
Factored A* Search for Models over Sequences and Trees

Abstract

We investigate the calculation of A* bounds for
sequence and tree models which are the explicit
intersection of a set of simpler models or can be
bounded by such an intersection. We provide a
natural viewpoint which unifies various instances
of factored A* models for trees and sequences,
some previously known and others novel, includ
ing multiple sequence alignment, weighted finite-
state transducer composition, and lexicalized sta
tistical parsing. The specific case of parsing with
a product of syntactic (PCFG) and semantic (lexi
cal dependency) components is then considered in
detail. We show that this factorization gives a mod
ular lexicalized parser which is simpler than com
parably accurate non-factored models, and which
allows efficient exact inference with large treebank
grammars.

1 Introduction
The primary challenge when using A* search is to find heuris
tic functions that simultaneously are admissible, close to ac
tual completion costs, and efficient to calculate. In this pa
per, we describe a family of tree and sequence models in
which path costs are either defined as or bounded by a com
bination of simpler component models, each of which scores
some projection of the full structure. In such models, we can
exploit the decoupled behavior over each projection to give
sharp heuristics for the combined space. While we focus
on models of trees and sequences within NLP applications,
the approach can be applied more generally (and already has
been, in the case of biological sequence models). Al l the con
crete cases we consider here involve search over spaces which
are equivalent to dynamic programming lattices, though this
detail, too, is somewhat peripheral to the basic ideas.

2 Projection Models for Graphs
The core idea of factored A* search can apply to any graph
search. Assume that G = (N, A) is a very large graph, with
a single source node s and a single goal node g, and that we
wish to use A* search to efficiently find a best path from s to
g. For concreteness, assume also that the score of a path is the

Christopher D. Manning
Department of Computer Science

Stanford University
Stanford, CA 94305-9040
manning@cs.stanford.edu

sum of the scores of the arcs along the path, and that lower
scores are better.1 The particular assumption in this paper
is that the arc scoring function has a special factored form.
Specifically, there exists a set of projections [TT\, .. .7ik] of
nodes (and therefore also arcs and graphs) such that for any
arc (JC, y), its score a is given by:

Whenever the scoring function factors in this way, we have an
immediate recipe for a factored A * bound, which we denote
by h. Specifically, we can bound the shortest path in G from
a node n to the goal g by the sum of the shortest paths inside
each projection (G). Formally, if aG(n, g) is the length of
a shortest path from n to g in a graph G, then:

This follows immediately from the optimality of the projected
paths and the structure of the scoring function. These pro
jections need not be mutually compatible, and therefore the
bound may not be tight. Broadly speaking, the greater the de
gree to which each projection prefers similar paths, the better
the bound will be, and the more efficient our search will be.

3 Projection Models for Sequences
For intuition, we first consider applications to sequence mod
els before extending to the more complex case of tree models.

3.1 Example: Mu l t i p le Sequence Al ignment
A situation which fits this framework perfectly is the align
ment of multiple genome sequences in bioinformatics, where
such multiple sequence alignments (MSAs) are standardly
evaluated by sum-of-pairs scoring [Durbin et al., 1998]. MSA
is a generalization of the longest-common-subsequence prob
lem, in which one is given sequences like those in figure la,
and asked to produce pointwise alignments. Alignments of
d sequences consist of t vertical timeslices which
specify, for each sequence, either a successive element of the
sequence or a gap (-), and are such that if the gaps are re
moved, the rows contain the original sequences. The score
of a timeslice is the sum of the scores of each of the pairs

1 We will talk about minimum sums, but other semirings work as
well, specifically maximum products.

1246 SEARCH

Dan Klein
Department of Computer Science

Stanford University
Stanford, CA 94305-9040

klein@cs.stanford.edu

Figure 1: An example of a multiple sequence alignment, (a) The
original sequences, (b) A multiple alignment with one timeslice dis
tinguished, (c) The sum-of-pairs scoring function for that timeslice.

in that slice (where each pair of symbols is assigned some
experimental goodness value).

The well-known dynamic program for calculating opti
mal multiple alignments involves a lattice of position nodes

which specify an index along each sequence
[Durbin et ai, 1998]. When each node is visited, each of
its successors (where each position is either in
cremented or not) are relaxed with the best score through p
combined with the score of the timeslice that the change from
p to p' represents. These nodes form a lattice of size
where n is the maximum length of the sequences. This be
comes extremely inefficient as k grows.

The specific following idea has been used before ([Ikeda
and lmai, 1994] is tht earliest reference we could find) and
it has been worked on recently ([Yoshizumi et al, 2000] in
ter alia), though perhaps it has not received the attention it
deserves in the bioinformatics literature. We present it here
because (1) it is a good example that can be cast into our
framework and (2) it gives a good starting intuition for the
novel cases below. Since the score of an arc (timeslice) is a
sum of pairwise goodness scores, we can define a set of
projections, one onto each pair of indices Under
a node will project to its a and b indices,
It is easy to see that the optimal path in this projection is just
the optimal 2-way alignment of the portions of sequences a
and b which are to the right of the indices i and respec
tively. We can therefore bound the total completion cost of
the A-way alignment from n onward with the sum of the pair-
wise completion costs of the 2-way alignments inside each
projection.

Figure 2 shows some experimental speed-ups given by this
method, compared to exhaustive search. We took several
protein sequence groups from [McClure et ai, 1994], and,
for each set, we aligned as large a subset of each group as
was possible using uniform-cost search with 1GB of mem
ory. The left four runs show the cost (in nodes visited) of
aligning these subsets with both uniform-cost search and A*
search. In the right four runs, we added another sequence
to the subsets and solved the multiple alignment using only
the A* search. The A* savings are substantial, usually pro
viding several orders of magnitude over uniform-cost search,
and many orders of magnitude over the exhaustive dynamic
programming approach. This verifies previous findings, and

2Note that the DP was never run - it would not have fit in memory
- but it is easy to calculate the size of the lattice. There are also
subtleties in running the uniform-cost search since the score of a
timeslice can be negative (we add in a worst possible negative score).

Figure 2: Effectiveness of the factored A* bound for the multiple
alignment of several sequence sets. Numbers in the data set names
give the number of sequences being aligned. Note the log scale:
for example, on glob-7 the A* search is over a trillion times more
efficient than exhaustive search.

shows that factored A* bounds can be highly effective.
One potential worry with A* search is that the cost of com

puting heuristics can be substantial. In this case, the 0(k2)
pairwise alignments could be calculated very efficiently; in
our experiments this pre-search phase took up much less than
1% of the total time.

3.2 Example: Fini te State Transducers
We briefly describe another potential application of factored
A* search for sequence models: the intersection of weighted
finite-state transducers (WFSTs).3 WFSTs are probabilistic
mappings between sequences in one alphabet to sequences
in another, for example a transducer might map an input of
written text to an output of that text's pronunciation as a
phoneme sequence. Intersections of WFSTs have been ap
plied to various tasks in speech and NLP [Mohri, 1997],
such as text-to-speech, and, most famously in the NLP lit
erature, modeling morphophonology [Kaplan and Kay, 1994;
Albro, 2000]. In these cases, each transducer constrains some
small portion of the overall output sequence. The case of find
ing the most likely intersected output of a set of WFSTs (A/,}
for an input sequence involves the following:

1. For each A/,, create the projection of the full output
space O onto Mt's output space (note that this can be
the identity projection).4

2.

3.
While transduction intersection fits cleanly into the fac

tored framework, the primary utility of transducers lies in
their composition, not their intersection [Mohri, 1997]. In
this case, transducers are chained together, with the output
of one serving as the input to the next. In this case, it is
worth switching from talk of summed distances to talk of
multiplied probabilities. Say we have two transducers,
which gives a distribution from sequences to se
quences X, and which gives from X to O.

3 WFSTs are equivalent to HMMs which have emission weights
assigned to their transitions (not states) and which may have epsilon
transitions.

4For simplicity, we assume all history relevant to any transducer
is encoded into the state space O.

SEARCH 1247

Figure 4: Two representations of a parse: (a) a tree, (b) a path in the
edge hypergraph.

We then wish to answer questions about their composed be
havior. For example, we might want to find the output o
which maximizes according to this model. The com
mon Viterbi approximation is to settle for the o from the
pair (0, x) which maximizes This problem would
fit neatly into the factored framework if the (usually false)
conditional independence where
true - in fact it would then be WFST intersection. How
ever, something close to this does trivially hold:

Given this, we can define another model
R is not a proper probabilistic

model - it might well assign probability one to every trans
duction - but its intersection with does upper-bound
the actual composed model. Hence these two projections pro
vide a factored bound for a non-factored model, with the prac
tical utility of this bound depending on how tightly
typically bounds

4 Projection Models for Trees
Search in the case of trees is not over standard directed
graphs, but over a certain kind of directed hypergraph in
which arcs can have multiple sources (but have a single tar
get). This is because multiple sub-trees are needed to form a
larger tree.5 Figure 4 shows a fragment of such a hypergraph
for a small parse tree (note that all the lines going to one ar
rowhead represent a single hyperarc). We don't give the full
definitions of hypergraph search here (see [Gallo et al., 1993]
for details), but the basic idea is that one cannot traverse an
arc until all its source nodes have been visited. In the parse
case, for example, we cannot build a sentence node until we
build both a noun phrase node and an (adjacent) verb phrase
node. The nodes in this graph arc identified by a grammar

5These directed B-hypergraphs model what has been explored as
AND/OR trees in AI.

symbol, along with the region of the input it spans. The goal
node is then a parse of the root symbol over the entire in
put. (Ilyper)paths embody trees, and the score of a path is
the combination of the scores of the arcs in the tree. One fine
point is that, while a standard path from a source s to a goal
g through a node // breaks up into two smaller paths (.v to n
and n to g), in the tree case there will be an inside path and
an outside path, as shown in the right of figure 5. In general,
then, the completion structures that represent paths to the goal
(marked by in the figure) are specified not only by a node n
and goal g, but also by the original source .v.

With this modification, the recipe for the factored A*
bound is now:

Next, we present a concrete projection model for scoring lex-
icalized trees, and construct an A* parser using the associated
factored A* bound.

Generative models for parsing natural language typically
model one of the kinds of structures shown in figure 3. While
word-free syntactic configurations like those embodied by
phrase structure trees (figure 3a) are good at capturing the
broad linear syntax of a language [Charniak, 1996], word-
to-word affinities like those embodied by lexical dependency
trees (figure 3b) have been shown to be important in resolv
ing difficult ambiguities [Hindle and Rooth, 1993]. Since
both kinds of information are relevant to parsing, the trend
has been to model lexicalized phrase structure trees like fig
ure 3c.

In our current framework, it is natural to think of a lexi
calizcd tree as a pair /, = (T, D) of a phrase structure tree
T and a dependency tree D. In this view, generative mod
els over lexicalized trees, of the sort standard in lexicalized
PCFG parsing [Collins, 1999; Charniak, 2000], can be re
garded as assigning mass P(T, D) to such pairs. In the stan
dard approach, one builds a joint model over P(T, D), and,
for a given word sequence own, one searches for the maxi
mum posterior parse:

Since is a constant, one operationally searches instead
for the maximizer of P(T, D, w).

The naive way to do this is an dynamic program
(often called a tabular parser or chart parser) that works as
follows. The core declarative object is an edge, such as

which encapsulates all parses of the span
which are labeled with grammar symbol X and are headed by
word Edges correspond to the nodes in the

1248 SEARCH

1. Extract the PCFG projection and set up the PCFG parser.
2. Use the PCFG parser to find projection scores for each edge.
3. Extract the dependency projection and set up the dependency parser.
4. Use the dependency parser to find projection scores for each edge.
5. Combine PCFG and dependency projections into the full model.
6. Form the factored A* estimate
7. Use the combined parser, with h(s, e, g) as an A* estimate of

Figure 5: The top-level algorithm (left) and an illustration of how paths decompose in the parsing hypergraph (right).

parsing hypergraph. Two edges and
can be combined whenever they are contiguous (the right
one starts where the left one ends) and the grammar per
mits the combination. For example, if there were a rewrite

those two edges would combine to
form [Z , z\ i, A] , and that combination would be scored by
some jo int model over the word and symbol configuration:

These weighted combinations are the arcs
in the hypergraph.

A natural projection of a lexicalized tree L is onto its com
ponents T and D (though, to our knowledge, this projec
tion has not been exploited previously). In this case, the
score for the combination above would be

This kind of projected model offers two primary benefits.
First, since we are building component models over much
simpler projections, they can be designed, engineered, and
tested modularly, and easily. To underscore this point, we
built three PCFG models of P(T) and two lexical dependency
models of P(T). In section 4.2, we discuss the accuracy of
these models, both alone and in combination.

Second, our A* heuristic w i l l be loose only to the degree
that the two models prefer different structures. Therefore, the
combined search only needs to figure out how to optimally
reconcile these differences, not explore the entire space of
legal structures. Figure 6 shows the amount of work done
in the uniform-cost case versus the A* case. Clearly, the
uniform-cost version of the parser is dramatically less ef
ficient; by sentence length 15 it extracts over 800K edges,
while even at length 40 the A* heuristics are so effective that
only around 2K edges are extracted. At length 10, the av
erage number is less than 80, and the fraction of edges not
suppressed is better than 1/1 OK (and it improves as sentence

6Most models, including ours, wil l also mention distance; wc
ignore this for now.

7As a probabilistic model, this formulation is mass deficient, as
signing mass to pairs which are incompatible, either because they
do not generate the same terminal string or do not embody compat
ible bracketings. Therefore, the total mass assigned to valid struc
tures wil l be less than one. We could imagine fixing this by renor-
malizing. In particular, this situation fits into the product-of-experts
framework [Hinton, 2000], with one semantic expert and one syn
tactic expert that must agree on a single structure. However, since
we are presently only interested in finding most-likely parses, no
global renormalization constants need to be calculated. In any case,
the question of mass deficiency impacts only parameter estimation,
not inference, which is our focus here.

length increases).8 The A* estimates were so effective that
even with our object-heavy Java implementation of the com
bined parser, total parse time was dominated by the init ial,
array-based PCFG phase (see figure 6b).9

4.1 Speci f ic P r o j e c t i o n M o d e l s f o r P a r s i n g

To test our factored parser, we built several component mod
els, which were intended to show the modularity of the ap
proach. We merely sketch the individual models here; more
details can be found in [Klein and Manning, 2003]. For P{ 7) ,
we built successively more accurate PCFGs. The simplest,
PCFG-BASIC, used the raw treebank grammar, wi th nontermi
nals and rewrites taken directly f rom the training trees [Char-
niak, 1996]. In this model, nodes rewrite atomically, in a
top-down manner, in only the ways observed in the training
data. For improved models of P(T), tree nodes' labels were
annotated wi th various contextual markers. In P C F G - P A , each
node was marked with its parent's label as in LJohnson, 1998].
It is now well known that such annotation improves the accu
racy of PCFG parsing by weakening the PCFG independence
assumptions. For example, the NP in figure 3a would actu
ally have been labeled NP*S. Since the counts were not frag
mented by head word or head tag, we were able to directly
use the M L E parameters, without smoothing.10 The best
PCFG model, P C F G - L I N G , involved selective parent split
t ing, order-2 rule markovization (similar to [Coll ins, 1999;
Charniak, 2000]), and linguistically-derived feature splits.

8Note that the uniform-cost parser does enough work to exploit
the shared structure of the dynamic program, and therefore edge
counts appear to grow polynomially. However, the A* parser does
so little work that there is minimal structure-sharing. Its edge counts
therefore appear to grow exponentially over these sentence lengths,
just like a non-dynamic-programming parser's would. With much
longer sentences, or a less efficient estimate, the polynomial behav
ior would reappear.

9Thcre are other ways of speeding up lexicalized parsing with
out sacrificing search optimally. Eisner and Satta [Eisner and Satta,
1999] propose a clever modification which separates this pro
cess into two steps by introducing an intermediate object. However,
even the formulation is impractical for exhaustive parsing
with broad-coverage, lexicalized treebank grammars. The essential
reason is that the non-terminal set is just too large. Wc did imple
ment a version of this parser using their formulation, but, be
cause of the effectiveness of the estimate, it was only marginally
faster; as figure 6b shows, the combined search time is very small.

10This is not to say that smoothing would not improve perfor
mance, but to underscore how the factored model encounters less
sparsity problems than a joint model.

SEARCH 1249

Models of P(D) were lexical dependency models, which
deal with part-of-speech tagged words: pairs First
the head of a constituent is generated, then succes
sive right dependents until a STOP token is gen
erated, then successive left dependents until is generated
again. For example, in figure 3, first wc choose fell-VBD
as the head of the sentence. Then, we generate in-IN to the
right, which then generates September-UN to the right, which
generates on both sides. We then return to I / I - IN, gener
ate to the right, and so on. The dependency models re
quired smoothing, as the word-word dependency data is very
sparse. In our basic model, DBP-BASIC, we generate a de
pendent conditioned on the head and direction, requiring a
model of This was estimated using a
back-off model which interpolated the sparse bilexical counts
with the denser but less specific counts given by ignoring
the head word or by first generating the dependent tag and
then generating the dependent word given only the dependent
tag. The interpolation parameters were estimated on held-out
data. The resulting model can thus capture classical bilexi
cal selection, such as the affinity between payrolls and fell, as
well as monolexical preferences, such as the tendency for of
to modify nouns. In the enhanced dependency model, DEP-
VAL, we condition not only on direction, but also on distance
and valence. Note that this is (intentionally) very similar to
the generative model of [Collins, 1999] in broad structure, but
substantially less complex.

4.2 Parsing Performance

In this section, we describe our various projection models and
test their empirical performance. There are two ways to mea
sure the accuracy of the parses produced by our system. First,
the phrase structure of the PCFG and the phrase structure pro
jection of the combination parsers can be compared to the
treebank parses. The parsing measures standardly used for
this task are labeled precision and recall.11 We also report
F i , the harmonic mean of these two quantities. Second, for
the dependency and combination parsers, we can score the
dependency structures. A dependency structure D is viewed
as a set of head-dependent pairs (h, d), with an extra depen
dency {root, x) where root is a special symbol and x is the
head of the sentence. Although the dependency model gen-
crates part-of-speech tags as well, these are ignored for de
pendency accuracy. Punctuation is not scored. Since all de
pendency structures over n non-punctuation terminals con
tain n dependencies (n — 1 plus the root dependency), we
report only accuracy, which is identical to both precision and
recall. It should be stressed that the "correct" dependency
structures, though generally correct, are generated from the
PCFG structures by linguistically motivated, but automatic,
and only heuristic rules.

Figure 7 shows the relevant scores for the various PCFG
and dependency parsers alone. The valence model increases
the dependency model's accuracy from 76.3% to 85.0%, and
each successive enhancement improves the Fj of the PCFG
models, from 72.7% to 77.7% to 82.9%. The combination
parser's performance is given in figure 8. As each individ
ual model is improved, the combination F\ is also improved,
from 79.1% with the pair of basic models to 86.7% with the
pair of top models. The dependency accuracy also goes up:
from 87.2% to 91.0%. Note, however, that even the pair of ba
sic models has a combined dependency accuracy higher than
the enhanced dependency model alone, and the top three have
combined F] better than the best PCFG model alone. For the
top pair, figure 6c illustrates the relative F1 of the combina
tion parser to the PCFG component alone, showing the unsur
prising trend that the addition of the dependency model helps

11A tree T is viewed as a set of constituents c(T). Constituents
in the correct and the proposed tree must have the same start, end,
and label to be considered identical. For this measure, the lexical
heads of nodes are irrelevant. The actual measures used are detailed
in [Magerman, 1995], and involve minor normalizations like the re
moval of punctuation in the comparison.

1250 SEARCH

more for longer sentences, which, on average, contain more
attachment ambiguity. The top F1 of 86.7% is greater than
that of the lexicalized parsers presented in [Magerman, 1995;
Coll ins, 1996], but less than that of the newer, more com
plex, parsers presented in [Charniak, 2000; Coll ins, 1999],
which reach as high as 9 0 . 1 % F1. However, it is worth point
ing out that these higher-accuracy parsers incorporate many
finely wrought enhancements which could presumably be ap
plied to benefit our individual models.12

4.3 F a c t o r e d B o u n d s f o r N o n - P r o j e c t i o n M o d e l s

Arbitrary tree models w i l l not be factored projection models.
For example, whi le our parsing model was expressly designed
so that to our knowledge no other
model over lexicalized trees wi th this decomposition has been
proposed. Nonetheless, non-factored models can stil l have
factored bounds. Given any model P(A, B), we can imagine
bounds R(A) and R(B) that obey:

Trivial ly, R(A) = = 1 w i l l do. To
get a non-tr ivial bound, consider a jo in t (local) model

of lexicalized tree rewrites. Early lexical
ized parsing work [Charniak, 1997] used models of ex
actly this form. We can use the chain rule to write

Then, we
can form

This technique allows one to use
factored A* search for non-factored models, though one
might reasonably expect such bounds to be much less sharp
for non-factored models than for factored models. A particu
lar application of this method for future work would be the ex
act parsing of the models in [Charniak, 1996; Coll ins, 1999;
Charniak, 2000], as the details of their estimation suggest that
their word dependency and phrase structure aspects would be
approximately factorizable.

5 Conclusion
Not all models w i l l factor, nor w i l l all models which fac
tor necessarily have tight factored bounds (for example M S A
wi th many sequences or parsing if the component models do
not prefer similar structures). However, when we can design
factored models or find good factored bounds, the method of
factored A* search has proven very effective. For the M S A
problem, A* methods allow exact alignment of up to 9 pro
tein sequences (though 5-6 is more typical) of length 100-
300, when even three-way exhaustive alignment can easily
exhaust memory. For the parsing problem, we have presented
here the first optimal lexicalized parser which can exactly
parse sentences of reasonable length using large real-world
Penn Treebank grammars. The projected models can be de
signed and improved modularly, w i th improvements to each
model raising the combined accuracy. Finally, we hope that
this framework can be profitably used on the other sequence

12For example, the dependency distance function of [Collins,
1999] registers punctuation and verb counts, and both smooth the
PCFG production probabilities.

models we outl ined, and on any large space which can nat
urally be viewed as a composit ion of (possibly overlapping)
projections.

Acknowledgements
We would like to thank L i l l ian Lee, Fernando Pereira, and
Dan Melamed for advice and discussion about this work.

References
[Albro, 2000] Daniel M. Albro. Taking primitive optimality theory

beyond the finite state. In Proceedings of the Special Interest
Croup in Computational Phonology, 2000.

[Charniak, 1996] Eugene Charniak. Tree-bank grammars. \r\AAAI
13, pages 1031 1036, 1996.

[Charniak, 1997] Eugene Charniak. Statistical parsing with a
context-free grammar and word statistics. In AAAf 14, pages
598-603, 1997.

[Charniak, 2000] Eugene Charniak. A maximum-entropy-inspired
parser. In NAACL 1, pages 132-139, 2000.

[Collins, 1996] Michael John Collins. A new statistical parser
based on bigram lexical dependencies. In ACL 34, pages 184-
191, 1996.

[Collins, 1999] Michael Collins. Head-Driven Statistical Models
for Natural Language Parsing. PhD thesis, Univ. of Pennsylva
nia, 1999.

[Durbin et ai, 1998] R. Durbin, S. Eddy, A. Krogh, and G. Mitchi-
son. Biological Sequence Analysis: Probabilistic Models of Pro
teins and Nucleic Acids. Cambridge University Press, 1998.

[Eisner and Satta, 1999] Jason Eisner and Giorgio Satta. Efficient
parsing for bilexical context-free grammars and head-automaton
grammars In ACL 37, pages 457 464, 1999.

[Ga l l ona i , 1993] G. Gallo, G. Longo, S. Pallottino, and Sang
Nguyen. Directed hypergraphs and applications. Discrete Ap
plied Mathematics, 42:177-201, 1993.

[Hindle and Rooth, 1993] Donald Hindle and Mats Rooth. Struc
tural ambiguity and lexical relations. Computational Linguistics,
19(1):103-120, 1993.

[Hinton, 2000] Geoffrey E. Hinton. Training products of experts by
minimizing contrastive divergence. Technical Report GCNU TR
2000-004, GCNU, University College London, 2000.

[Ikeda and Imai, 1994] T Ikeda and T Imai. Fast A* algorithms for
multiple sequence alignment. In Genome Informatics Workshop
V, pages 90-99, 1994.

[Johnson, 1998] Mark Johnson. PCFG models of linguistic tree
representations. Computational Linguistics, 24:613-632, 1998.

[Kaplan and Kay, 1994] Ron Kaplan and Martin Kay. Regular
model of phonological rule systems. Computational Linguistics,
20:331-378, 1994.

[Klein and Manning, 2003] Dan Klein and Christopher D. Man
ning. Fast exact inference with a factored model for natural lan
guage parsing. In NIPS, volume 15. MIT Press, 2003.

[Magerman, 1995] David M. Magerman. Statistical decision-tree
models for parsing. In ACL 33, pages 276-283, 1995.

[McClure et al., 1994] M.A McClure, T.K. Vasi, and W.M. Fitch.
Comparative analysis of multiple protein-sequence alignment
methods. Molecular Biology and Evolution, 11:571 592, 1994.

[Mohri, 1997] Mehryar Mohri. Finite-state transducers in language
and speech processing. Computational Linguistics, 23(4):269-
311, 1997.

[Yoshizumi et ai, 2000] Takayuki Yoshizumi, Teruhisa Miura, and
Torn Ishida. A* with partial expansion for large branching factor
problems. In AAAI/IAAI, pages 923-929, 2000.

SEARCH 1251

