
A. Ferrein, Ch. Fritz, and G. Lakemeyer 
Department of Computer Science 

RWTH Aachen 
{ferrein, fritz, gerhard}@cs.rwth-aachen.de 

1 Introduction 
Recently Boutilier et al. (2000) proposed the language DT-
G O L O G which combines explicit agent programming with 
decision theory. The motivation is that a user often has some 
idea about how to go about solving a particular problem yet at 
the same time does not want to or cannot commit in advance 
to an exact course of action. Instead, certain choices are left 
to the agent running the program and determining an optimal 
action selection policy involves solving a Markov Decision 
Process (MDP) [Puterman, 1994]. In a sense, a D T G O L O G 
program can be thought of as a factored representation of an 
MDP. As an example, Boutilier et al. consider a mail-delivery 
scenario where the task of delivering mail to a particular per
son is hand-coded and fixed, while the agent chooses the or
der in which the various people are served according to some 
reward function. They note that this approach allows solving 
problems which are much larger than those solvable using the 
traditional dynamic-programming approach for MDPs. 

Nevertheless, it is not very difficult to find examples 
where DTGOLOG also shows poor computational behavior. 
Roughly, the complexity is determined by the number of 
choices the agent needs to consider when computing a pol
icy and the number of actions with uncertain outcomes (na
ture's choices) that need to be considered along the way. 
To better control this potential blow-up we were inspired by 
work on so-called macro actions or options previously de
veloped in the MDP framework [Hauskrecht et al, 1998; 
Sutton et al., 1999]. The idea is that the policies for cer
tain subtasks like leaving a room are pre-computed and then 
simply used when working on the global policy. 

This is, roughly, what we propose: for a given domain 
identify subtasks and compute local policies using standard 
MDP techniques like value iteration. From those local 
policies generate two representations: (1) a (deterministic) 
DTGOLOG program directly encoding the local policy in 
terms of what action to take while the local policy is ap
plicable and (2) so-called abstract stochastic actions which 
only address the expected outcome of a local policy. It turns 
out that, while both representations can be used to compute 
a global policy, the use of abstract stochastic actions may 
result in an exponential speed-up.— In the next section we 

*This work was partly supported by the German Science Foun
dation (DFG), Grant No. LA 747/9-1, and a grant by the NRW Min
istry of Education and Research (MSWF). 

briefly introduce MDPs and DTGOLOG. Section 3 describes 
options in more detail and how to map them into DTGOLOG. 
We end with a discussion of experimental results. 

2 Decision Theory and GOLOG 
A fully observable MDP is represented as a tuple M = 

where S is a finite set of states, A is a finite set 
of actions, Pr is a probability distribution 
[0,1] (Pr(s j |A, si) denotes the probability of the agent end
ing up in state Sj after performing action A in state s t, and 

is a bounded reward function. The objective 
is then to construct a policy that maximizes the 
expected total reward over some horizon. A simple algorithm 
for constructing optimal policies is value iteration (cf. [Put
erman, 1994]). 

DTGOLOG [Boutilier et al, 2000] can be thought of, 
roughly, as a programming language which allows a user 
to combine pre-defined primitive actions into complex pro
grams using the usual constructs like sequence, if-then-else, 
while, and recursive procedures. In addition there are nonde-
terministic actions to model that an agent can choose among 
alternatives. The semantics is based on the situation calcu
lus and, in particular, the so-called basic action theories de
scribed in [Reiter, 2001], which define when primitive ac
tions are executable and how they change and do not change 
what is true in the world. As a special form of primitive ac
tion DTGOLOG allows so-called stochastic actions, which 
have probabilistic outcomes, just as in MDPs. For example, 
it is possible to define an action r (move to the right), after 
which a robot has moved one step to the right with probabil
ity 0.9, but has moved to the left, up, or down with probability 
0.1. MDP-style reward and cost functions are incorporated as 
well. Given a DTGOLOG program, the idea is then to com
pute a policy in the sense that each nondeterministic choice 
is resolved in a decision theoretic manner, that is, by choos
ing the action with maximal expected reward. Assuming that 
there are not too many nondeterministic or stochastic actions, 
a policy can be computed even in cases where an MDP repre
sentation seems infeasible due to the size of the state space. 

3 Mapping Options into DTGOLOG 
As in [Sutton et al., 1999], we define options as triples 

where I is the set of initial states, is a policy, and 
is the set of terminating states. To illustrate options con

sider the example in Figure 1 from [Hauskrecht et al, 1998]. 

1394 POSTER PAPERS 

Extending DTGOLOG with Options4 



Figure 1: Mazc66 from [Hauskrecht et al, 1998]. 

The task is to find an optimal policy to get from position S 
to position G. Performing an action has cost 1, the goal po
sition has a high positive reward. The agent can perform the 
stochastic basic or primitive actions r,l,u,d succeeding with 
probability 0.9. With probability 0.1 it will be in any other ad
jacent position. For each room options arc defined to leave the 
room through a certain door (one for each room/door combi
nation). The gray dots correspond to the termination positions 
of these options. For the left lower room in Figure 1 there are 
two options OE and ON (leave through the east or north door, 
respectively) with IE = and 

= {(2,4), (4,2)}, and similarly for ON. (In order to 
mark state (4,2) in as success and (2,4) as failure, they are 
assigned positive and negative reward, respectively.) 

Applying standard value iteration techniques, the follow
ing can be computed for an option O: 

1. the optimal policy that is, the most appropriate action 
Ai for each st J; 

2. for each st I and Sj the probability to terminate 
the option with the outcome SJ when starting in si 

These results can now be translated into a form suitable for 
DTGOLOG. Given I = {s1,..., sn), suppose that each st 
can be uniquely characterized by a logical formula (In our 
example, <pi simply expresses the coordinates of the location 
of .s\.) Then the policy can be translated in a straightfor
ward fashion into the following DTGOLOG program: 

where and senseState(O) is a so-called sens
ing action. Roughly, executing senseState(O) establishes 
the truth values of the so that they can be tested in the 
following while and if conditions. (The sensing actions are 
necessary to account for the MDP assumption of full observ
ability.) Al l in all, the program simply prescribes that the 
optimal action (according to ) should be executed as long as 
the agent is in one of the initial states of O. 

Given (2.) above we can also generate for each st I 
an abstract stochastic action o(si). For example, for the 
option OE and state s1 = (2,2) we would define an ab
stract stochastic action with nature's choices 
and for leaving through the east or north door, respec
tively, together with the probabilities of these actually occur
ring as computed in (2.) = 0.99898, 

Just as options in the MDP framework can be treated like 
primitive actions in MDPs that use these options, the transla
tion into abstract stochastic actions in the DTGOLOG frame-
work has the same effect, that is, we can now write DT
GOLOG programs treating abstract stochastic actions just like 
any other primitive actions. A global policy computed by DT
GOLOG for such a program usually mentions abstract actions. 
These are not readily executable (leaving a room through the 

east door is not a primitive action). Hence, in a final step we 
need to replace the abstract actions by the programs which we 
derived above. 

4 Experimental results 
Using our running example we conducted a number of exper
iments, the goal being at different distances from the initial 
position (Fig.l shows the special case of distance 8). The re
sults are given in Figure 2. The x-axis depicts the initial dis
tance to the goal, the y-axis the running time. We compared 
three different approaches: (A) calculating the optimal policy 
in DTGOLOG nondeterministically choosing only from the 
primitive actions, (B) using a set of procedures like the one in 
the previous section for leaving each room towards a certain 
neighboring room, choosing from primitive actions only in 
the goal room, and (C) using options in the form of abstract 
stochastic actions, choosing from primitive actions only in the 
goal room. 

Figure 2: Runtimes of the three test programs in the maze. 

Note that the y-axis of the diagram has a logarithmic scale. 
The speed-up from (A) to (B) shows the benefit using DT
GOLOG to constrain the search space by providing fixed pro
grams for certain subtasks. Interestingly, (C), that is, using 
abstract actions, clearly outperforms (B). Roughly, this is be
cause each abstract action has only two outcomes, whereas 
the corresponding program provides a very fine-grained view 
with a huge number of outcomes that need to be considered. 

Taking the time of calculation of all options into account 
(here: 10.51 seconds) the use of options pays off at horizons 
greater than 5. Also, calculating options can be done off-line 
and can be neglected in case of frequent reuse. 

We remark that while method (A) guarantees optimality, 
this is not necessarily so for (B) ana (C), for essentially the 
same reasons as in [Hauskrecht et ai, 1998]. Certainly in 
the case of (C), this price seems worth the computational 
gain. Finally, while we currently assume options as given, 
Hauskrecht et al. (1998) discuss ways of automatically 
generating options with good solution qualities, an issue we 
intend to investigate in the future as well. 

References 
[Boutilier et al, 2000] C. Boutilier, R. Reiter, M. Soutchanski, and 

S. Thrun. Decision-theoretic, high-level agent programming in 
the situation calculus. In Proc. AAAI-2000, 2000. 

[Hauskrecht et al., 1998] M. Hauskrecht, N. Meuleau, L. Kael-
bling, T. Dean, and C. Boutilier. Hierarchical solutions of MDPs 
using macro-actions. In Proc. UAI98, 1998. 

[Puterman, 1994] M. Puterman. Markov Decision Processes: Dis
crete Dynamic Programming. Wiley, New York, 1994. 

[Reiter, 2001] R. Reiter. Knowledge in Action. MIT Press, 2001. 
[Sutton et al., 1999] R. Sutton, D. Precup, and S. Singh. Between 

MDPs and semi-MDPs: A framework for temporal abstraction in 
reinforcement learning. Journal of Artificial Intelligence, 1999. 

POSTER PAPERS 1395 


