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Abstract 

We study two apparently different, but formally 
similar, scheduling problems. The first problem in
volves contract algorithms, which can trade off run 
time for solution quality, as long as the amount of 
available run time is known in advance. The prob
lem is to schedule contract algorithms to run on par
allel processors, under the condition that an inter
ruption can occur at any time, and upon interruption 
a solution to any one of a number of problems can 
be requested. Schedules are compared in terms of 
acceleration ratio, which is a worst-case measure of 
efficiency. We provide a schedule and prove its op-
timality among a particular class of schedules. Our 
second problem involves multiple robots searching 
for a goal on one of multiple rays. Search strate
gics are compared in terms of time-competitive ra
tio, the ratio of the total search time to the time 
it would take for one robot to traverse directly to 
the goal. We demonstrate that search strategies and 
contract schedules are formally equivalent. In addi
tion, for our class of schedules, we derive a formula 
relating the acceleration ratio of a schedule to the 
time-competitive ratio of the corresponding search 
strategy. 

1 Introduction 

In this paper, we demonstrate a connection between two prob
lems that initially seem unrelated. The first involves comput
ing solutions to multiple problems, under the condition that a 
solution to any one of the problems can be requested at any 
time. Challenges of this type arise in the design of intelligent 
user interfaces, information prefetching systems, and medi
cal diagnosis systems. The second problem involves multiple 
robots searching an unknown environment for a goal. Prob
lems of this nature arise in robotics and space exploration. 
In the following paragraphs we describe the problems, along 
with our contribution, in more detail. 

The first problem concerns anytime algorithms [Horvitz, 
1987; Dean and Boddy, 1988; Russell and Zilberstein, 1991], 
which produce solutions of different qualities depending on 
available computation time. More specifically, we focus on 

contract algorithms, which are anytime algorithms that re
quire the deadline as input prior to the start of execution. With 
contract algorithms, no assumptions can be made about re
sults produced before the given deadline. This is in contrast to 
the familiar interruptible algorithms, which can be queried at 
any point during execution. Although less flexible than inter-
ruptible algorithms, contract algorithms typically use simpler 
data structures, making them easier to implement and main
tain. An example in Al is game playing programs based on 
heuristic search. For these programs, the allowed deliberation 
time is usually known in advance, and is used to set internal 
parameters. Another example is planning algorithms that per
form state-space abstraction. With these algorithms, the run 
time can be controlled by setting the abstraction level at the 
start of execution. 

Our problem can be stated as follows. We are given n 
instances of an optimization problem, along with a contract 
algorithm for the problem, and we have an m-processor ma
chine on which to run the algorithm. An interruption can oc
cur at any time, and a solution can be requested for any one 
of the problem instances. Given these constraints, we want a 
good general strategy for scheduling runs of the algorithm on 
the processors. 

In the case of one problem instance and one processor, 
Russell and Zilberstein [1991] suggested iteratively doubling 
the contract lengths. With this schedule, for any interruption 
time t, the last contract completed ( i f one exists) is always 
of length at least t /4 . This factor of four is the acceleration 
ratio of the schedule, a worst-case measure of its efficiency. 
Zilberstein et al. [1999] showed that no schedule can achieve 
an acceleration ratio less than four. 

The generalization to multiple problem instances has been 
considered [Zilberstein et al., 1999], as has the generaliza
tion to scheduling contracts on parallel processors [Bernstein 
et al, 2002]. Optimal acceleration ratios have been derived in 
both cases. The more general multi-processor, multi-instance 
case has not previously been studied. In this paper, we pro
vide a schedule for this case, and we prove that this schedule 
is optimal among a restricted, though still interesting, class of 
schedules. The optimality proof is a nontrivial extension of 
the previous proofs, and contains as a lemma a generalization 
of the monotone convergence principle. 

This work is most closely related to Horvitz's continual 
computation framework [Horvitz, 2001]. In his framework, 
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as in ours, computation is performed with limited knowledge 
about the deadline or desired result. However, the assump
tions underlying the two frameworks are different. In the con
tinual computation framework, the limited knowledge comes 
in the form of probability distributions. In contrast, our use of 
acceleration ratio does not require probabilistic information. 
Furthermore, contract algorithms and parallel processing are 
both not considered in continual computation. 

Our contract scheduling results can be directly applied to 
a robot search problem. In this problem, m robots search for 
a goal that is located on one of p intersecting rays. The aim 
is to minimize the time-competitive ratio, which is the worst-
case ratio of the total time spent searching to the time for a 
single robot to traverse directly to the goal. The optimal ratio 
for the one-robot case was derived previously [Baeza-Yates 
etal, 1993]. 

We address the general multi-robot case, for which search 
strategies are formally equivalent to contract schedules. For 
our class of schedules, we derive a formula relating the accel
eration ratio of a schedule to the time-competitive ratio of the 
corresponding search strategy. The optimal time-competitive 
ratio is derived as a corollary. 

This work is the first to draw a precise connection between 
contract scheduling and multi-robot search, and the first to 
provide nontrivial results for the multi-robot case. Kao 
al [1998] studied the multi-robot problem, but used a dif
ferent performance measure. They minimized the distance-
competitive ratio, which is the worst-case ratio of the total 
distance traveled during the search to the distance between 
the origin and the goal. 

2 Scheduling a Contract Algorithm 
2.1 Problem Descript ion 
An anytime algorithm A, when applied to an optimization 
problem instance i for time t, produces a solution of some 
real-valued quality The function QA is called A's 
performance profile. In general, one does not know an al
gorithm's performance profile. Nevertheless the concept of 
a performance profile is useful in reasoning about anytime 
algorithms. We assume that the performance profile of an 
anytime algorithm on any problem instance is defined for all 

and is a nondecreasing function oft. 
The distinctions among different types of anytime algo

rithms arise from different assumptions about which param
eters are known prior to execution. When both t and i are 
known in advance, the algorithm is called contract. When 
only i is known in advance, the algorithm is called interrupt-
ible. For the case where both are unknown, we will say that 
the algorithm is multi-interruptible, because it acts like mul
tiple interruptible algorithms running in parallel. 

Suppose we have a contract algorithm A, which we can run 
on a machine with m processors. At some unknown deadline, 
a solution to one of n problem instances will be requested. 
This setup requires a multi-interruptible algorithm, which we 
can create by scheduling contracts in such a way that progress 
is continually made on each problem instance. Upon inter
ruption and query, the result returned is that of the longest 
completed contract dedicated to the desired problem instance. 

Note that although G depends on A", we omit the subscript. 
Dependence on the schedule will be made implicit through
out the paper for ease of notation. For every schedule, the 
index ordering must correspond to the completion time or
dering. Furthermore, no two contracts may complete at the 
exact same time. The formal statement of these two condi
tions is that is equivalent to for all k, I. Also, 
a schedule must have for This 
ensures that after time a solution is available for 
each problem instance. 

To compare schedules, we use a worst-case metric called 
acceleration ratio. The acceleration ratio tells us how much 
faster our constructed algorithm would need to run in order to 
ensure the same quality as if the query time and problem were 
known, and a dedicated processor was assigned to producing 
a result. Intuitively, it measures how well a schedule handles 
the uncertainty about the problem instance and interruption 
time. 

Before formally defining acceleration ratio, we must state 
some more technical details of the problem and present some 
more definitions. First, we take the view that when a contract 
completes at time t, its solution is available to be returned 
upon interruption at any time r t. Second, we assume that 
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Figure 1: Scheduling a contract algorithm on three processors 
to create a two-problem multi-interruptible algorithm. 



In the next section, we provide a schedule that is optimal 
within a restricted, though still interesting, class of schedules. 
We state below in precise terms the properties that delineate 
the class of schedules under consideration. Schedules having 
the three properties below will be called cyclic schedules. 

The first property states that problem instances arc com
pleted in a round-robin manner. This seems sensible, as the 
desired problem instance is unknown. However, we cannot 
yet prove that for every non-problem-round-robin schedule, 
there is an equally good problem-round-robin schedule. 

Property 1 (Problem-round-robin) mod for all 
k. 

The next property states that the lengths of contracts for 
each problem instance must increase with time. Given that 
performance profiles are nondecrcasing, it seems that it would 
never be beneficial to use a schedule that doesn't satisfy this 
property. However, as with the first property, we cannot 
yet prove this. One difficulty lies in having to satisfy the 
problem-round-robin property mentioned above. We would 
like to be able to "remove" useless contracts from a schedule, 
but we have not found a way to do this while guaranteeing 
that the resulting schedule will be problem-round-robin. 

Property 2 (Length-increasing) For all and 
then  

The final property states that processors return results in a 
round-robin manner. This property does not play a part in our 
lower bound derivation, but it is used in drawing a connection 
to the robot search problem. We introduce it at this point only 
for ease of exposition. 

Property 3 (Processor-round-robin) mod m for 
all k. 

We can prove a lemma that allows us to cast acceleration 
ratio in simpler terms when we are considering only cyclic 
schedules. In the proof, the following facts arc established: 
acceleration ratio can be stated without reference to perfor
mance profiles; the only interruption times that need to be 
considered are completion times; and upon interruption, the 
result returned is from the contract with index exactly n less 
than index of the current contract. 

To show that equality holds, assume the contrary and derive 
a contradiction with the fact that is defined as the 
smallest constant enforcing the inequality between 
and  

Next we show that 

For each is left-continuous everywhere and piece-
wise constant, with the pieces delimited by time points 
So for all is left-continuous and piecewise linear 
and increasing. Thus, the local maxima of occur at 
the points Gk; no other times may play a role in the supre-
mum. 

Finally, 

follows from the problem-round-robin and length-increasing 
properties, and the fact that no two contracts can finish at the 
exact same time.  

To conclude this section, we define the minimal accelera
tion ratio for m processors and ?/ problems to be 

where the infimum is taken over the set of cyclic schedules. 
In the following sections, we provide tight bounds for this 
ratio. 

2.2 An Exponential Schedule 
A simple approach to scheduling contract algorithms is to 
have the contract lengths increase exponentially. We consider 
the schedule 

It is easily verified that this is a cyclic schedule. The follow
ing theorem gives an expression for this schedule's accelera
tion ratio. 
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Theorem 1 The acceleration ratio for the exponential sched
ule is 

There are a few things to note about the ratio we just de
rived. As the number of processors approaches infinity, it 
tends to one. This is intuitive; by adding processors, we can 
get arbitrarily close to the omniscient algorithm. As the num
ber of problems approaches infinity, the ratio tends to infinity. 
Finally, the ratio depends only on the ratio of problems to pro
cessors, and not on the absolute numbers. 

We turn now to showing that no cyclic schedule can 
achieve a smaller ratio. 

2.3 Lower Bound 
We define a function to represent the sum of the lengths of all 
the contracts finishing no later than contract k finishes: 

We can derive an inequality involving only the acceleration 
ratio and { # * } . 

Lemma 2 For all cyclic schedules X and all k, 
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Combining this inequality with Theorem 1, we get the desired 
result.  

3 Multi-Robot Search on Rays 
The results from the previous section can be directly ap
plied to a formally similar problem involving multiple robots 
searching for a goal. The problem is described as follows. 
Initially, m robots stand at the intersection of p rays (with 
m p). The robots, all moving in a continuous fashion and 

Figure 2: The search problem with three robots and five rays. 

at the same speed, search for a goal at an unknown location 
on one of the rays (see Figure 2). The search ends as soon as 
one of the robots finds the goal. Because there are not enough 
robots to cover all of the rays, finding a good search strategy 
is nontrivial. At this level of detail, the search problem may 
seem very different from the contract scheduling problem. 
Below we provide a more precise description of the search 
problem and show how the contract scheduling results can be 
applied. 

A search is an infinite sequence of search extents, or return 
trips departing from the origin. Formally, a search strategy is 
a triple where 

is the robot executing search extent  
is the ray on which search extent takes place, and 
is the length of search extent By adding the same con
ditions as in the contract scheduling case, we get an exact 
correspondence between schedules and search strategies. A 
cyclic search strategy is defined in the same way as a cyclic 
schedule. 

A natural metric for the efficiency of a search strategy is 
the time-competitive ratio, the worst-case ratio of the total 
time spent searching to the time required for a single robot to 
traverse directly to the goal. We assume that the goal is not 
considered discovered until a robot actually moves beyond it. 
We assume also that the location of the goal is such that it 
cannot be found on the first search extent on any of the rays. 
This means that for each ray a, we consider only locations 

Before formally defining time-competitive ratio, we need 
to introduce a new function and explain its use in the defini
tion. Let us define to be the index of the first search ex
tent that goes past point t on ray a. This means that if the goal 
is located at point t on ray a, then it is found during search ex
tent The total search time up through extent is 

(The factor of two results from search extents going 
out and back on rays.) However, since the search ends as soon 
as the goal is found, the last extent does not go to completion, 
and thus we must subtract out This leads us to 
the following formal definition for time-competitive ratio. 
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Definition 2 The time-competitive ratio, 

We can now give a formula for the relationship between 
acceleration ratio and time-competitive ratio for cyclic sched
ules and search strategies. 
Theorem 3 For all cyclic search strategies (schedules) X, 

where X' is the same as X, but with  
Proof: Because of the length-increasing and problem-round-
robin properties, we know that the first search extent to pass 
a point on a ray comes p extents after the last extent on that 
same ray. Formally, we have that for all a and all  

Thus we have  

4 Conclusion 
In this paper, we addressed two apparently different schedul
ing problems, one involving contract algorithms, and the 
other involving robots searching on rays. For the contract 
scheduling problem, we provided a schedule and proved its 
optimality among the class of cyclic schedules. We further 
showed how contract scheduling results can be applied to the 
robot search problem, thus unifying the two problems. 

A natural direction for future research is to study less re
stricted classes of schedules and search strategies. One in
triguing question is whether lower acceleration ratios can be 
achieved with schedules that are not problem-round-robin 
or length-increasing. It would also be interesting to know 
whether the contract scheduling and robot search problems 
have similarities beyond those that result from using cyclic 
schedules and search strategies. 
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where and This equa
tion is a linear nonhomogeneous difference equation [Mick-
ens, 1987]. The behavior of {qk} depends on the roots of the 
characteristic polynomial, 

We know that is bounded below, and since con
verges, is also bounded above. Thus to demonstrate 
convergence, it suffices to show that / has no roots on the 
unit circle. 

Consider the polynomial 

Clearly z = 1 is a root of g but not o f / . To show that / has 
no roots on the unit circle, we wil l show that g has no roots 
on the unit circle other than z = 1. 

We must show that for all then 
then 
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