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Abstract 
Ensemble learning constitutes one of the main di-
rections in machine learning and data mining. En-
sembles allow us to achieve higher accuracy, which 
is often not achievable with single models. One 
technique, which proved to be effective for con-
structing an ensemble of diverse classifiers, is the 
use of feature subsets. Among different approaches 
to ensemble feature selection, genetic search was 
shown to perform best in many domains. In this 
paper, a new strategy GAS-SEFS, Genetic Algo-
rithm-based Sequential Search for Ensemble Fea-
ture Selection, is introduced. Instead of one genetic 
process, it employs a series of processes, the goal 
of each of which is to build one base classifier. Ex-
periments on 21 data sets are conducted, comparing 
the new strategy with a previously considered ge-
netic strategy for different ensemble sizes and for 
five different ensemble integration methods. The 
experiments show that GAS-SEFS, although being 
more time-consuming, often builds better ensem-
bles, especially on data sets with larger numbers of 
features. 

1 Introduction 
A popular method for creating an accurate model from a set 
of training data is to construct a set (ensemble) of classifiers. 
It was shown that an ensemble is often more accurate than 
any of the single classifiers in it. The integration of classifi-
ers is currently an active research area in the machine learn-
ing and neural networks communities [Dietterich, 1997]. 

Both theoretical and empirical research have demon-
strated that a good ensemble should include diverse base 
classifiers. Another important issue in creating an effective 
ensemble is the choice of the function for combining the 
predictions of the base classifiers. It was shown that increas-
ing the ensemble diversity is not enough to ensure increased 
accuracy – if the integration method does not properly util-
ize the ensemble diversity, then no benefit arises from the 
integration [Brodley and Lane, 1996]. 

One effective approach for generating an ensemble of di-
verse classifiers is the use of feature subsets, or ensemble 
feature selection [Opitz, 1999]. By varying the feature sub-

sets used to generate the base classifiers, it is possible to 
promote diversity and produce base classifiers that tend to 
err in different sub-areas of the instance space. 

Feature selection algorithms, including ensemble feature 
selection, are typically composed of the following compo-
nents [Aha and Bankert, 1995, Opitz, 1999]: (1) search 
strategy, that searches through the space of feature subsets; 
and (2) fitness function, that inputs a feature subset and out-
puts a numeric evaluation. The search strategy’s goal is to 
find a feature subset maximizing this function. 

It is reasonable to include in the fitness function, explic-
itly or implicitly, both accuracy and diversity. One measure 
of fitness, which was proposed in [Opitz, 1999], defines 
fitness Fitnessi of classifier i corresponding to feature subset 
i to be proportional to classification accuracy acci and diver-
sity divi of the classifier: 

iii divaccFitness ⋅+= α , (1) 

where α  reflects the influence of diversity. Diversity divi is 
the contribution of classifier i to the total ensemble diver-
sity, which can be measured as the average pairwise diver-
sity for all the pairs of classifiers including i. This fitness 
function was also used in experiments in [Tsymbal et al., 
2003; 2005], and it is used in the experiments in this paper. 

In [Tsymbal et al., 2005] a genetic search-based strategy 
GA has been introduced. It uses genetic search for evolving 
the initial population built with random subspacing. GA was 
shown to perform best on average with respect to the other 
three strategies, and two diversity measures were best for 
GA of the five considered measures: the kappa statistic, and 
the fail/non-fail disagreement. 

In this paper, we introduce a new genetic search-based 
strategy for ensemble feature selection, GAS-SEFS, which, 
instead of maintaining a set of feature subsets in each gen-
eration like in GA, consists in applying a series of genetic 
processes, one for each base classifier, sequentially. 

The paper is organized as follows. In Section 2 the task of 
ensemble feature selection is considered. In Section 3 we 
present two strategies for genetic ensemble feature selec-
tion, GA and GAS-SEFS, and two diversity measures. In 
Section 4 different methods for ensemble integration are 
reviewed. In Section 5 we present our experiments with the 
two genetic strategies and conclude in the next section with 
a summary and assessment of further research topics.  



2 Ensemble Feature Selection and Random 
Subspacing  

The task of using an ensemble of models can be broken 
down into two basic questions: (1) what set of models 
should be generated?; and (2) how should the predictions of 
the models be integrated? [Dietterich, 1997]. 

One effective approach to ensemble generation is the use 
of different subsets of features for each model. Finding a set 
of feature subsets for constructing an ensemble is also 
known as ensemble feature selection [Opitz, 1999]. While 
traditional feature selection algorithms have the goal of 
finding the best feature subset that is suitable to both the 
learning problem and the learning algorithm, the task of 
ensemble feature selection has the additional goal of finding 
a set of feature subsets that will promote diversity among 
the base classifiers [Opitz, 1999]. 

Ho [1998] has shown that simple random selection of fea-
tures may be an effective technique for ensemble feature 
selection because the lack of accuracy in the ensemble 
members is compensated for by their diversity. This tech-
nique is called the random subspace method or simply Ran-
dom Subspacing (RS). 

With RS one may solve the small sample size problem, 
because the training sample size relatively increases in ran-
dom subspaces. Ho [1998] shows that while most other 
classification methods suffer from the curse of dimensional-
ity, this method does not. RS has much in common with 
bagging [Skurichina and Duin, 2001], but instead of sam-
pling instances, one samples features. Like bagging, RS is a 
parallel learning algorithm, that is, generation of each base 
classifier is independent. This makes it suitable for parallel 
implementation that is desirable in some practical applica-
tions. It was shown that, like in bagging, accuracy could be 
only increased with the addition of new members, even 
when the ensemble complexity grew [Ho, 1998]. 

RS is used as a base in a number of ensemble feature se-
lection strategies, e.g. GEFS (Genetic Ensemble Feature 
Selection) [Opitz, 1999] and HC (Hill Climbing) [Cunning-
ham and Carney, 2000]. 

3 Two Strategies for Genetic Ensemble Fea-
ture Selection 

3.1 GA and GAS-SEFS  
The use of genetic search has been an important direction in 
the feature selection research. Genetic algorithms have been 
shown to be effective global optimization techniques. The 
use of genetic algorithms for ensemble feature selection was 
first proposed in [Kuncheva, 1993] and further elaborated in 
[Kuncheva and Jain, 2000]. As the fitness function in 
[Kuncheva, 1993; Kuncheva and Jain, 2000] the ensemble 
accuracy was used instead of the accuracy of the base classi-
fiers. However, such a fitness function is biased towards 
some particular integration method (often simple voting). 
Besides, as it was shown e.g. in [Kuncheva, 1993], such a 
design is prone to overfitting, and some additional preven-
tive measures are needed to be taken to avoid this (as in-

cluding in the fitness function penalty terms accounting for 
the number of features). The use of individual accuracy and 
diversity as in (1) is an alternative solution to this problem. 
Another motivation for this alternative is the fact that over-
fitting at the level of the base classifiers is more desirable 
than overfitting of the ensemble itself. It was shown recently 
in several studies that an ensemble of overfitted members 
might often be better than an ensemble of non-overfitted 
members. For example, in [Street and Kim, 2001] pruning 
trees resulted in decreased ensemble accuracy, even though 
the accuracy of the trees themselves increased. 

The Genetic Algorithm for ensemble feature selection 
(GA) [Tsymbal et al., 2005] is based on the GEFS strategy 
of Opitz [1999]. GEFS was the first genetic algorithm for 
ensemble feature selection that explicitly used diversity in 
its fitness function. GA begins with creating an initial popu-
lation with RS. Then, new candidate classifiers are produced 
by crossover and mutation. After producing a certain num-
ber of individuals the process continues with selecting a new 
subset of candidates randomly with a probability propor-
tional to fitness (so called roulette-wheel selection). The 
process of creating new classifiers and selecting a subset of 
them (a generation) continues a certain number of times. 
After a predefined number of generations, the fittest indi-
viduals make up the population, which comprises the en-
semble. The representation of each individual is a constant-
length string of bits, where each bit corresponds to a particu-
lar feature. The crossover operator uses uniform crossover, 
in which each feature of the two children takes randomly a 
value from one of the parents. The mutation operator ran-
domly toggles a number of bits in an individual. 

Instead of maintaining a set of feature subsets in each 
generation of one genetic process, GAS-SEFS (Genetic Al-
gorithm-based Sequential Search for Ensemble Feature Se-
lection) uses a series of genetic processes, one for each base 
classifier, sequentially. Pseudo-code for GAS-SEFS is given 
in Figure 1. After each genetic process one base classifier is 
selected into the ensemble. GAS-SEFS uses the same fitness 
function (1), but diversity is calculated with the base classi-
fiers already formed by previous genetic processes instead 
of the members of current population. In the first GA proc-
ess, the fitness function has to use accuracy only. GAS-
SEFS uses the same genetic operators as GA. 
For I=1 to EnsembleSize 
  For J=1 to 10 Population(J)=RSM(#Features); 
  For J=1 to #Generations 
    For K=1 to 10 CalculateFitness(Population(K)); 
    For K
    //randomly proportional to log(1+fitness) 

=1 to 40 

        (L,M)=Select2(Population); 
        Offsprings(K)=CrossOver(L,M); 
    EndForK 
     For K=1 to 10  Mutate1_0(Offsprings(20+K)); 
            Mutate0_1(Offsprings(30+K)); 
     For K=1 to 40 CalculateFitness(Offsprings(K)); 

//randomly proportional to fitness 
Population=Select10(Population+Offsprings); 

EndForJ 
  //according to fitness 

BaseClassifier(I)=Select1(Population);   
EndForI 

Figure 1 Pseudo-code for the GAS-SEFS algorithm 



GA has a number of peculiarities, which we use also in 
GAS-SEFS. Full feature sets are not allowed in RS nor may 
the crossover operator produce a full feature subset. Indi-
viduals for crossover are selected randomly proportional to 
log(1+fitness) instead of just fitness, which adds more di-
versity into the new population. The generation of children 
identical to their parents is prohibited. To provide a better 
diversity in the length of feature subsets, two different muta-
tion operators are used (Mutate1_0 and Mutate0_1), one of 
which always deletes features randomly with a given prob-
ability, and the other – adds features. 

Parameter settings for our implementation of GA and 
GAS-SEFS include a mutation rate of 50%, a population 
size of 10, a search length of 40 feature subsets (the number 
of new individuals produced by crossover and mutation), of 
which 20 are offsprings of the current population of 10 clas-
sifiers generated by crossover, and 20 are mutated off-
springs (10 with each mutation operator). 10 generations of 
individuals were produced, as our pilot studies have shown 
that in most cases, with this configuration, the ensemble 
accuracy does not improve after 10 generations, due to over-
fitting the training data. 

The complexity of GA does not depend on the number of 
features, and is , where  is the number of 
individuals in one generation, and gen  is the number of 
generations [Tsymbal et al., 2005]. The complexity of GAS-
SEFS is , where S is the number of base 
classifiers. In our experiments, on average, GA and GAS-
SEFS look through about 400 and 4000 feature subsets cor-
respondingly (given that the number of base classifiers is 
10, the number of individuals in a generation is 40, and the 
number of generations is 10). 

)( genNSO ⋅′ S′
N

)( genNSSO ⋅′⋅

3.2 Diversity measures used in the fitness function 
The fail/non-fail disagreement measure and the kappa statis-
tic were shown to provide the best performance for GA in 
[Tsymbal et al., 2005].  

The fail/non-fail disagreement measure was defined in 
[Skalak, 1996] as the percentage of test instances for which 
the classifiers make different predictions but for which one 
of them is correct: 
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where Nab is the number of instances, classified correctly 
(a=1) or incorrectly (a=0) by classifier i, and correctly (b=1) 
or incorrectly (b=0) by classifier j. The denominator in (2) is 
equal to the total number of instances. The fail/non-fail dis-
agreement varies from 0 to 1. 

The kappa statistic was first introduced in [Cohen, 1960]. 
Let Nij be the number of instances, recognized as class i by 
the first classifier and as class j by the second one, Ni* is the 
number of instances recognized as i by the first classifier, 
and N*i is the number of instances recognized as i by the 
second classifier. Define then Θ1 and Θ2 as: 
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where l is the number of classes and N is the total number of 
instances. Θ1 estimates the probability that the two classifi-
ers agree, and Θ2 is a correction term, which estimates the 
probability that the two classifiers agree simply by chance 
(in the case where each classifier chooses to assign a class 
label randomly). The pairwise diversity div_kappai,j is de-
fined as follows: 
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We normalize this measure to vary from 0 to 1. 

4 Integration of an Ensemble of Models 
The challenging problem of integration is to decide which of 
the classifiers to select or how to combine the results pro-
duced by the base classifiers. A number of selection and 
combination approaches have been proposed. 

One of the most popular and simplest techniques used to 
combine the results of the base classifiers, is simple voting 
(also called majority voting) [Bauer and Kohavi, 1999]. In 
the voting, the output of each base classifier is considered as 
a vote for that particular class value. The class value that 
receives the biggest number of votes is selected as the final 
classification. Weighted Voting (WV), where each vote has 
a weight proportional to the estimated generalization per-
formance of the corresponding classifier, works usually bet-
ter than simple voting [Bauer and Kohavi, 1999]. 
A number of selection techniques have also been proposed 
to solve the integration problem. One of the most popular 
and simplest selection techniques is Cross-Validation Ma-
jority (CVM, also called Single Best; we call it simply 
Static Selection, SS, in our experiments) [Schaffer, 1993]. 
In CVM, the cross-validation accuracy for each base classi-
fier is estimated, and then the classifier with the highest 
accuracy is selected. 

The described above approaches are static. They select 
one model for the whole data space or combine the models 
uniformly. In dynamic integration each new instance to be 
classified is taken into account. Usually, better results can 
be achieved if integration is dynamic. 

We consider in our experiments three dynamic techniques 
based on the same local error estimates: Dynamic Selection 
(DS), Dynamic Voting (DV), and Dynamic Voting with 
Selection (DVS) [Tsymbal and Puuronen, 2000]. They con-
tain two main phases. First, at the learning phase, the local 
classification errors of each base classifier for each instance 
of the training set are estimated according to the 1/0 loss 
function using cross validation. The learning phase finishes 
with training the base classifiers on the whole training set. 
The application phase begins with determining k-nearest 
neighbours for a new instance using a given distance metric. 
Then, weighted nearest neighbour regression is used to pre-
dict the local classification errors of each base classifier for 
the new instance. 



After, DS simply selects a classifier with the least pre-
dicted local classification error. In DV, each base classifier 
receives a weight that is proportional to its estimated local 
accuracy, and the final classification is produced as in WV. 
In DVS, the base classifiers with the highest local classifica-
tion errors are discarded (the classifiers with errors that fall 
into the upper half of the error interval) and locally 
weighted voting (DV) is applied to the remaining classifiers. 

5 Experimental Investigations 
5.1 Experimental setup 
The experiments are conducted on 21 data sets taken from 
the UCI machine learning repository [Blake et al., 1999]. 
These data sets include real-world and synthetic problems, 
vary in characteristics, and were previously investigated by 
other researchers. The main characteristics of the data sets 
are presented in Table 1. 

Table 1 Data sets and their characteristics 

Features 
Data set Instances Classes 

Categ. Num. 
Balance 625 3 0 4

Breast Cancer 286 2 9 0
Car 1728 4 6 0

Diabetes 768 2 0 8
Glass Recognition 214 6 0 9

Heart Disease 270 2 0 13
Ionosphere 351 2 0 34
Iris Plants 150 3 0 4

LED 300 10 7 0
LED17 300 10 24 0

Liver Disorders 345 2 0 6
Lymphography 148 4 15 3

MONK-1 432 2 6 0
MONK-2 432 2 6 0
MONK-3 432 2 6 0
Soybean 47 4 0 35
Thyroid 215 3 0 5

Tic-Tac-Toe 958 2 9 0
Vehicle 846 4 0 18
Voting 435 2 16 0

Zoo 101 7 16 0

 
As in [Tsymbal et al., 2003; 2005], we use Simple Bayes 
(SB) as the base classifier in the ensembles. It has been re-
cently shown experimentally and theoretically that SB can 
be optimal even when the “naïve” feature-independence 
assumption is violated by a wide margin [Domingos and 
Pazzani, 1997]. Second, when SB is applied to the sub-
problems of lower dimensionalities, the error bias of the 
Bayesian probability estimates caused by the feature-
independence assumption becomes smaller. It also can eas-
ily handle missing feature values. Besides, it has advantages 
in terms of simplicity, learning speed, classification speed, 
and storage space. We believe that dependencies and con-
clusions presented in this paper do not depend on the learn-
ing algorithm used and would be similar for most known 
learning algorithms. 

To evaluate GA and GAS-SEFS, we have used stratified 
random-sampling cross validation with 60 percent of in-
stances in the training set. The remaining 40 percent of in-

stances were divided into two sets of approximately equal 
size (a validation set and a test set). 70 test runs of were 
made on each data set for each search strategy and diversity.  

Four different ensemble sizes have been tested: 3, 5, 7, 
and 10. The ensemble size did not exceed 10 due to two 
main reasons: (1) limitation in computational resources, and 
(2) it was shown in experiments that for guided ensemble 
construction such as genetic search the biggest gain is 
achieved already with 10 base classifiers, and much less 
classifiers are needed than with unguided ensemble con-
struction such as RS and bagging.  

At each run of the algorithm, accuracies for the five types 
of ensemble integration are collected: Static Selection (SS), 
Weighted Voting (WV), Dynamic Selection (DS), Dynamic 
Voting (DV), and Dynamic Voting with Selection (DVS). 
We have collected ensemble characteristics for four num-
bers of generations: 1, 3, 5, and 10. 

To reduce the number of possible combinations of pa-
rameters, we conducted a separate series of preliminary ex-
periments using the wrapper approach based on cross vali-
dation to select the best diversity coefficient α  and the 
number of nearest neighbors in dynamic integration k as in 
[Tsymbal et al., 2005]. We have experimented with seven 
values of α : 0, 0.25, 0.5, 1, 2, 4, and 8. Seven values: 1, 3, 
7, 15, 31, 63, 127 ( ) were used for k. From 
the experimental results we could see that the best value of k 
depended mostly only on the integration method used and 
on the data set. The best 

7,...,1,12 =− nn

α ’s varied with the search strat-
egy, integration method, and data set used.  

After, the experiments were repeated with the selected 
values of α  and k. Although the same data were used for 
the selection and for the later experiments, we believe that 
this did not lead to overfitting due to the small number of 
possible values for α  and k. 

The test environment was implemented within the 
MLC++ framework (the machine learning library in C++) 
[Kohavi et al., 1996]. A multiplicative factor of 1 was used 
for the Laplace correction in SB as in [Domingos and Paz-
zani, 1997]. Numeric features were discretized into ten 
equal-length intervals (or one per observed value, whichever 
was less), as it was done in [Domingos and Pazzani, 1997]. 
Although this approach was found to be slightly less accu-
rate than more sophisticated ones, it has the advantage of 
simplicity, and is sufficient for comparing different ensem-
bles of SB classifiers with each other.  

5.2 Experimental results 
To validate our findings, we divided all data sets into two 
groups: with less than 9 features (10 data sets, group 1), and 
with greater than or equal to 9 features (11 data sets, group 
2); and checked all the characteristics for these groups. The 
ensemble accuracies were nearly the same for the two diver-
sity measures, and the fail/non-fail disagreement was 
slightly better on average, so we present results for this di-
versity measure only here. In Figure 2 the ensemble accura-
cies for strategies GA and GAS-SEFS, over the two groups 
of data sets and four ensemble sizes are shown averaged 
over the data sets for the best integration method (DVS). It 



can be seen from the figure that GAS-SEFS builds even 
more accurate ensembles than GA; especially for group 2 
including data sets with larger numbers of features. Accu-
racy grows with the ensemble size, but the growth flattens 
as the number of base classifiers increases.  
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Figure 2 Ensemble accuracies for two strategies, two groups of 
data sets, and four ensemble sizes 

In Figure 3 ensemble accuracies are shown for the two 
strategies, five integration methods, and four ensemble sizes 
on the Tic-Tac-Toe data set, as a representative of group 2 
including 958 instances and 9 features. This figure supports 
our previous findings. Besides, it could be seen that dy-
namic integration, expectedly, outperforms static integration 
both for GA and for GAS-SEFS. Accuracy grows with the 
ensemble size and this growth is greater for the best integra-
tion methods (DS and DVS in this case).  
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Figure 3 Ensemble accuracies for GA (left) and GAS-SEFS (right) 
for five integration methods and four ensemble sizes on the Tic-
Tac-Toe data set 

The difference between the two strategies is clearer for the 
best integration methods. The dependencies were the same 
for all the data sets, with sometimes lesser difference be-
tween the integration methods. For some data sets DV out-
performs DS, which supports the previous findings about 
behaviour of the integration methods [Tsymbal and Puu-
ronen, 2000; Tsymbal et al., 2005]. 

5.3 Other interesting findings 
Selected values of α  were different for different data sets, 
supporting findings in [Tsymbal et al., 2003; 2005]. In gen-
eral, for both strategies, α  for the dynamic integration 
methods is bigger than for the static ones (2.2 vs 0.8 on av-
erage). GAS-SEFS needs slightly higher values of α  than 
GA (1.8 vs 1.5 on average). This can be explained by the 
fact that GAS-SEFS always starts with a classifier, which is 
based on accuracy only, and the subsequent classifiers need 
more diversity than accuracy. 

The number of selected features falls as the ensemble size 
grows, and this is especially clear for GAS-SEFS, as the 
base classifiers need more diversity. As a rule, more features 
are needed in the static integration methods than in the dy-
namic ones to achieve better accuracy. GAS-SEFS results in 
slightly smaller feature subsets on average (48% vs 50% of 
features for dynamic integration strategies). 

As it was also reported in [Tsymbal et al., 2005], the se-
lected k-neighbourhood values for dynamic integration 
change with the integration method. DS needs higher values 
of k. This can be explained by the fact that its prediction is 
based on only one classifier being selected, and thus, it is 
very unstable. Higher values of k provide more stability to 
DS. The average selected k is equal to 33 for DS, and it is 
only 14 for DV. For DVS, as a hybrid strategy, it is in be-
tween at 24. The selected values of k do not change signifi-
cantly with the change of the search strategy and the ensem-
ble size.  

Experimental results for both GA and GAS-SEFS show 
that the static integration methods, SS and WV, and the dy-
namic DS start to overfit the validation set already after 5 
generations and show lower accuracies, whereas the accura-
cies of DV and DVS continue to grow up to 10 generations. 
This shows the importance of selection of the appropriate 
integration method for the genetic strategies. 

6 Conclusions 
In our paper, we have considered two genetic search strate-
gies for ensemble feature selection. The new strategy, GAS-
SEFS, consists in employing a series of genetic search proc-
esses, one for each base classifier. It was shown in experi-
ments that GAS-SEFS results in better ensembles having 
greater accuracy in many domains, especially for data sets 
with relatively larger numbers of features. GAS-SEFS is 
significantly more time-consuming than GA. However, it 
can be easily parallelized in a multiprocessor setting, and 
one processor could be used for each offspring in the current 
generation. 

One of the reasons for the success of GAS-SEFS is the 
fact that each of the core GA processes leads to significant 
overfitting of a corresponding ensemble member, and, as it 
was shown before, an ensemble of overfitted members is 
often better that an ensemble of non-overfitted members. 

In [Oliveira et al., 2003] it was shown that besides the use 
of weights to combine a number of objectives in the fitness 
function in genetic algorithms (as the use of α  in our case), 
another common approach that often gives better results for 



single feature subset selection is based on Pareto-front 
dominating solutions. Adaptation of this technique to en-
semble feature selection is an interesting topic for further 
research. 
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