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Abstract 

Goal recognition for dialogue systems needs to be 
fast, make early predictions, and be portable. We 
present initial work which shows that using statisti
cal, corpus-based methods to build goal recognizers 
may be a viable way to meet those needs. Our goal 
recognizer is trained on data from apian corpus and 
then used to determine the agent's most likely goal 
based on that data. The algorithm is linear in the 
number of goals, and performs very well in terms 
of accuracy and early prediction. In addition, it is 
more easily portable to new domains as does not 
require a hand-crafted plan library. 

1 Introduction 
Much work has been done over the years in plan recognition, 
which is the task of inferring an agent's goal and plan based 
on observed actions. Goal recognition is a special case of 
plan recognition, in which only the goal is recognized. 

Goal and plan recognition have been used in a variety of 
applications including intelligent user interfaces [Lesh et al, 
1999], dialogue systems [Carberry, 1990b; Allen et a/., 2000] 
and machine translation [Alexandersson, 1995]. 

We are especially interested in applying goal recognition 
to dialogue systems, in order to aid natural language under
standing and intention recognition. We do not intend to use 
a goal recognizer to directly recognize communicative inten
tions (the goals behind a user's utterance); rather, we intend 
to use it to identify a user's domain goals to quickly help nar
row the search space for more costly intention recognition 
routines (e.g., [Lochbaum, 1998; Chu-Carroll and Carberry, 
2000]). 

This application places several demands on our goal recog
nizer: 

1. Speed: Dialogues happen in real-time, and the system is 
expected to understand a user's utterance and generate a 
response in a short amount of time. 

2. Early/partial prediction: We need accurate goal pre
dictions very early on in the exchange, as the system 
needs this information to better respond to a user's ut
terance. If full recognition is not immediately available, 

the system needs at least partial information to allow it 
to act on the user's utterance. 

3. Portability: We want to be able to rapidly port our dia
logue system to new domains. 

We present initial work in which we use corpus-based 
methods to build a goal recognizer. Our recognizer is fast 
(linear in the number of possible goals), makes early predic
tions, and is easier to port to new domains than many systems, 
as it does not require a hand-crafted domain plan library. 

We first discuss the corpus-based approach we take in goal 
recognition. We then report on initial experiments that we 
have performed and discuss results. Finally, we comment on 
related work and then discuss future directions for our work. 

2 The Corpus-based Approach 
The use of statistical methods, based on corpora, has revo
lutionized the field of Natural Language Processing over the 
past 10+ years. The method is as follows: one uses a corpus 
of data to train a statistical model which is then used to make 
predictions on future data. Seemingly simple methods have 
yielded good results in many areas of NLP.1 

We apply a similar approach to the task of goal recogni
tion. We use a plan corpus (a list of goals and the plans 
an agent executed to achieve them) to train statistical mod
els which can predict an agent's goal based on an observed 
sequence of actions. As we show below, initially work shows 
several possible advantages over previous work on goal and 
plan recognition: recognition is fast (linear in the number of 
goals), robust (can handle unknown actions and plans) and 
does not require a hand-crafted plan library. 

2.1 Recognit ion using N-gram Models 
We define the task of goal recognition as follows: given 
an observed sequence of n actions so far 
(which, for compactness, we wil l represent as find the 
most likely goal G: 
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| Goal# Goal Description Sessions 
[ " " ' 1 Find a file named 'core' 11 

2 Find a file that contains the word 'motivating' and whose name ends in '.tex' 11 
3 Find a machine that has low (<1.0) load; AND determine if Oren Etzioni is 

logged into the machine named chum 5 
4 Compress all large files (> 10,000 bytes) in the Testgrounds subdirectory tree 2 
5 Compress all files in the directory named 'backups' [Don't use *] 3 
6 Find a large file (> 100,000 bytes) that hasn't been changed for over a month 8 
7 Find a file that contains less than 20 words 8 
8 Find a laser printer in Sieg Hall that has an active print job 6 
9 Find a Sun on that has low (<1.0) load; AND determine if Dan Weld is active 

on the machine named chum 2 
10 Find a file named oldpaper in neal/Testgrounds subdirectory 1 
11 Find a file of length 4 in neal/Testgrounds subdirectory 1 
12 See if Dan Weld is logged in to chum 1 

Total 59 j 

Table 1: Goals and their counts in the UNIX corpus 

Since is constant in the argmax, we can drop it: 

(3) 

Using the Chain Rule, we can rewrite this as: 

(4) 
These conditional distributions are very large and difficult 

to estimate, therefore, we make an n-gram assumption, i.e., 
we assume that an action Ai is only dependent on the goal 
G and the j actions preceding it For a unigram 
model, we assume that At is independent of all other actions. 
In this case, our goal recognition equation becomes: 

(5) 

If we assume that Ai is independent of everything but G 
and A , _ I , we get a bigram model: 

(6) 

W e estimate a n d u s i n g a 
plan corpus. Then, for recognition, we first initialize our goal 
probabilities with P(G). For each action we observe, we 
multiply each goal's score by the corresponding conditional 
probability. 

This algorithm has the nice feature of compositionality — 
new observations produce conditional probabilities, which 
are simply multiplied with the previous predictions. This re
sults in computational savings, since updates are linear in the 
number of goals. It also gives us a good model for early pre
diction (as desired for our dialogue system), since the model 
is based on actions observed so far and does not require all 
actions in the plan execution. 

Goal Types 12 
Goal Sessions 59 
Action Types 22 
Total Actions 412 
Average Actions/Goal 7 

Table 2: Statistics for the UNIX corpus 

3 Experiments 
3.1 The Plan Corpus 
We performed several experiments using Lesh's UNIX plan 
corpus [Lesh, 1998]. The corpus was gathered from human 
UNIX users (CS undergraduates) at the University of Wash
ington. Users were given a task in UNIX (a goal), and were 
instructed to solve it using a subset of UNIX commands (no 
pipes, no awk, etc.) The students' commands and results 
were recorded, as well as whether or not they successfully 
accomplished the goal. There were 59 successful goal ses
sions which involved 12 different goals. Table 1 shows the 
individual goals and the number of successful goal sessions 
for each. 

We automatically removed unsuccessful commands, such 
as typos, from each execution. Remaining commands were 
stripped of arguments to a base command type form. This 
means our training set consisted only of action types (such 
as I s , g r e p , etc.), and did not consider flags or arguments. 
We hope to extend our model to incorporate that additional 
information in the future (see below). 

Table 2 shows some relevant statistics from the resulting 
plan corpus. There were 12 possible goals and 22 different 
action types used in the goal sessions. On average, there were 
7 actions per goal session. 

We used cross-validation testing on 56 test cases.2 Because 

2Thc total number of goal sessions was 59, but sessions involving 
goals 10, 11 and 12 were not used as test data, since these were 
the only exemplars of their goals (see Table 1). These cases were 
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of the small size of the UNIX corpus, the training set was 
formed by removing only the test case from the corpus for 
each test case. 

3.2 Evaluation Metrics 
As pointed out by Lesh [Lesh, 1998], there is a lack of agreed-
upon metrics and benchmarks for reporting results for plan 
and goal recognizers. We use the following metrics to report 
our results as they measure the attributes we are seeking for 
a goal recognizer (as described above). A test case is the set 
of actions executed for a goal. The actions are fed one by one 
to the recognizer, which makes predictions after every action. 
Each metric is for a single test case. For reporting multiple 
test cases, the metric is averaged across all cases. 

• Accuracy: The number of correct predictions divided by 
the total number of observed actions. 

• Converged: Whether or not the final prediction was cor
rect (i.e., whether the recognizer finish with the correct 
answer). 

• Convergence point: If the recognizer converged, at 
which point in the input it started giving only the correct 
answer. This is reported as an action number (i.e., after 
observing x actions); it is also reported as a percentage 
of the input according to the following equation: 

Intuitively, this shows how far through the plan execu
tion the recognizer started (exclusively) predicting the 
right goal, with 0% meaning after the first action, and 
100% after the final action. A low percentage indicates 
that the recognizer is making accurate early predictions. 

3.3 Un ig ram model 
For our first experiment, we trained unigram models on the 
data (based on Equation 5). To provide for unseen data, where 
P(At\G) was 0, P(Al\G) was set to be a very small constant. 
This smoothing technique allows goal G to still remain possi
ble, in case other evidence makes it likely, despite the fact that 
action Al was not seen in relation to it in the training data. 

With the unigram model, our recognizer achieved an ac
curacy of 63.1%, with 73.2% of the cases converging. For 
cases which converged, the average point of convergence was 
23.1% through the input, or after observing an average of 2.4 
actions. 

Because a unigram model assumes independence of all ac
tions, it is equivalent to treating actions as an unordered list.3 

This assumption is partly to blame for the relatively low ac
curacy and convergence, since action ordering is important 
in the domain. We attempt to rectify this by using a bigram 
model below. 

It is interesting to note the low point of convergence. This 
shows that, for the tests which did converge, they converged 
fairly quickly, i.e., the recognizer was able to tell fairly 
quickly what the goal was. This quick convergence seems 

still used in training for other test cases, however, and were still 
candidate goals for recognition. 

3This is a list and not a set since actions can be repeated. 

partly due to the fact that some goals (such as goal 8, for ex
ample) were highly correlated with a single command (such 
as l p q in this case), which immediately boosted the proba
bility of the correct goal. 

3.4 B igram model 
In our next experiment, we used a bigram model (based on 
Equation 6), which encodes at least some ordering into the 
actions by considering both the current action and the pre
ceding action. 

We prepend a special s t a r t action to the front of each 
execution, which handles the special case of Equation 6 in 
which n = 1, i.e., when we've only seen one action so far. 
This also encodes information about which actions tend to 
begin executions, which may or may not be correlated to the 
goal. 

For the case where equals 0, i.e., the 
bigram was never seen in conjunction with the goal, we 
use a unigram back-off model which uses the estimation 

As with the unigram model 
above, if P(Ai\G) equals 0, we smooth this with a small con
stant. 

As expected, the bigram model performed much better than 
the unigram model, with an accuracy of 71.7% and with 
83.9% of cases converging. For the tests cases which con
verged, they converged on average 22.3% through the input, 
or after 2.3 actions. 

While accuracy and convergence were markedly better 
than the unigram model, the convergence point only im
proved slightly in the bigram model. However, this was al
ready quite good, and may simply mean that we are approach
ing a limit on how soon the prediction can be made in this 
particular domain. 

As for convergence, it is illustrative to look at a goal-by-
goal breakdown of results. Table 3 shows convergence results 
for each goal type. For the 9 cases which didn't converge, 5 
arc goal 6, which is often misclassified as either goal 1 or 
goal 11. This seems mostly to be due to the fact that these 
three goals are very similar. Goal 1 is to find a file named 
'core\ goal 6 is to find a large file that hasn't been changed 
for over a month, and goal 11 is to find a file of length 4. All 
of these have to do with finding a file with a certain set of 
attributes, and in fact, the command Is can be used to learn 
all of these attributes about a file. Goal sessions for all three 
of these goals mostly consisted of the commands cd and I s . 

3.5 Goal Abstract ions 
In our final experiment, we defined an abstraction hierarchy 
for goal types. The abstract types and goals they encompass 
are shown in Table 4. 

As we discussed above, a dialogue system needs to be able 
to reason quickly, accurately and early about a user's goals 
and intentions. If the user's specific goal cannot be deter
mined, a dialogue system can often use partial information 
in formulating a response to the user. These abstract goal 
classes represent that partial information. If we are unable to 
determine a specific goal, the system can perhaps determine 
what the user's abstract goal is, and this may be enough to 
formulate a response. 
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Goal# Convergence Competitors 
[ 1 10/11(90.9%) 6:1 

2 11/11(100.0%) none 
3 4/5 (80.0%) 9:1 
4 2/2(100.0%) none 
5 2/3 (66.7%) 4:1 
6 3/8 (37.5%) 1:2,11:3 
7 8/8 (100.0%) none 
8 6/6 (100.0%) none 
9 1/2 (50.0%) 3:1 

Table 3: Convergence by goal in the bigram experiment 

Abstract Goal 
Goals which 
Instantiate 

Find a file with attributes 1,2,6,7, 10, 11 
Find a machine with attributes 3,9,12 
Compress files with attributes 4,5 
Find a printer with attributes 8 

Table 4: Abstract goal types 

The probability of an abstract goal is calculated by sim
ply summing the probabilities of each of its children. For this 
experiment, we use the same bigram model as before and per
form an additional summing at each step to calculate the most 
likely abstract goal. 

The recognizer predicted abstract goals very well, with 
91.0% accuracy and 100.0% of the cases converging. The 
average convergence point was 11.6% through the input, or 
after 1.7 actions. Table 5 summarizes the results of all three 
experiments. 

It is important to note that abstract goal recognition does 
not occur in competition to, but rather in conjunction with the 
specific goal recognition. Of course, it is best to recognize 
the specific goal, which our bigram model seemed to do fairly 
well, but we can also recognize the abstract goal more quickly 
and more accurately. And, there may be many cases where 
it wil l be sufficient for the dialogue system to have just the 
abstract goal in order to help the user. 

4 Discussion 
These initial results are encouraging, but there still remain 
significant challenges for scaling up the system to sufficiently 
complex domains. In this section, we discuss our goal recog
nizer in light of the desiderata for dialogue systems we men-

Unigram Bigram 
Abstract 

Goals 
Accuracy 63.1% 71.8% 91.0% 
Converged 73.2% 83.9% 100.0% 
Conv. Point 23.1% 22.3% 11.6% 
Conv. Action# 2.4 2.3 1.7 

Table 5: Results of the experiments on the UNIX corpus 

tioned above. We then discuss several challenges that remain. 

4.1 Desiderata 
Speed Because it involves a simple probability lookup, our 
recognizer is linear in the number of goals (and training it 
is linear in the amount of training data). Speed is a big ad
vantage to this approach. By comparison, logic-based rea
soning recognizers like [Kautz, 1991] are exponential in the 
size of the plan library.4 Several systems [Vilain, 1990; 
Lesh, 1998] improve on this time complexity, but at the ex
pense of expressiveness. 

Early/partial prediction Our recognizer was able to make 
correct predictions 22.3% (2.3 actions) through the input 
with 83.9% overall accuracy, and give correct abstract results 
11.9% (1.7 actions) through the input with 100.0% overall 
accuracy. This early prediction is crucial to our domain of 
dialogue systems. 

Most work does not report how early the recognizer makes 
correct predictions. Lesh [Lesh, 1998] simulates a task-
completion agent, which, upon recognizing the user's goal, 
steps in to complete the task. He reports5 a convergence point 
of 29.9% (after 8.7 actions for an average plan length of 26.8 
actions) for the task of searching for a printer with attributes 
(4 predicates) and a convergence point of 23.1% (after 4.9 
actions for an average plan length of 17.9 actions) for a re
stricted cooking domain, both with 100.0% accuracy because 
Lesh uses a 'strict consistency' approach. For most domains, 
however, (like the full UNIX corpus), it is unclear if it could 
make such early predictions. Because it is based on 'strict 
consistency', a goal hypothesis must become logically im
possible before it can be ruled out. In fact, even in for the 
domains he reports statistics in, the recognizer rarely recog
nizes the user's actual goal exclusively, rather, based on the 
set of possible goals, it tries to recognize a sufficient goal that 
covers all possible goals. As Lesh points out, many domains 
do not lend themselves to the prediction of sufficient goals. 

Portability The portability of our goal recognizer depends 
on the existence of a plan corpus. If a plan corpus exists or 
can be created for the new domain (see section below), all 
we have to do is use it to train models for the new domain.6 

On the other hand, most goal recognizers (e.g., [Vilain, 1990; 
Carberry, 1990a; Kautz, 1991; Charniak and Goldman, 1993; 
Paek and Horvitz, 2000]), require a complete, hand-crafted 
plan library in order to perform recognition, which can re
quire a significant amount of knowledge engineering for each 
domain. 

4Granted, these systems are performing plan recognition and not 
just goal recognition, which makes the comparison unfair. However, 
very little work has been done on goal recognition in its own right, 
so plan recognizers are all we have to compare against. 

5 Lesh reports the average length of plan with and without the 
task-completion agent, which we used to calculate these conver
gence points. 

6Models could also be trained for different individuals within 
a single domain by using a user- (or group-) specific corpus. With 
other approaches, user-specific models have greatly improved recog
nition (e.g., [Lesh, 1998]). 
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Hong's recognizer [Hong, 2001] only requires knowledge 
of plan operators, not the library, but it is unable to make early 
predictions, as it usually does not make end-goal predictions 
until after it has seen the entire executed plan. Lesh [Lesh, 
1998] requires only knowledge of plan operators and domain 
goal predicates. 

4.2 Challenges 
Domain size With only 12 goals and 22 action types, the 
UNIX domain is quite small, and it is unclear whether our 
recognizer would scale to larger domains. One immediate 
fault of our recognizer is that it does not handle parameterized 
goals. Each of the 12 goals above is treated as an atomic 
unit, and not as a goal schema instantiated with parameters. 
One straightforward way to handle parameters would be to 
treat a goal schema as an abstract goal, with each possible set 
of parameter instantiations as a separate, more specific goal. 
However, this would explode the number of goals and, in the 
case of 2 or more parameters, lead to a multiple-inheritance 
abstraction hierarchy, which is not supported by our current 
abstract goal score calculation model. 

Hierarchical plans Another shortcoming of the current 
recognizer is that, although it handles goal abstraction, it does 
not handle hierarchical plans. Complex plans covering longer 
time-scales are less likely to be identifiable from a few ob
servations alone (which tend to reflect more immediate sub-
goals). Ideally, we would want to recognize subgoals for par
tial results, even if we still cannot recognize the high-level 
goal. 

Data collection In some domains (like operating systems), 
it may be possible to collect enough data from users to train a 
recognizer. In most domains, however, it wil l be infeasible to 
collect enough data on users solving goals in order to build ef
fective statistical models. Furthermore, even it this data could 
be collected, the inner structure of the user's hierarchical plan 
would not be explicit from the data (i.e., we can only observe 
the primitive actions, not the subgoal structure that motivates 
the actions). 

As the next step in our research, we plan to explore the use 
of AI planners to generate artificial plan corpora to be used 
for training. The approach we plan to take combines plan
ning and Monte-Carlo simulation to generate plan corpora. 
The idea is to generate plans stochastically (allowing distri
butions over different aspects of the planning process, such as 
the goals, situations and action decompositions). By combin
ing "context-free" Monte-Carlo simulation techniques with 
richly context-dependent planning algorithms, we hope to ob
tain a corpus that captures likely user behavior. In addition, 
this generated corpus has the big advantage that the subgoal 
hierarchy that generates the observed actions is also known. 

5 Related Work 
As mentioned above, [Vilain, 1990; Lesh, 1998] improve 
speed over [Kautz, 1991], but do so at the expense of expres
siveness. Also, these goal recognizers are typically not able 
to make early predictions, as they are unable to distinguish 

between consistent goals, even if one is more likely than the 
other. 

There are several lines of research which incorporate prob
abilistic reasoning into plan and goal recognition. [Carberry, 
1990a] and [Bauer, 1994] use Dempster-Shafer theory and 
[Charniak and Goldman, 1993], [Pynadath and Wellman, 
1995], and [Paek and Horvitz, 2000] use Belief Networks to 
represent the likelihood of possible plans and goals to be at
tributed to the user. Al l of these methods, however, require a 
complete plan library as well as the assignment of probability 
distributions over the library. 

[Appelt and Pollack, 1991] and [Goldman et ai, 1999] cast 
plan recognition as weighted abduction. However, this also 
requires a plan library and the acquisition of weights for ab-
ductive rules. Abduction is also computationally hard, and 
it is unclear whether such routines would be fast enough for 
complex domains. 

Probably the closest work to ours is [Albrecht et ai, 1998], 
which uses a dynamic belief network (DBN) to do goal 
(quest) recognition in a multi-user dungeon (MUD) domain. 
The belief network takes into account actions, locations, and 
previous quest in recognizing the player's current quest. Sim
ilar to our own work, their model uses bigram independence 
assumptions for both actions and locations. Conditional prob
ability distributions for the network are estimated from a cor
pus of MUD sessions. 

Although our approaches are similar in terms of the use 
of corpora for training, there appear to be a few significant 
differences. Albrecht et ai encode state into their model (in 
the form of location and previous quest), whereas our current 
system considers only actions. Perhaps more significantly, 
they note that the bigram independence assumption is an in
herent part of DBNs, since relaxing it (say, by using trigram 
or 4-gram models) would cause a state-space explosion for 
the DBN [Albrecht et ai, 1998, 12]. Relaxing the bigram 
assumption in our approach should have negligible effect 
on system speed, as probability updates are done by simple 
lookup, regardless of the size of the n-gram. To help alleviate 
space issues, we can store only the higher-order n-grams that 
we have good estimates for and use a backoff model similar to 
that used in our bigram model. We believe that higher-order 
n-grams wil l have significant predictive power, and plan to 
test their use in future research. 

6 Conclusions and Future Work 
We have presented our initial work on using statistical corpus-
based techniques for goal recognition. Our recognizer is fast 
(linear time), does early and partial prediction, and can be 
ported to new domains more easily than many recognizers. 
We showed several initial experiments using the goal recog
nizer, in which we achieved high recognition rates with high 
accuracy early prediction. 

There are several areas of fiiture work that we are inter
ested in. Several were alluded to above: scaling to larger 
domains, incorporating hierarchical plans, and using AI plan
ners to generate artificial plan corpora. 

In addition, we plan to collect a larger human-generated 
corpus in the UNIX domain. With more training data, we 
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would like to explore using trigram and 4-gram models as 
well as more advanced data mining techniques to train the 
statistical model. 

Finally, as mentioned above, we would like to see how per
formance can be improved by training on a user-specific cor
pus. Similarly, we would like to see how different planners 
(say a reactive versus a deliberative planner) predict user be
havior. Perhaps different planners could be used to model 
different domains (say domains with time pressure), or even 
different personality types. 
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