
Mining Spatial Object Associations for Scientific Data
�

Hui Yang, Srinivasan Parthasarathy and Sameep Mehta
Department of Computer Science and Engineering

Ohio State University
2015 Neil Avenue, Columbus, OH 43210

Abstract

In this paper, we present efficient algorithms to dis-
cover spatial associations among features extracted
from scientific datasets. In contrast to previous
work in this area, features are modeled as geomet-
ric objects rather than points. We define multiple
distance metrics that take into account objects’ ex-
tent. We have developed algorithms to discover
two types of spatial association patterns in scientific
data. We present experimental results to demon-
strate the efficacy of our approach on real datasets
drawn from the bioinformatic domain. We also
highlight the importance of the discovered patterns
by integrating the underlying domain knowledge.

1 Introduction
Advances in simulation and data collection techniques in
different scientific domains such as bioinformatics, compu-
tational fluid dynamics, and computational molecular dy-
namics, have resulted in huge amounts of data. It is nec-
essary to develop computational techniques to extract fea-
tures from scientific datasets, for instance, vortices in fluid
flow fields and substructures from molecular datasets. It is
also very important to subsequently uncover meaningful re-
lationships among extracted features. Such relationships can
provide valuable information towards understanding or ex-
plaining the underlying scientific phenomenon. Many algo-
rithms [Kramer et al., 2001; Jiang et al., 2003; Yang et al.,
2004] have been proposed to extract features from these sci-
entific datasets. In this paper we focus on the latter problem
of finding relationships among features.

Recently, researchers have started to explore the relation-
ships [Morimoto, 2001; Munro et al., 2003; Zhang et al.,
2004] among features. Most of the previous techniques rep-
resent features by single points. However, this represen-
tation leads to loss of important information. The shape,
size, and orientation of a feature in scientific datasets are
very important. A simple solution to this problem is to use
Minimum Bounding Boxes (MBB). However, MBBs are not
well-suited for every domain. For example, ellipsoids are

�

This work is funded by NSF grants ITR-NGS ACI-0326386,
CAREER IIS-0347662, and SOFTWARE ACI-0234273. All cor-
respondence should be addressed to Srinivasan Parthasarathy at
srini@cse.ohio-state.edu.

more suitable for capturing the shape of vortices in fluid
flow datasets [Sadarjoen et al., 1998]. Alternatively, defect
structures in materials may require irregular shape descrip-
tors [Mehta et al., 2004]. In this work, we propose to use dif-
ferent shape descriptors for features from different domains.

Frequently recurring relationships among features across
different datasets can guide the domain expert to find use-
ful knowledge. Such relationships are especially useful in
bioinformatics. One important issue in bioinformatics is to
identify structurally similar proteins. To address this issue,
one can first discover non-local patterns that frequently oc-
cur in proteins known to be structurally similar [Zaki, 2002;
Yang et al., 2004]. Such patterns can then be used to indi-
cate whether a new protein is potentially similar to known
proteins. We propose algorithms that discover relationships
across multiple maps. This is different from previous work
on spatial association mining [Koperski and Han, 1995;
Shekhar and Huang, 2001; Morimoto, 2001; Zhang et al.,
2004], where features are located in the same dataset and rep-
resented as points.

We define Spatial Object Association Patterns (SOAP) to
characterize spatial relationships among object types. Our
algorithm finds two different types of SOAPs: Star and Se-
quence (Figure 2). They capture different aspects of neigh-
borhood relationships among features. For example, in pro-
tein contact maps, the formation of Star SOAPs among non-
local patterns indicates such patterns have a compact spatial
relationship. The formation of Sequence SOAPs on the other
hand indicates an extended spatial relationship among the
involved patterns. Furthermore, by extracting SOAPs from
contact maps that are associated with proteins in different
protein classes, we can establish the associations between dif-
ferent types of SOAPs and protein classes. Such associations
can help us to identify structural characteristics of different
protein classes.

The rest of this document is organized as follows. In Sec-
tion 2, we present the key ideas underpinning our work: (i)
the notion of spatial feature representation using extents and
shapes, (ii) the different object-oriented distance metrics, and
(iii) the different association pattern types used to character-
ize spatial relationships. In Section 3, we detail the algo-
rithms and efficient realizations of the key ideas. Section 4
describes the efficacy of our approach on datasets drawn from
bioinformatics. Finally, we present our conclusions and out-
line directions of ongoing and future research in Section 5.

2 Background and Definitions

2.1 Spatial Feature Representation
We propose two basic shape representation schemes: paral-
lelepiped (or parallelogram in 2-D) and ellipsoid (or ellipse in
2-D). As demonstrated in Section 4, parallelograms are more
appropriate to capture the shape and extent of non-local struc-
tures in protein contact maps as opposed to MBBs. Whereas
ellipsoids (or ellipses) are suitable for vortices in fluid flow
data as mentioned earlier. Note that the first scheme subsumes
the MBB representation, and the second scheme subsumes
circles. For highly irregular-shaped features such as defect
structures in materials, we plan to use sampled boundary
points, known as landmarks [Rao and Suryawanshi, 1996].

As shown in Figures 1(a) and 1(b), the shape descrip-
tors of a parallelogram and an ellipse can be described
as

�����������	��
����� ������������������� �!�#"���$&%
and

�'
��(�()*��+,
-��������������� � ��� � ��".%
, respectively. These descriptors can also be

extended to 3D.

x

2l

(a) l1

(x,y)

l

φ
θ

mid

θ

(b)

(x,y)

1l

2l

Figure 1: Object type: (a)Parallelogram (b)Ellipse

2.2 Dataset Representation
The dataset / consists of 0 features located in 1 maps
(1 %

1), denoted as 2 = 3�4 �5� 4 �!��676�67� 4 ��8
. The 0 features

are categorized into
�

types, corresponding to
�

unique la-
bels 9 = 35: � � : � �7676�67� : � 8 . The categorization of features is
governed by the underlying domain. A feature’s geometric
properties such as shape and size are captured by adopting
one of the supported representation schemes. A feature ;
thus can be described as a vector

�
mapID, location,

�=<
,>
,

type
%

, where type ?@9 , mapID ?A2 indicates the map where; occurs, location identifies ; ’s position within the map, and� <
,> ?@3 �B���������	��
C�,�#�=
��	�()	��+,
�8
captures the shape of ; .

Note that in the rest of the paper, we refer to a feature cor-
responding to the above vector as a spatial object. We assume
the following order among the 1 maps: 4 �D� 4 �E��6�676F�
4 �

. If the 1 maps correspond to 1 snapshots, they are ordered
temporally. If they are from different datasets (e.g., different
protein contact maps), the order among them is imposed by
arbitrarily assigning each map a unique ID. Furthermore, the
lexicographic order among the

�
feature types is imposed as

follows: : � � : � �G6�676�� : � .
2.3 Object-oriented Distance Metrics
The proposed algorithms use the following metrics to mea-
sure the distance between two objects H)

and H�I located in the
same map.J Point-Point distance: This is simply the Euclidian dis-

tance between object centroids.J Line-Line distance: If H)
and H�I are parallelepipeds

(or parallelograms), we first identify the line segment
between the midpoints of the top and bottom surfaces

(or sides) in each object, then compute the shortest dis-
tance between these two line segments as the line-line
distance between H)

and H�I . We identify the top and bot-
tom surfaces (or sides) by selecting a reference axis in
the underlying Cartesian coordinate space, specifically,
the K -coordinate in 3D and

�
-coordinate in 2D. If H)

andH�I are ellipsoids (or ellipses), the line-line distance is be-
tween the two major axes.J Boundary-Boundary distance: This is the shortest dis-
tance between the boundaries of H)

and H5I . When H)
andH I are represented as ellipses, the boundary-boundary

distance is the shortest pair-wise distance between points
sampled on the boundaries (or surfaces in 3D). The num-
ber of sampled points is user-specified.

Notice that the line-line and boundary-boundary metrics
are able to take objects’ geometric properties into account.
The algorithms also support Hausdorff distance [Atallah,
1983]. Since this distance is not applicable to the applica-
tions described in this article, we do not discuss it here.

Two objects H)
and H�I have a closeTo relationship if the

distance between them is LBM , where M is a user-specified
parameter. Two objects are neighbors if they have a clos-
eTo relationship. We also define the isAbove relationship
between H)

and H�I . In a coordinate system, H)
is said to

have a isAbove relationship with H I , if the upper-left cor-
ner of H)

’s Minimum Bounding Box (MBB)1, denoted as
(
�) ���) � K)

), and the upper left corner of HNI ’s MBB, denoted as
(
� I ��� I � K7I), meets the following condition:

� K) % K7I ��OQPR� K)
K I ��SEPR���T)F%U� I �VOW�#���T)�X� I ��SE���Y)F�Z� I �#��[R[

in a 3-D map, or���\)F%]� I �^O@PR���\)^_� I �`Sa���Y)b�U� I �C[
in a 2-D map.

2.4 Spatial Object Association Pattern (SOAP)

(a)

(center)mc

lc
kc

jc
ic

(b) m

c

c c

c

c

l

k

j

i

Figure 2: SOAP Types: (a)Star (b)Sequence

A Spatial Object Association Pattern (SOAP) of size c ,
denoted as c -SOAP, characterizes the closeTo relationships
among c object types. In this article, we focus on two types
of SOAPs: Star and Sequence (Figure 2). As discussed ear-
lier, these two SOAP types can characterize different spatial
relationships among objects. These two SOAP types can be
abstracted as undirected graphs, where a node corresponds to
an object-type :) ?X9 , and an edge

� :)#� : I �
indicates that :)

and : I are required to have a closeTo relationship.J Star SOAPs (Figure 2a) have a center object-type,
which is required to have a closeTo relationship with all
the other object-types in the same SOAP.J Sequence SOAPs (Figure 2b) of size c'd =(:!e)(f : g�? [1, c])
satisfy two constraints, where :�e)(f is the g�h�i el-
ement in d : (1) closeTo(:�e)	f � :Ne)Rj���f

)=true and (2)
isAbove(:�e)(f � :Ne)�jk��f

)=true, where 1 L i L k-1. Sequence
SOAPs are mainly motivated by our observation on pro-
tein contact maps, where non-local structures, i.e, fea-
tures, tend to line up in a Sequence like manner.

1For a 3D MBB, it is the upper-left corner of its top surface.

These two SOAP types can also be represented as lists. Let:���� h
�

be the center of a star c -SOAP d , and 3N:�e)(f : g�? [1, c -
1]

8
be the other k-1 object-types in d , where :!e �Cf L 676�6 L:Ne ��� ��f

. SOAP d can then be described by the list d =(: ��� h
�
,:Ne �Cf ��676767� :Ne ��� ��f

), where closeTo(: ��� h
� � :Ne)(f)=true (g�? [1, c -1]).

Whereas elements in a sequence SOAP correspond to a list
by definition and cannot be forced into lexicographical order.
For instance, the two sequence SOAPs

�����
	 �
and

� ��	�� �
are different.

A SOAP is autocorrelated if an object-type occurs multi-
ple times. For example,

� : � � : � � : � � is an autocorrelated 3-
SOAP, where : �

occurs twice. An instance of a SOAP d is
the set of objects that meet all the requirements specified byd , including those on object-types and closeTo (or isAbove)
relationships.

We define two measures-support and realization- to char-
acterize the importance of a SOAP. The support of a SOAPd is the number of maps in the dataset where d occurs. As-
sume support(p)=s, let 0)

be the number of d ’s instances in
the g�h�i map where d appears, realization(d)=min 3�0) 8

. A pat-
tern d is frequent if support(d) minSupp, and prevalent if
realization(d) minRealization, where minSupp and minRe-
alization are user-specified parameters.

3 Algorithms
3.1 Data Organization
We organize / in the following manner. The 0 objects are
first grouped into

�
partitions, where each partition is com-

posed of objects of the same type. Within each partition, ob-
jects are ordered by their map IDs and locations in a map.
This data organization is analogous to the format used for
association rule mining [Zaki et al., 1997]. Note that each
object can be uniquely identified by combining the following
information: mapID, label, and locationID in the map.

3.2 Equivalence Classes
Based on the list-based SOAP representation (Section 2.4),
we organize SOAPs into equivalence classes. A c -
equivalence class, denoted as c -EquiClass, is defined as the
set of c -SOAPs that (i) are of the same SOAP type, and (ii)
have the same prefix, where the prefix of a c -SOAP is its first
k-1 elements. By using equivalence classes, our mining algo-
rithms only need to compute the closeTo or isAbove relation-
ships between objects once. The equivalence classes also help
to improve the memory locality of the algorithms, which re-
sult in significant performance gains. Moreover, equivalence
classes also enable the algorithms to smoothly scale to large
datasets [Zaki et al., 1997].

The next two sections describe the algorithms that discover
Star and Sequence SOAPs. For each frequent SOAP, the al-
gorithms store information about all of its instances. Such
information allows the algorithms to locate every object in-
volved in an instance.

3.3 Mining Star SOAPs
Figure 3 outlines the algorithm that discovers star SOAPs.
The first step generates frequent 1-SOAPs (line 1). For each
object-type :) , the procedure gen1SOAP counts the number of
maps that contain at least one object of type :) . If the count

 minSupp, then d �
=(:)) is a frequent 1-SOAP. The set of all

frequent 1-SOAPs is denoted by � �
.

The next step, gen2EquiClass, discovers 2-SOAPs and or-
ganizes them into 2-EquiClasses (line 2). The pseudo-code
of gen2EquiClass is described in Figure 4. A 2-EquiClass
is generated for each frequent 1-SOAP (Figure 4:line 2).
The 2-EquiClass of 1-SOAP (:)) ?�� �

, denoted by � ��� ��� , con-
tains frequent 2-SOAPs in the form of (:) � �). To gener-
ate � ��� � � , the procedure considers the following 2-SOAPs
as candidates: (:)�� : I), where (: I) ?�� �

(Figure 4:line 3).
For each candidate 2-SOAP d �

=(:) � :�I), the procedure iden-
tifies all the maps where d �

occurs (Figure 4:lines 6-11).
An instance of d �

=(:),� : I) is an object pair
� H)#� H I �

, where
(H)�6 �C� d�� = :)) SB� H I 6 �C� d�� = : I)

S
(distance(H)C� H I ,distType) L M).

If d �
occurs in minSupp maps, then it is frequent and is

added to � ��� � � (Figure 4:line 12).

Algorithm mine starSOAP(� ,minSupp, minRealization, distType, �)
1. ����� gen1SOAP(); // 1-SOAPs
2. � ��!"� gen2EquiClass(� � � � , star, parList); //parList: parameters
3. � � �

;
4. while (1) #
5. � ��$&% � �(' ; //the set of (k+1)-EquiClasses
6. foreach � -EquiClass � $*) �"� $
7. foreach � -SOAP

� $,+ �) �-$
8. �-$&% � �(' ; // the prefix of �-$.% � is

� $,+ �
9. foreach � -SOAP (

� $/+ 01) � $/24365)87 I 2
10.

� $.% � � append(
� $/+ � , lastElement(

� $/+ 0));
11. 96: $.% � �
#&; �=< ; � contains

� $/+ � and
� $/+ 0?> ;

12. foreach ; �) 96: $.% �
13. if (countStarInstances(; � � � � ��� 0) @ 1) mapCnt++;
14. if (mapCnt @A;) �CBCD ���) �-$.% � �E�-$.% �8F # � $.% � > ;
15. if 5 �-$.% �1GH ' 2 � ��$&% � �E�"�I$.% �8F �-$.% � ;
16. if (minRealization J 1) markPrevFreqSOAPs(��$&% �);
17. if (�"�I$.% � H ') return; //terminate
18. k++; //increase SOAP size > //while(1)

Figure 3: Mining Star SOAPs

The algorithm next discovers SOAPs of size
%

2 (Figure
3:lines 4-17). Two c -SOAPs in the same c -EquiClass are
combined to construct a candidate (c +1)-SOAP. For each
candidate (c +1)-SOAP d � j��

derived by appending the last
element of d � � I to d � �) (Figure 3: line 10), the algorithm
identifies all the maps where d � j��

occurs (Figure 3:lines
11-14). (The gCh�i k-SOAP in a k-EquiClass is denoted asd � �) .) The procedure countStarInstances(4) � d � �) � d � � I) (Fig-
ure 3:line 13) computes the instances of d � j��

in map 4)
by

combining instances of d � �) and d � � I . Two instances from d � �)
and d � � I are joined to produce a d � j��

instance if they have the
same first c -1 objects and different last object. SOAPs with
the same prefix are organized into one equivalence class as
they are being generated (see Figure 3:lines 5, 8, 14, 15). The
mining process stops when all the frequent SOAPs have been
discovered (Figure 3:line 17).

To discover frequent SOAPs, the algorithm only needs to
consider a SOAP’s presence in a map (Figure 3:line 13).
Hence, some of the discovered frequent SOAPs may not be
prevalent if minRealization

%
1. In this case, the procedure

markPrevFreqSOAPs is called to identify the SOAPs that are
both prevalent and frequent (Figure 3:line 16). It is necessary
to keep SOAPs that are frequent but not prevalent. We ex-
plain this by a simple example. Let 3�K � �?L � �?L � 8

be the three
neighboring objects in a map and minRealization=2. To de-
rive the two instances of SOAP (K �?L

),
� K �N�,L7� �

and
� K �N�,L����

,

Algorithm gen2EquiClass (� � ��� ��+,>#����������
 ,parList) // �4� :freq. 1-SOAPs
1. �"� ! �(' ; //the set of 2-EquiClasses
2.foreach (���)) � �
3. �I! + � � �(' //2-EquiClass with prefix of ��� ;
4. foreach (� 0)) �4�
5.

� !"� (��� � � 0); //a candidate
6. 96: ! �
#&; �=< 5 ; � contains � � and � 0) > ;
7. foreach ; �) 96: !
8. foreach 5 > � ��> 0 2�) ; �=< 5 > ��� �R����
�� H � � 2C3 5 > 0 � �����
C� H � 0.2
9. if ((soapType=Sequence) 3 (isAbove 5 > � � > 0.2 2) continue;
10. if distance(

> � � > 0 , distType)
7 �) addInstance(

� ! � 5 > � � > 0.2);
11. if (cntInst(

� ! � ; � 2 @ 1) mapCnt++;
12. if (mapCnt @ minSupp) � ! + � � �E� ! + � � F # � ! > ;
13.if (�I! + � � GH ') �"��!"�E�"��! F �I! + � � ;

Figure 4: 2-EquiClass Generation

the 1-SOAP (K) must be maintained even though its realiza-
tion is 1 (

��

) in the map.

Correctness: It is straightforward to show that the algorithm
discovers all the frequent 1-SOAPs and 2-SOAPs. Thus to
prove the algorithm is correct, we only need to show that
every frequent c -SOAP (c %

2) will be considered as a can-
didate. Assume d � =(:Ne ��f �7676�67� :Ne ��� ��f � :Ne ��� �Cf � :Ne � f) is frequent,
then the two (k-1)-SOAPs d ��� �/�)

= (:�e �Cf ��676�67� :�e � � ��f � :Ne ��� �Cf
)

and d ��� �,� I = (:Ne �Cf ��676�6 � :Ne ��� �,f � :�e � f) must also be frequent and
in the same equivalence class. Thus the algorithm will con-
sider d � as a candidate. It is trivial to show that the procedure
countStarInstances identifies all the instances of a candidate
SOAP. �
3.4 Mining Sequence SOAPs
The pseudo-code is given in Figure 5. Unlike mining Star
SOAPs, which uses two k-SOAPs in the same equivalence
class to generate a candidate (k+1)-SOAP (c- 2), the algo-
rithm joins one c -SOAP and one 2-SOAP.

The first two steps (lines 1-2) discover all the frequent 1-
SOAPs and 2-SOAPs. The isAbove relationship is checked
by the procedure isAbove(H) � H�I) (Figure 4:line 9). For eachc -SOAP d � =(:Ne �Cf �76�676�� :Ne � f), the algorithm first locates the 2-
EquiClass � ��� �� $�� , in which every 2-SOAP is in the form
(:Ne � f � :Ne I f):closeTo(:�e � f � :Ne I f) S isAbove(:�e � f � :�e I f) (line 7). A set
of candidate (k+1)-SOAPs are then generated by combiningd � with each 2-SOAP in � ��� �� $�� (lines 8-9). Same as min-
ing Star SOAPs, a candidate (k+1)-SOAP d � j��

is frequent
if it appears in minSupp maps (lines 10-13). The proce-
dure countSeqInstances(4) � d � �) � d ��� I) (line 12) identifies in-
stances of d � j��

in map 4)
, where d � j��

is a candidate SOAP
based on d � �) and d ��� I . Two instances � � �) and � ��� I , from d � �)
and d ��� I respectively, are combined to produce an instance ofd � j��

if the last object in � � �) is the same as the first object
in � ��� I . For the same reason explained before, the algorithm
calls the procedure markPrevFreqSOAPs to label SOAPs be-
ing both prevalent and frequent if minRealization

%
1 (line 15).

The algorithm stops when no more SOAPs can be discovered
(line 14).
Correctness: For each frequent sequence k-SOAPd � =(:Ne ��f �7676�6 � :�e � � �Cf � :Ne � f � , the following two SOAPs
must also be frequent: d � � �

=(:Ne ��f �7676�67� :Ne ��� �Cf
) andd �

=(:Ne ��� �Cf � :Ne � f). Thus, d � will be considered as a can-
didate and be discovered. It is trivial to show that the
procedure countSeqInstances identifies all the instances of a
candidate SOAP. �

Algorithm mine sequenceSOAP(� ,minSupp, minRealization, distType, �)
1. ����� gen1SOAP();
2. � � ! 5 >�� � ! 2 � gen2EquiClass(� � ��� , Sequence, parList);//parList:parameters
3. � � �

;
4. while (1) #
5. �4$.% � �(' ; //initialize the set of 5 � j�� 2 -SOAPs;
6. foreach SOAP

� $,+ � H�� � � � � ����� � � $�� � � J) �4$
7. � ! + � $�� �E� ! + � $��) � � ! 243 5 � ! + � $�� � �7��
��5)�� H �� $�� 2 ;
8. foreach 2-SOAP

� ! + 0�) � ! + � $��
9.

� $.% � � append(
� $,+ � , lastElement(

� ! + 0));
10. 96: $.% � �
#&; �=< ; � contains both

� $,+ � and
� ! + 0 > ;

11. foreach ; �) 9 : $&% �
12. if (countSeqInstances(; � � � $/+ � � � ! + 0 2 @ 1) mapCnt++;
13. if (mapCnt @ minSupp) �4$.% � �E�4$.% �=F # � $.% � > ;
14. if (�C$&% � H ') return; //terminate the process;
15. if (minRealization J 1) markPrevFreqSOAPs(�4$&% �);
16. k++; //increase SOAP size > //while(1)

Figure 5: Mining Sequence SOAPs

Other SOAP types can also be defined. For instance, we
can define Clique SOAPs, which require every pair of objects
in the same SOAP have a closeTo relationship. We can also
define SOAPs that involve other types of spatial relations such
as topological relations.

4 Experimental Evaluation
In this section, we evaluate the algorithms on a protein contact
map dataset. We start with a brief description on the dataset
generation process and the domain-specific usefulness mea-
surement adopted in this work. We then present results to
analyze the impact from different distance metrics and SOAP
types. Finally, we present performance characterization of
the algorithms.

4.1 Data Preprocessing and Representation
We first generate contact maps for � �����

proteins taken from
the Protein Data Bank [Berman et al., 2000]. For a protein
with N amino acids, its contact map

	
is a !#"$! binary ma-

trix. The position
	

(g �&%) is set to 1 if the distance between
the g�h�i and

% h�i residues is less than a threshold and 0 oth-
erwise [Vendruscolo and Domany, 1997]. We use 6Å as the
threshold as suggested in the literature [Zaki, 2002]. We then
extract features in contact maps. A contact map feature is
composed of a set of positions, where each position and at
least one of its eight neighbors contain a ’1’ (see Figure 6 for
examples). We apply a simple region growing approach to
extract features in contact maps [Yang et al., 2004]. We then
use an entropy-based clustering algorithm to cluster features
into

�
groups (or classes) [Cheng et al., 1999]. Features in

a class have similar geometric properties such as shape and
extent.

A total of ' �)(*(*+V���*,*,
features are extracted from the � ���-�.

contact maps. These features are clustered into

 � classes.

The average number of features in each map is about '.' , .
Many of these features correspond to well-known protein sec-
ondary structures and are also validated by domain experts.
We represent each feature by its minimum bounding parallel-
ogram and label the parallelogram by the feature’s class ID.

4.2 Domain Specific Usefulness Measurement
The structure of a protein often provides information about
its functionality. Thus, one can predict a protein’s function
based on the function of other structurally similar proteins.

Frequent SOAPs in contact maps characterize proteins’ struc-
ture. They can be used to generate signatures for different
proteins. For instance, the SOAP (7 7 7 22), which is auto-
matically discovered by our algorithms as both Star and Se-
quence, can be used to identify the following structurally and
functionally similar � -proteins: 1h3t, 1h3u and 1h3v (IDs
from PDB). (See Figures 6(a) and 6(b) for an illustration of
these SOAPs.)

..........22..

.................1.

................111.

................1....

...............11.....

..............11.....1.

.............11.........

............11...........

..........111.............

.........111...............

.........1..................

...7.........................

.....111......................

....111........................

...11...........................

..11.............................

.11...............................

.1.................................
11..................................
.....................................
......................................
.......................................
..
...
..
...
..
.............7..Center.................
................11............................
...............11..............................
..............11................................
.............11..................................
............11...................................
...........11.....................................
...........1.......................................
...
...
...
...7..
...11.
..11..
...11...
...1....
...11.....
..11......
..1.......
...11.......

........1....7.........................

......11....................................

.....11......................................

....11..

...11..

..11..

.11..

.1..
11...
..
...
..
...
..
...
..

.....................7..................................

.......................1....................................

......................11.....................................

.....................11.......................................

....................11...

....................1...

..................11...

.................11...

................11...

................1...

...

..

...

..

..7......

..11......

...11........

..11..........

...11............

..11..............

...11................

...1.1..................

...1.....................

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

...

...

...

...

...

...

...

...

...22..

...1

...11

...11..

..11...

...11....

..11.....

...11......

...1.......

...111.......

..11.........

(a) (b)

Figure 6: SOAP (7 7 7 22) in proteins 1h3u, 1h3t &1h3v as:
(a) Star and (b) Sequence

However, a SOAP is unlikely to add any value to the sig-
nature, if it is randomly associated with proteins of different
classes. To prune away such SOAPs, we use an entropy-based
approach. For a given SOAP, we first identify its associated
proteins. We then compute the SOAP’s entropy by integrating
the proteins’ lineage information from the database of Struc-
tural Classification of Proteins (SCOP)2. A protein’s SCOP
lineage is organized into 6 hierarchical levels according to
its structure. We look at the first two levels: � �

: : � K���� , and
� �

: ; H ���
. � �

consists of 11 classes such as � -protein, � -
protein, and small protein. � �

further divides proteins into
sub-classes based on proteins’ folding structures. Let ! be
the number of proteins whose contact maps contain the SOAPd , and 0)

be the number of proteins among these ! proteins
in the g�h�i class, the entropy of d at the first SCOP level is then
computed as: � � d �b
	 ���) H ��� � 0)� ! � " � H�� �!� 0)� ! �

[Shan-
non, 2001]. � � d �

essentially measures how well d ’s associ-
ated proteins distribute among different proteins classes. In
our experiments, we observe that SOAPs with entropy L 2.0
show good quality and can be used to generate signatures.
This observation is also validated by domain experts.

For each SOAP with entropy L 2.0, we next identify the
protein class that dominates its associated proteins. For ex-
ample, the dominating protein class of the clique SOAP (5 7
7 22) is � -protein, as ' + ' out of its

 ' , associated proteins
are � -proteins. As suggested by domain experts, we would
like to have many SOAPs for a certain protein class. A large
number of SOAPs not only cover a wide range of proteins,
but can also be used to identify structurally similar proteins
from different aspects. This criterion is used to evaluate the
discovered SOAPs. Note that even if two SOAPs have the
same dominating protein class, their associated proteins can
be very different.

2http://scop.mrc-lmb.cam.ac.uk/scop/

4.3 Impact of Distance Metrics
Due to lack of space, we only report the results pro-
duced from the following parameter setting: minSupp= ' %,
minRealization= ' , and M =

,*,
Å.

Figure 7 shows the impact of the three distance metrics on
different SOAP types. One can observe that the Line-Line
(L-L) distance generates the most number of SOAPs for both
SOAP types, whereas the Point-Point (P-P) distance the least.
This is expected as the P-P distance does not consider the
shape and size of spatial objects, in contrast with the other
two. One may argue that more SOAPs can be identified by
increasing the distance threshold in the case of P-P distance.
However, it is very difficult to find an appropriate threshold
value, as the size of a feature, i.e., the number of bit- ' posi-
tions, varies drastically, from

up to several thousand.

132

52

257

72

313

77

0

100

200

300

400

Star Sequence

#(
H <

 2.
0) P-P

B-B
L-L

Figure 7: Distance metric vs #SOAPS discovered

The advantage of using L-L and B-B distance metrics be-
comes more significant when looking at the SOAPs’ domi-
nating protein classes. Tables 1-3 summarize the number of
SOAPs in major protein classes. One can see that, if the P-P
distance is used (Table 1), only

� ' SOAPs are discovered in
small proteins as against ' �.� SOAPs in � -proteins. On the
other hand, SOAPs based on L-L or B-B distance show a rel-
atively more balanced behavior(Tables 2-3). Compared with
P-P distance, much more SOAPs in � -proteins or small pro-
teins are discovered. For instance, in the L-L case (Table 2),
there are ' � (and

-(.�
SOAPs are identified in � -proteins and

small proteins respectively. Also the B-B distance produces
the most number ('��) of SOAPs for � -proteins (Table 3).

The differences exhibited by SOAPs from different dis-
tance metrics show that it is important for our algorithms to
support multiple distance metrics, especially metrics which
consider objects’ extent.

Type #(�) #(�) #(small) #(peptide)
Star 2 103 19 7
Sequence 4 30 12 4
Total 6 133 31 11

Table 1: #SOAPs in major protein groups, distType=P-P

Type #(�) #(�) #(small) #(peptide)
Star 1 133 167 12
Sequence 4 37 36 6
Total 5 170 203 18

Table 2: #SOAPs in major protein groups, distType=L-L

4.4 Impact of SOAP Types
As we move down to the second SCOP lineage level,
� �

: ; H ���
, we discover that different types of SOAPs can ac-

tually distinguish different protein folding structures. Pro-
teins in the same class (e.g., � -protein) are further classified

Type #(�) #(�) #(small) #(peptide)
Star 8 145 91 13
Seq. 6 40 25 6
Total 14 185 116 19

Table 3: #SOAPs in major protein groups, distType=B-B

into structurally similar sub-groups according to their fold-
ing structures. Table 4 lists the � -protein folds that are dis-
tinguished by each SOAP type, where SOAPs are generated
based on the L-L distance. The folds in bold are those that are
associated with only one SOAP type. Whereas other folds in
the table are distinguished by two or more SOAP types. Folds
in other protein classes show a similar trend. For example, the
� -protein fold ”Cyclin-like” is only associated with sequence
SOAPs.

The above results can potentially help domain experts ad-
dress some important biological issues, for instance, predict-
ing a protein’s function based on the SOAPs contained in its
contact map.

Star Immunoglobulin-like beta-sandwich
Concanavalin A-like lectins/glucanases
Trypsin-like serine proteases
Cupredoxin-like
Acid proteases
Cysteine proteinases

Sequence Immunoglobulin-like beta-sandwich
Concanavalin A-like lectins/glucanases
Trypsin-like serine proteases
Lipocalins
Nucleoplasmin-like/VP

Table 4: List of � -protein folds associated with each SOAP
type, distType=L-L

Type minSupp=2% minSupp=1%
Star 15.54 21.53
Sequence 4.83 7.79

Table 5: Running Time (in seconds) (distType=L-L)

4.5 Running Time
Table 5 shows the time taken to discover the two types of
SOAPs at two minSupp values. All the experiments were
carried out on a Pentium ' 6 � GHz computer of

*,��
MB main

memory. To discover SOAPs in � �����

protein contact maps

containing ' �)(*(.+����*,*,
objects, the algorithms take about

*(
seconds when minSupp=

��
and about

�.(
seconds when

minSupp= ' � . Although running time increases as minSupp
decreases, the algorithm scales very well. We attribute this
good performance to the use of equivalence classes.

5 Conclusion and Ongoing Work
In this paper, we present a general framework to uncover two
types of spatial association patterns among features in sci-
entific data. The framework represents features as spatial
objects instead of points. It also supports multiple distance
metrics. Empirical results on protein contact maps show that
the framework is both efficient and scalable. Furthermore,
the discovered SOAPs are meaningful and can potentially be
used to address important biological issues.

The SOAP mining problem in this article shares some simi-
larity with frequent subgraph mining [Yan and Han, 2002]. In
order to apply the conventional graph mining algorithms for

SOAP mining, the notion of nodes needs to be extended to
integrate spatial properties such as location and shape. Also,
the notion of edge needs to be modified to reflect different
spatial relationships such as closeTo.

We are currently extending the framework in several di-
rections. First, we are examining other shape representation
schemes such as the landmark-based approach for highly ir-
regularly shaped features. Second, we are evaluating other
types of object association patterns, for example, clique
SOAPs, where each object has a closeTo relationship with
every other object in the same SOAP. Third, we are interested
in evaluating the algorithms on datasets from other scientific
domains, including molecular dynamics and fluid flow dy-
namics. Some of our ongoing work is reported in a technical
report [Yang et al., 2005]. Finally, we are investigating po-
tential approaches towards association based spatio-temporal
reasoning.

Acknowledgments: We thank D. Polshakov and K. Mar-
solo for helping us validate the experimental results, and
thank Dr. J. Wilkins and Dr. R. Machiraju for valuable com-
ments on the initial ideas.

References
[Atallah, 1983] M. J. Atallah. A linear time algorithm for the hausdorff distance be-

tween convex polygons. Information Processing Letter, 17(207-209), 1983.
[Berman et al., 2000] H. Berman et al. The protein data bank. Nucleic Acids Research,

28(235-242), 2000.
[Burdick et al., 2001] C. Burdick et al. Mafia: A maximal frequent itemset algorithm

for transactional databases. In ICDM,01.
[Cheng et al., 1999] C. Cheng et al. Entropy-based subspace clustering for mining

numerical data. In SIGKDD, 1999.
[Jiang et al., 2003] M. Jiang et al. Feature mining paradigms for scientific data. In

SIAM, 2003.
[Koperski and Han, 1995] K. Koperski and J. Han. Discovery of spatial association

rules in geographic information databases. In SSD, 1995.
[Kramer et al., 2001] Stefan Kramer et al. Molecular feature mining in HIV data. In

SIGKDD, 2001.
[Mehta et al., 2004] S. Mehta et al. Detection and visualization of anomalous struc-

tures in molecular dynamics simulation data. In IEEE VIS, 2004.
[Morimoto, 2001] Y. Morimoto. Mining frequent neighboring class sets in spatial

databases. In SIGKDD, 2001.
[Munro et al., 2003] R. Munro et al. Complex spatial relationships. In ICDM, 2003.
[Rao and Suryawanshi, 1996] C. R. Rao and S. Suryawanshi. Statistical analysis of

shape of objects based on landmark data. Proc National Academy of Science, USA,
1996.

[Richie et al., 2001] D.A. Richie et al. Real-time multiresolution analysis for acceler-
ated molecular dynamics simulations. In American Physics Society March Meeting,
2001.

[Sadarjoen et al., 1998] A. Sadarjoen et al. Selective visualization of vortices in hy-
drodynamic flows. In IEEE VIS , 1998.

[Shannon, 2001] C. E. Shannon. A mathematical theory of communication. SIGMO-
BILE Mobile Computing Community Review, 5(1):3–55, 2001.

[Shekhar and Huang, 2001] S. Shekhar and Y. Huang. Discovering spatial co-location
patterns: A summary of results. Lecture Notes in Computer Science, 2001.

[Vendruscolo and Domany, 1997] M. Vendruscolo and E. Domany. Recovery of pro-
tein folding from contact maps. Folding and Design, 2(5):295–306, 1997.

[Yan and Han, 2002] X. Yan and J. Han. gSpan: Graph-based substructure pattern
mining. In ICDM , 2002.

[Yang et al., 2004] H. Yang et al. Discovering spatial relationships between approxi-
mately equivalent patterns. In BIOKDD, 2004.

[Yang et al., 2005] H. Yang, S. Mehta, and S. Parthasarathy. A generalized framework
for mining spatio-temporal patterns in scientific data. In Technical Report OSU-
CISRC-5/05-TR14, Ohio State University, 2005.

[Zaki et al., 1997] M.J. Zaki et al. New algorithms for fast discovery of association
rules. In Technical Report TR651, Rensselaer Polytechnic Institute, 1997.

[Zaki, 2002] M.J. Zaki. Mining protein contact maps. In BIOKDD, 2002.
[Zhang et al., 2004] X. Zhang et al. Fast mining of spatial collocations. In SIGKDD,

2004.

