of SD,
ACOMPS be the abstract operator components in AD, and
MAP be the mapping from COMPS to ACOMPS. Then
C COMPS is a conflict set iff for any MAP :
ACOMPS where MAP (C)=MAP(C), AD MAP
SPECS is inconsistent.
Definition 15. Let C be a conflict set. If there exists no
C’ C such that C’ is also a conflict set, then C is a minimal
conflict set.
Theorem 3. If C1, C2,... Cn are all minimal conflict sets of
program P, then all the least hitting sets of {C1, C2,... Cn} are
minimal diagnoses of P.

The definitions about hitting set can be found in [Lin et al.,
2003].
Theorem 4. Suppose PS=(precond(X), frame(B1,B2), post-
cond(X)) is a program specification. Let slice(B1,B2) be the
implementation of frame(B1,B2) in the diagnosed program P.
Given a program input, if (1) the program state in B1 is
consistent with precond(X), (2) Y is the set of variables
whose states in B2 are inconsistent with postcond(X) , and (3)
C is the white-box dependency set of Y in slice(B1,B2), then
C is a conflict set.
Theorem 5. Suppose PS=(precond(X), frame(B1,B2), post-
cond(X)) be a program specification. Let slice(B1,B2) be the

implementation of frame(B1,B2) in the diagnosed program P.
Suppose there is an equation y=f(W(0)) in postcond(X), where
y X, W X, and W(0) denotes the state of W in B1. If the
black-box dependency set of y in slice(B1,B2) is not equal to
W, then the white-box dependency set of y in slice(B1,B2) is a
conflict set.
 The conclusions of theorem 4 and 5 are obvious; theorem
5 is a special case of theorem 4.

4.4 A Diagnosis Example

Program diagnosis problem
Consider the program shown in Figure 1. Suppose command
4.1 is written as s:=s i by mistake. Then the program diag-
nosis problem is given as below:
SD=(X,C),

where X=[1 from to start stop i s]T
C=C4C3C2C1

= (C4.2C4.1)nC3C2(mC1.2C1.1 (1-m)C1.4C1.3)
where Cl denotes the OCM model of the command la-
beled with l in the diagnosed program;

COMPS={1(1.1), 1(1.2), 1(1.3), 1(1.4), 1(2), 0
(3), 0

(4.1), 1
(4.1),

0
(4.2), 1

(4.2) };
SPECS={PS1, PS2, PS3}, where
 PS1=({from to}, frame(1,3), {i=from}),
 PS2=({from to}, frame(1,3), {i=to}),
 PS3=({i stop}, frame(3,5),

{i=stop(0)+1, s=(i(0)+stop(0)) (i-i(0))/2})
where i(0) and stop(0) denote respectively the initial values
of i and stop before the execution of the frame.

Diagnosis
AD=(X,F),

where X=[1 from to start stop i s]T
F=F4F3F2F1
=(F4.2F4.1)nF3F2(mF1.2F1.1 (1-m)F1.4F1.3)

where Fi denotes the abstract OCM model of the com-
mand labeled with l in the expected program;

ACOMPS={ f (1.1), f (1.2), f (1.3), f (1.4), f (2), f
(3), f0

(4.1), f1
(4.1), f0

(4.2),
f1

(4.2) };
MAP={ f (1.1) 1(1.1), f (1.2) 1(1.2) , f (1.3) 1(1.4) , f (2) 1(2) ,

f (3) 0
(3) , f0

(4.1) 0
(4.1), f1

(4.1) 1
(4.1) , f0

(4.2) 0
(4.2),

f1
(4.2) 1

(4.2) }
Given a set of inputs of the diagnosed program
INPUT={from=6, to=3} (i.e., from(1)=6 and to(1)=3)
which satisfy the precondition of PS2, by running the diag-
nosed program with the inputs, we can get the results of
i(3)=3 and to(3)=3, which are consistent with the postcond
of PS2. In this case, we cannot get a conflict set.

We go on checking the other program specifications. By
observing the values of the variables of the precondition of
PS3 in breakpoint 3, we get i(3)=3 and stop(3)=6, which
satisfy the precondition of PS3. And after applying PS3, s(5)
should be (3+6) (7-3)/2=18. But s(5) equals to 360 actually,
so there is a conflict. In frame(3,5), the white-box depend-
ency of s is {3, 4.1, 4.2} which makes a conflict set. If we go
on observing i, i(5) is always consistent with the postcondi-
tion of PS3, so the white-box dependency of i (i.e., {4.2})
must not be included in a conflict set. If we have another

IJCAI-07
358

assertion to assure that statement 3 is right, we can finally get
the diagnosis {4.1}.

We can correct the faults by mutating some operator
components in the diagnoses, because the number of operator
components is very limited except the operator components

m (m N). Generally, we can assume that Max m 0 where
Max is a finite number given in advance. When the mutations
f0

(4.1) 0
(4.1), f1

(4.1) 1
(4.1) take place, we can find the

correct program.

5. Related Work
There are a lot of works developed in model-based program
diagnosis during the years, among which the most important
work is about program slicing [Wotawa, 2002]. Our model
gives a new and simpler method of computing program slices
(i.e. white-box dependency).

In the presentation of the abstract model of the expected
program, in order to improve the diagnosis capabilities,
[Chen et al., 2005] also uses assertions to specify an abstract
model. But it does not deal with abstraction in program
structure and it only works on the value-based model. Our
model has stronger presentation capability, which uses more
information about the existing program structure under the
isomorphism assumption.

In correcting the faults, [Wotawa, 2001] also discusses a
different mutation method, which cannot assure us of finding
the correct program by mutation since the mutation scope is
too large.
 We have also developed the presentation of an array in the
form of operator components. For example, array x with
x[0]=a, x[1]=b, x[2]=c can be represented as x=[0] a [1] b
[2] c where [0], [1] and [2] are all operator components;
x[0]:=a can be represented as : [0] [0]ax x under the
property [] [] 0n n , [] [] [] ()n m m n m ; expression x[0]
can be represented as {0} x where {0} is an operator com-
ponent under the property { } [] 1n n , { } [] 0 ()n m n m .
Due to the space limitation, we don’t discuss it in detail.

6. Conclusion
This paper presents a new model for IMP programs with
OCM. OCM model and isomorphism assumption are the
basis of abstract programs, and we use the assertions of
program specifications to describe the abstract programs.
Acquisition of program specifications is a key problem,
which needs more knowledge about the expected program.
Obviously, the more specifications are achieved, the more
accurate diagnoses are.
 OCM model has a uniform presentation, which comply
with the rules for matrix operations. We can got the de-
pendency easily from the OCM model by using characteristic
operator component and formal operator component.

Due to the space limitation, we cannot discuss more di-
agnosis cases in detail. For example, we do not consider the
diagnosis for the condition parts of branch statements and
loop statements. Generally, we put these conditions into the
program specifications.

Moreover, by using black-box dependency and extending
null operator components, we can find some structural faults
such as variable missing. In dependency models, structural
faults always result in the mistakes of program slicing [Wo-
tawa, 2002], thereby result in wrong diagnoses.

References
[Chen et al., 2005] Rong Chen, Daniel Koeb and Franz

Wotawa. Abstract Model Refinement for Model-Based
Program Debugging.16th International Workshop on
Principles of Diagnosis (DX 05), Monterey, California,
USA, June 1-3, 2005.

[Console et al., 1993] L.Console, G.Friedrich, D.Theseider
Dupre. Model-based Diagnosis Meets Error Diagnosis in
Logic Programs, in Proc. 13th International Joint Con-
ference on Artificial Intelligence (IJCAI) Chambery,
M.Kaufmann, pp. 1494-1499, 1993.

[Lin et al., 2003] L. Lin, Y.F. Jiang. The computation of
hitting sets: review and new algorithms. Information
Processing Letters, 86 (4): 177-184, 2003.

[Mateis et al., 1999] Cristinel Mateis, Markus Stumptner,
and Franz Wotawa. Debugging of Java Programs using a
Model-Based Approach. In Proc. 10th Int'l Workshop on
Principles of Diagnosis, Loch Awe, Scotland, 1999.

[Mateis et al., 2000] Crisinel Mateis, Markus Stumptner,
Franz Wotawa. A Value-Based Diagnosis Model for Java
Programs. In Proceedings of the Eleventh International
Workshop on Principles of Diagnosis, Morelia,
Michoacen, Mexico, June 8-10, 2000.

[Mayer and Stumptner, 2003] Wolfgang Mayer and Markus
Stumptner. Model-Based Debugging using Multiple Ab-
stract Models. In Proceedings of the 5th International
Workshop on Automated and Algorithmic Debugging,
AADEBUG '03, pages 55-70, Ghent, September 2003.

[Morgan, 1998] Carroll Morgan. Programming from Sepci-
fication, Second Edition (ISBN: 7-111-10847-7). Pren-
tice Hall International, Hempstead, UK, 1994.

[Reiter, 1987] R Reiter. A Theory of Diagnosis from First
Principles. Artificial Intelligence, 1987, 32(1): 57-95.

[Wieland, 2001] Dominik Wieland. Model-Based Debug-
ging of Java Programs Using Dependencies. PhD thesis,
Technische Universitat Wien, November 2001.

[Winskel, 1993] Glynn Winskel, The Formal of Program-
ming Languages: An Introduction (ISBN:0-262-23169-7).
Massachusatts Institute of Technology, 1993.

[Wotawa, 2001] Frantz Wotawa. On the Relationship be-
tween Model-based Debugging and Program Mutation,
Proceedings of the Twelfth International Workshop on
Principles of Diagnosis, Sansicario, Italy, 2001.

[Wotawa, 2002] Franz Wotawa. On the Relationship be-
tween Model-Based Debugging and Program Slicing.
Artificial Intelligence, 135(1-2):124-143, 2002.

IJCAI-07
359

