
Corpus-based, Statistical Goal Recognition

Nate Blaylock and James Allen
Department of Computer Science

University of Rochester
Rochester, New York, USA

{blaylock.james}cs.rochester.edu

Abstract

Goal recognition for dialogue systems needs to be
fast, make early predictions, and be portable. We
present initial work which shows that using statisti
cal, corpus-based methods to build goal recognizers
may be a viable way to meet those needs. Our goal
recognizer is trained on data from apian corpus and
then used to determine the agent's most likely goal
based on that data. The algorithm is linear in the
number of goals, and performs very well in terms
of accuracy and early prediction. In addition, it is
more easily portable to new domains as does not
require a hand-crafted plan library.

1 Introduction
Much work has been done over the years in plan recognition,
which is the task of inferring an agent's goal and plan based
on observed actions. Goal recognition is a special case of
plan recognition, in which only the goal is recognized.

Goal and plan recognition have been used in a variety of
applications including intelligent user interfaces [Lesh et al,
1999], dialogue systems [Carberry, 1990b; Allen et a/., 2000]
and machine translation [Alexandersson, 1995].

We are especially interested in applying goal recognition
to dialogue systems, in order to aid natural language under
standing and intention recognition. We do not intend to use
a goal recognizer to directly recognize communicative inten
tions (the goals behind a user's utterance); rather, we intend
to use it to identify a user's domain goals to quickly help nar
row the search space for more costly intention recognition
routines (e.g., [Lochbaum, 1998; Chu-Carroll and Carberry,
2000]).

This application places several demands on our goal recog
nizer:

1. Speed: Dialogues happen in real-time, and the system is
expected to understand a user's utterance and generate a
response in a short amount of time.

2. Early/partial prediction: We need accurate goal pre
dictions very early on in the exchange, as the system
needs this information to better respond to a user's ut
terance. If full recognition is not immediately available,

the system needs at least partial information to allow it
to act on the user's utterance.

3. Portability: We want to be able to rapidly port our dia
logue system to new domains.

We present initial work in which we use corpus-based
methods to build a goal recognizer. Our recognizer is fast
(linear in the number of possible goals), makes early predic
tions, and is easier to port to new domains than many systems,
as it does not require a hand-crafted domain plan library.

We first discuss the corpus-based approach we take in goal
recognition. We then report on initial experiments that we
have performed and discuss results. Finally, we comment on
related work and then discuss future directions for our work.

2 The Corpus-based Approach
The use of statistical methods, based on corpora, has revo
lutionized the field of Natural Language Processing over the
past 10+ years. The method is as follows: one uses a corpus
of data to train a statistical model which is then used to make
predictions on future data. Seemingly simple methods have
yielded good results in many areas of NLP.1

We apply a similar approach to the task of goal recogni
tion. We use a plan corpus (a list of goals and the plans
an agent executed to achieve them) to train statistical mod
els which can predict an agent's goal based on an observed
sequence of actions. As we show below, initially work shows
several possible advantages over previous work on goal and
plan recognition: recognition is fast (linear in the number of
goals), robust (can handle unknown actions and plans) and
does not require a hand-crafted plan library.

2.1 Recognit ion using N-gram Models
We define the task of goal recognition as follows: given
an observed sequence of n actions so far
(which, for compactness, we wil l represent as find the
most likely goal G:

USER MODELING 1303

| Goal# Goal Description Sessions
[" " ' 1 Find a file named 'core' 11

2 Find a file that contains the word 'motivating' and whose name ends in '.tex' 11
3 Find a machine that has low (<1.0) load; AND determine if Oren Etzioni is

logged into the machine named chum 5
4 Compress all large files (> 10,000 bytes) in the Testgrounds subdirectory tree 2
5 Compress all files in the directory named 'backups' [Don't use *] 3
6 Find a large file (> 100,000 bytes) that hasn't been changed for over a month 8
7 Find a file that contains less than 20 words 8
8 Find a laser printer in Sieg Hall that has an active print job 6
9 Find a Sun on that has low (<1.0) load; AND determine if Dan Weld is active

on the machine named chum 2
10 Find a file named oldpaper in neal/Testgrounds subdirectory 1
11 Find a file of length 4 in neal/Testgrounds subdirectory 1
12 See if Dan Weld is logged in to chum 1

Total 59 j

Table 1: Goals and their counts in the UNIX corpus

Since is constant in the argmax, we can drop it:

(3)

Using the Chain Rule, we can rewrite this as:

(4)
These conditional distributions are very large and difficult

to estimate, therefore, we make an n-gram assumption, i.e.,
we assume that an action Ai is only dependent on the goal
G and the j actions preceding it For a unigram
model, we assume that At is independent of all other actions.
In this case, our goal recognition equation becomes:

(5)

If we assume that Ai is independent of everything but G
and A , _ I , we get a bigram model:

(6)

W e estimate a n d u s i n g a
plan corpus. Then, for recognition, we first initialize our goal
probabilities with P(G). For each action we observe, we
multiply each goal's score by the corresponding conditional
probability.

This algorithm has the nice feature of compositionality —
new observations produce conditional probabilities, which
are simply multiplied with the previous predictions. This re
sults in computational savings, since updates are linear in the
number of goals. It also gives us a good model for early pre
diction (as desired for our dialogue system), since the model
is based on actions observed so far and does not require all
actions in the plan execution.

Goal Types 12
Goal Sessions 59
Action Types 22
Total Actions 412
Average Actions/Goal 7

Table 2: Statistics for the UNIX corpus

3 Experiments
3.1 The Plan Corpus
We performed several experiments using Lesh's UNIX plan
corpus [Lesh, 1998]. The corpus was gathered from human
UNIX users (CS undergraduates) at the University of Wash
ington. Users were given a task in UNIX (a goal), and were
instructed to solve it using a subset of UNIX commands (no
pipes, no awk, etc.) The students' commands and results
were recorded, as well as whether or not they successfully
accomplished the goal. There were 59 successful goal ses
sions which involved 12 different goals. Table 1 shows the
individual goals and the number of successful goal sessions
for each.

We automatically removed unsuccessful commands, such
as typos, from each execution. Remaining commands were
stripped of arguments to a base command type form. This
means our training set consisted only of action types (such
as I s , g r e p , etc.), and did not consider flags or arguments.
We hope to extend our model to incorporate that additional
information in the future (see below).

Table 2 shows some relevant statistics from the resulting
plan corpus. There were 12 possible goals and 22 different
action types used in the goal sessions. On average, there were
7 actions per goal session.

We used cross-validation testing on 56 test cases.2 Because

2Thc total number of goal sessions was 59, but sessions involving
goals 10, 11 and 12 were not used as test data, since these were
the only exemplars of their goals (see Table 1). These cases were

1304 USER MODELING

of the small size of the UNIX corpus, the training set was
formed by removing only the test case from the corpus for
each test case.

3.2 Evaluation Metrics
As pointed out by Lesh [Lesh, 1998], there is a lack of agreed-
upon metrics and benchmarks for reporting results for plan
and goal recognizers. We use the following metrics to report
our results as they measure the attributes we are seeking for
a goal recognizer (as described above). A test case is the set
of actions executed for a goal. The actions are fed one by one
to the recognizer, which makes predictions after every action.
Each metric is for a single test case. For reporting multiple
test cases, the metric is averaged across all cases.

• Accuracy: The number of correct predictions divided by
the total number of observed actions.

• Converged: Whether or not the final prediction was cor
rect (i.e., whether the recognizer finish with the correct
answer).

• Convergence point: If the recognizer converged, at
which point in the input it started giving only the correct
answer. This is reported as an action number (i.e., after
observing x actions); it is also reported as a percentage
of the input according to the following equation:

Intuitively, this shows how far through the plan execu
tion the recognizer started (exclusively) predicting the
right goal, with 0% meaning after the first action, and
100% after the final action. A low percentage indicates
that the recognizer is making accurate early predictions.

3.3 Un ig ram model
For our first experiment, we trained unigram models on the
data (based on Equation 5). To provide for unseen data, where
P(At\G) was 0, P(Al\G) was set to be a very small constant.
This smoothing technique allows goal G to still remain possi
ble, in case other evidence makes it likely, despite the fact that
action Al was not seen in relation to it in the training data.

With the unigram model, our recognizer achieved an ac
curacy of 63.1%, with 73.2% of the cases converging. For
cases which converged, the average point of convergence was
23.1% through the input, or after observing an average of 2.4
actions.

Because a unigram model assumes independence of all ac
tions, it is equivalent to treating actions as an unordered list.3

This assumption is partly to blame for the relatively low ac
curacy and convergence, since action ordering is important
in the domain. We attempt to rectify this by using a bigram
model below.

It is interesting to note the low point of convergence. This
shows that, for the tests which did converge, they converged
fairly quickly, i.e., the recognizer was able to tell fairly
quickly what the goal was. This quick convergence seems

still used in training for other test cases, however, and were still
candidate goals for recognition.

3This is a list and not a set since actions can be repeated.

partly due to the fact that some goals (such as goal 8, for ex
ample) were highly correlated with a single command (such
as l p q in this case), which immediately boosted the proba
bility of the correct goal.

3.4 B igram model
In our next experiment, we used a bigram model (based on
Equation 6), which encodes at least some ordering into the
actions by considering both the current action and the pre
ceding action.

We prepend a special s t a r t action to the front of each
execution, which handles the special case of Equation 6 in
which n = 1, i.e., when we've only seen one action so far.
This also encodes information about which actions tend to
begin executions, which may or may not be correlated to the
goal.

For the case where equals 0, i.e., the
bigram was never seen in conjunction with the goal, we
use a unigram back-off model which uses the estimation

As with the unigram model
above, if P(Ai\G) equals 0, we smooth this with a small con
stant.

As expected, the bigram model performed much better than
the unigram model, with an accuracy of 71.7% and with
83.9% of cases converging. For the tests cases which con
verged, they converged on average 22.3% through the input,
or after 2.3 actions.

While accuracy and convergence were markedly better
than the unigram model, the convergence point only im
proved slightly in the bigram model. However, this was al
ready quite good, and may simply mean that we are approach
ing a limit on how soon the prediction can be made in this
particular domain.

As for convergence, it is illustrative to look at a goal-by-
goal breakdown of results. Table 3 shows convergence results
for each goal type. For the 9 cases which didn't converge, 5
arc goal 6, which is often misclassified as either goal 1 or
goal 11. This seems mostly to be due to the fact that these
three goals are very similar. Goal 1 is to find a file named
'core\ goal 6 is to find a large file that hasn't been changed
for over a month, and goal 11 is to find a file of length 4. All
of these have to do with finding a file with a certain set of
attributes, and in fact, the command Is can be used to learn
all of these attributes about a file. Goal sessions for all three
of these goals mostly consisted of the commands cd and I s .

3.5 Goal Abstract ions
In our final experiment, we defined an abstraction hierarchy
for goal types. The abstract types and goals they encompass
are shown in Table 4.

As we discussed above, a dialogue system needs to be able
to reason quickly, accurately and early about a user's goals
and intentions. If the user's specific goal cannot be deter
mined, a dialogue system can often use partial information
in formulating a response to the user. These abstract goal
classes represent that partial information. If we are unable to
determine a specific goal, the system can perhaps determine
what the user's abstract goal is, and this may be enough to
formulate a response.

USER MODELING 1305

Goal# Convergence Competitors
[1 10/11(90.9%) 6:1

2 11/11(100.0%) none
3 4/5 (80.0%) 9:1
4 2/2(100.0%) none
5 2/3 (66.7%) 4:1
6 3/8 (37.5%) 1:2,11:3
7 8/8 (100.0%) none
8 6/6 (100.0%) none
9 1/2 (50.0%) 3:1

Table 3: Convergence by goal in the bigram experiment

Abstract Goal
Goals which
Instantiate

Find a file with attributes 1,2,6,7, 10, 11
Find a machine with attributes 3,9,12
Compress files with attributes 4,5
Find a printer with attributes 8

Table 4: Abstract goal types

The probability of an abstract goal is calculated by sim
ply summing the probabilities of each of its children. For this
experiment, we use the same bigram model as before and per
form an additional summing at each step to calculate the most
likely abstract goal.

The recognizer predicted abstract goals very well, with
91.0% accuracy and 100.0% of the cases converging. The
average convergence point was 11.6% through the input, or
after 1.7 actions. Table 5 summarizes the results of all three
experiments.

It is important to note that abstract goal recognition does
not occur in competition to, but rather in conjunction with the
specific goal recognition. Of course, it is best to recognize
the specific goal, which our bigram model seemed to do fairly
well, but we can also recognize the abstract goal more quickly
and more accurately. And, there may be many cases where
it wil l be sufficient for the dialogue system to have just the
abstract goal in order to help the user.

4 Discussion
These initial results are encouraging, but there still remain
significant challenges for scaling up the system to sufficiently
complex domains. In this section, we discuss our goal recog
nizer in light of the desiderata for dialogue systems we men-

Unigram Bigram
Abstract

Goals
Accuracy 63.1% 71.8% 91.0%
Converged 73.2% 83.9% 100.0%
Conv. Point 23.1% 22.3% 11.6%
Conv. Action# 2.4 2.3 1.7

Table 5: Results of the experiments on the UNIX corpus

tioned above. We then discuss several challenges that remain.

4.1 Desiderata
Speed Because it involves a simple probability lookup, our
recognizer is linear in the number of goals (and training it
is linear in the amount of training data). Speed is a big ad
vantage to this approach. By comparison, logic-based rea
soning recognizers like [Kautz, 1991] are exponential in the
size of the plan library.4 Several systems [Vilain, 1990;
Lesh, 1998] improve on this time complexity, but at the ex
pense of expressiveness.

Early/partial prediction Our recognizer was able to make
correct predictions 22.3% (2.3 actions) through the input
with 83.9% overall accuracy, and give correct abstract results
11.9% (1.7 actions) through the input with 100.0% overall
accuracy. This early prediction is crucial to our domain of
dialogue systems.

Most work does not report how early the recognizer makes
correct predictions. Lesh [Lesh, 1998] simulates a task-
completion agent, which, upon recognizing the user's goal,
steps in to complete the task. He reports5 a convergence point
of 29.9% (after 8.7 actions for an average plan length of 26.8
actions) for the task of searching for a printer with attributes
(4 predicates) and a convergence point of 23.1% (after 4.9
actions for an average plan length of 17.9 actions) for a re
stricted cooking domain, both with 100.0% accuracy because
Lesh uses a 'strict consistency' approach. For most domains,
however, (like the full UNIX corpus), it is unclear if it could
make such early predictions. Because it is based on 'strict
consistency', a goal hypothesis must become logically im
possible before it can be ruled out. In fact, even in for the
domains he reports statistics in, the recognizer rarely recog
nizes the user's actual goal exclusively, rather, based on the
set of possible goals, it tries to recognize a sufficient goal that
covers all possible goals. As Lesh points out, many domains
do not lend themselves to the prediction of sufficient goals.

Portability The portability of our goal recognizer depends
on the existence of a plan corpus. If a plan corpus exists or
can be created for the new domain (see section below), all
we have to do is use it to train models for the new domain.6

On the other hand, most goal recognizers (e.g., [Vilain, 1990;
Carberry, 1990a; Kautz, 1991; Charniak and Goldman, 1993;
Paek and Horvitz, 2000]), require a complete, hand-crafted
plan library in order to perform recognition, which can re
quire a significant amount of knowledge engineering for each
domain.

4Granted, these systems are performing plan recognition and not
just goal recognition, which makes the comparison unfair. However,
very little work has been done on goal recognition in its own right,
so plan recognizers are all we have to compare against.

5 Lesh reports the average length of plan with and without the
task-completion agent, which we used to calculate these conver
gence points.

6Models could also be trained for different individuals within
a single domain by using a user- (or group-) specific corpus. With
other approaches, user-specific models have greatly improved recog
nition (e.g., [Lesh, 1998]).

1306 USER MODELING

Hong's recognizer [Hong, 2001] only requires knowledge
of plan operators, not the library, but it is unable to make early
predictions, as it usually does not make end-goal predictions
until after it has seen the entire executed plan. Lesh [Lesh,
1998] requires only knowledge of plan operators and domain
goal predicates.

4.2 Challenges
Domain size With only 12 goals and 22 action types, the
UNIX domain is quite small, and it is unclear whether our
recognizer would scale to larger domains. One immediate
fault of our recognizer is that it does not handle parameterized
goals. Each of the 12 goals above is treated as an atomic
unit, and not as a goal schema instantiated with parameters.
One straightforward way to handle parameters would be to
treat a goal schema as an abstract goal, with each possible set
of parameter instantiations as a separate, more specific goal.
However, this would explode the number of goals and, in the
case of 2 or more parameters, lead to a multiple-inheritance
abstraction hierarchy, which is not supported by our current
abstract goal score calculation model.

Hierarchical plans Another shortcoming of the current
recognizer is that, although it handles goal abstraction, it does
not handle hierarchical plans. Complex plans covering longer
time-scales are less likely to be identifiable from a few ob
servations alone (which tend to reflect more immediate sub-
goals). Ideally, we would want to recognize subgoals for par
tial results, even if we still cannot recognize the high-level
goal.

Data collection In some domains (like operating systems),
it may be possible to collect enough data from users to train a
recognizer. In most domains, however, it wil l be infeasible to
collect enough data on users solving goals in order to build ef
fective statistical models. Furthermore, even it this data could
be collected, the inner structure of the user's hierarchical plan
would not be explicit from the data (i.e., we can only observe
the primitive actions, not the subgoal structure that motivates
the actions).

As the next step in our research, we plan to explore the use
of AI planners to generate artificial plan corpora to be used
for training. The approach we plan to take combines plan
ning and Monte-Carlo simulation to generate plan corpora.
The idea is to generate plans stochastically (allowing distri
butions over different aspects of the planning process, such as
the goals, situations and action decompositions). By combin
ing "context-free" Monte-Carlo simulation techniques with
richly context-dependent planning algorithms, we hope to ob
tain a corpus that captures likely user behavior. In addition,
this generated corpus has the big advantage that the subgoal
hierarchy that generates the observed actions is also known.

5 Related Work
As mentioned above, [Vilain, 1990; Lesh, 1998] improve
speed over [Kautz, 1991], but do so at the expense of expres
siveness. Also, these goal recognizers are typically not able
to make early predictions, as they are unable to distinguish

between consistent goals, even if one is more likely than the
other.

There are several lines of research which incorporate prob
abilistic reasoning into plan and goal recognition. [Carberry,
1990a] and [Bauer, 1994] use Dempster-Shafer theory and
[Charniak and Goldman, 1993], [Pynadath and Wellman,
1995], and [Paek and Horvitz, 2000] use Belief Networks to
represent the likelihood of possible plans and goals to be at
tributed to the user. Al l of these methods, however, require a
complete plan library as well as the assignment of probability
distributions over the library.

[Appelt and Pollack, 1991] and [Goldman et ai, 1999] cast
plan recognition as weighted abduction. However, this also
requires a plan library and the acquisition of weights for ab-
ductive rules. Abduction is also computationally hard, and
it is unclear whether such routines would be fast enough for
complex domains.

Probably the closest work to ours is [Albrecht et ai, 1998],
which uses a dynamic belief network (DBN) to do goal
(quest) recognition in a multi-user dungeon (MUD) domain.
The belief network takes into account actions, locations, and
previous quest in recognizing the player's current quest. Sim
ilar to our own work, their model uses bigram independence
assumptions for both actions and locations. Conditional prob
ability distributions for the network are estimated from a cor
pus of MUD sessions.

Although our approaches are similar in terms of the use
of corpora for training, there appear to be a few significant
differences. Albrecht et ai encode state into their model (in
the form of location and previous quest), whereas our current
system considers only actions. Perhaps more significantly,
they note that the bigram independence assumption is an in
herent part of DBNs, since relaxing it (say, by using trigram
or 4-gram models) would cause a state-space explosion for
the DBN [Albrecht et ai, 1998, 12]. Relaxing the bigram
assumption in our approach should have negligible effect
on system speed, as probability updates are done by simple
lookup, regardless of the size of the n-gram. To help alleviate
space issues, we can store only the higher-order n-grams that
we have good estimates for and use a backoff model similar to
that used in our bigram model. We believe that higher-order
n-grams wil l have significant predictive power, and plan to
test their use in future research.

6 Conclusions and Future Work
We have presented our initial work on using statistical corpus-
based techniques for goal recognition. Our recognizer is fast
(linear time), does early and partial prediction, and can be
ported to new domains more easily than many recognizers.
We showed several initial experiments using the goal recog
nizer, in which we achieved high recognition rates with high
accuracy early prediction.

There are several areas of fiiture work that we are inter
ested in. Several were alluded to above: scaling to larger
domains, incorporating hierarchical plans, and using AI plan
ners to generate artificial plan corpora.

In addition, we plan to collect a larger human-generated
corpus in the UNIX domain. With more training data, we

USER MODELING 1307

would like to explore using trigram and 4-gram models as
well as more advanced data mining techniques to train the
statistical model.

Finally, as mentioned above, we would like to see how per
formance can be improved by training on a user-specific cor
pus. Similarly, we would like to see how different planners
(say a reactive versus a deliberative planner) predict user be
havior. Perhaps different planners could be used to model
different domains (say domains with time pressure), or even
different personality types.

Acknowledgments
We would like to thank Neal Lesh and Jun Hong for sharing
their data with us. We would also like to thank the anonymous
reviewers for their helpful comments.

This material is based upon work supported by Depart
ment of Education grant no. P200A000306; ONR research
grant no. N00014-01-1-1015; and National Science Founda
tion grant no. E1A-0080124. Any opinions, findings, and
conclusions or recommendations expressed in this material
are those of the authors and do not necessarily reflect the
views of the above-mentioned organizations.

References
[Albrecht et al, 1998] David W. Albrecht, lngrid Zukerman,

and Ann E. Nicholson. Bayesian models for keyhole plan
recognition in an adventure game. User Modeling and
User-Adapted Interaction, 8:5-47, 1998.

[Alexandersson, 1995] Jan Alexandersson. Plan recognition
in VERBMOBIL. In M. Bauer, editor, 1JCA1 95 Work-
shop on The Next Generation of Plan Recognition Sys
tems: Challenges for and Insight from Related Areas of
AI (Working Notes), pages 2-7, Montreal, Canada, 1995.

[A l iensa/ . , 2000] J. Allen, D. Byron, M. Dzikovska,
G. Ferguson, L. Galescu, and A. Stent. An architecture for
a generic dialogue shell. Journal of Natural Language En
gineering special issue on Best Practices in Spoken Lan-
guage Dialogue Systems Engineering, 6(3): 1-16, Decem
ber 2000.

[Appelt and Pollack, 1991] Douglas E. Appelt and Martha E.
Pollack. Weighted abduction for plan ascription. User
Modeling and User-Adapted Interaction, 2:1-25, 1991.

[Bauer, 1994] M.Bauer. Integrating probabilistic reasoning
into plan recognition. In A. Cohn, editor, Proceedings of
the Ilth European Conference on Artificial Intelligence,
pages 620-624, Amsterdam, Netherlands, August 1994.
John Wiley & Sons.

[Carberry, 1990a] Sandra Carberry. Incorporating default
inferences into plan recognition. In Proceedings of the
Eighth National Conference on Artificial Intelligence,
pages 471-478, 1990.

[Carberry, 1990b] Sandra Carberry. Plan Recognition in
Natural Language Dialogue. ACL-MIT Press Series on
Natural Language Processing. MIT Press, 1990.

[Charniak and Goldman, 1993] Eugene Charniak and
Robert P. Goldman. A Bayesian model of plan recogni
tion. Artificial Intelligence, 64(l):53-79, 1993.

[Chu-Carroll and Carberry, 2000] Jennifer Chu-Carroll and
Sandra Carberry. Conflict resolution in collaborative
planning dialogues. International Journal of Human-
Computer Studies, 53(6):969-1015, 2000.

[Goldman et al., 1999] Robert P. Goldman, Christopher W.
Geib, and Christopher A. Miller. A new model of plan
recognition. In Uncertainty in Artificial Intelligence: Pro
ceedings of the Fifteenth Conference (UAI-1999), pages
245-254, San Francisco, CA, 1999. Morgan Kaufmann
Publishers.

[Hong, 2001] Jun Hong. Goal recognition through goal
graph analysis. Journal of Artificial Intelligence Research,
15:1-30,2001.

[Kautz, 1991] Henry Kautz. A formal theory of plan recog
nition and its implementation. In J. Allen, H. Kautz,
R. Pelavin, and J. Tenenberg, editors, Reasoning about
Plans, pages 69-125. Morgan Kaufman, San Mateo, CA,
1991.

[Lesh et ai, 1999] Neal Lesh, Charles Rich, and Candace L.
Sidner. Using plan recognition in human-computer col
laboration. In Proceedings of the Seventh International
Conference on User Modeling, Banff, Canada, June 1999.
Springer-Verlag. Also available as MERL Tech Report
TR-98-23.

[Lesh, 1998] Neal Lesh. Scalable and Adaptive Goal Recog
nition. PhD thesis, University of Washington, 1998.

[Lochbaum, 1998] Karen E. Lochbaum. A collaborative
planning model of intentional structure. Computational
Linguistics, 24(4):525-572, 1998.

[Manning and Schiitze, 1999] Christopher D. Manning and
Hinrich Schiitze. Foundations of Statistical Natural Lan
guage Processing. MIT Press, Cambridge, Massachusetts,
1999.

[Paek and Horvitz, 2000] Tim Paek and Eric Horvitz. Con
versation as action under uncertainty. In Proceedings of
the I6th Conference on Uncertainty in Artificial Intelli
gence (UAI-2000), Stanford, CA, June 2000.

[Pynadath and Wellman, 1995] David. V. Pynadath and
Michael. P. Wellman. Accounting for context in plan
recognition, with application to traffic monitoring. In
Proceedings of the Eleventh Conference on Uncertainty in
Artificial Intelligence, pages 472-481, Montreal, Canada,
1995. Morgan Kaufmann.

[Vilain, 1990] Marc Vilain. Getting serious about parsing
plans: a grammatical analysis of plan recognition. In Pro
ceedings of the Eighth National Conference on Artificial
Intelligence, pages 190-197, 1990.

1308 USER MODELING

