
Contract Algorithms and Robots on Rays: Unifying Two Scheduling Problems

Daniel S. Bernstein
Dept. of Computer Science
University of Massachusetts

Amherst, MA 01003
bern@cs.umass.edu

Lev Finkelstein
Computer Science Department

Technion—IIT
Haifa 32000, Israel

lev@cs.technion.ac.il

Shlomo Zilberstein
Dept. of Computer Science
University of Massachusetts

Amherst, MA 01003
shlomo@cs.umass.

Abstract

We study two apparently different, but formally
similar, scheduling problems. The first problem in
volves contract algorithms, which can trade off run
time for solution quality, as long as the amount of
available run time is known in advance. The prob
lem is to schedule contract algorithms to run on par
allel processors, under the condition that an inter
ruption can occur at any time, and upon interruption
a solution to any one of a number of problems can
be requested. Schedules are compared in terms of
acceleration ratio, which is a worst-case measure of
efficiency. We provide a schedule and prove its op-
timality among a particular class of schedules. Our
second problem involves multiple robots searching
for a goal on one of multiple rays. Search strate
gics are compared in terms of time-competitive ra
tio, the ratio of the total search time to the time
it would take for one robot to traverse directly to
the goal. We demonstrate that search strategies and
contract schedules are formally equivalent. In addi
tion, for our class of schedules, we derive a formula
relating the acceleration ratio of a schedule to the
time-competitive ratio of the corresponding search
strategy.

1 Introduction

In this paper, we demonstrate a connection between two prob
lems that initially seem unrelated. The first involves comput
ing solutions to multiple problems, under the condition that a
solution to any one of the problems can be requested at any
time. Challenges of this type arise in the design of intelligent
user interfaces, information prefetching systems, and medi
cal diagnosis systems. The second problem involves multiple
robots searching an unknown environment for a goal. Prob
lems of this nature arise in robotics and space exploration.
In the following paragraphs we describe the problems, along
with our contribution, in more detail.

The first problem concerns anytime algorithms [Horvitz,
1987; Dean and Boddy, 1988; Russell and Zilberstein, 1991],
which produce solutions of different qualities depending on
available computation time. More specifically, we focus on

contract algorithms, which are anytime algorithms that re
quire the deadline as input prior to the start of execution. With
contract algorithms, no assumptions can be made about re
sults produced before the given deadline. This is in contrast to
the familiar interruptible algorithms, which can be queried at
any point during execution. Although less flexible than inter-
ruptible algorithms, contract algorithms typically use simpler
data structures, making them easier to implement and main
tain. An example in Al is game playing programs based on
heuristic search. For these programs, the allowed deliberation
time is usually known in advance, and is used to set internal
parameters. Another example is planning algorithms that per
form state-space abstraction. With these algorithms, the run
time can be controlled by setting the abstraction level at the
start of execution.

Our problem can be stated as follows. We are given n
instances of an optimization problem, along with a contract
algorithm for the problem, and we have an m-processor ma
chine on which to run the algorithm. An interruption can oc
cur at any time, and a solution can be requested for any one
of the problem instances. Given these constraints, we want a
good general strategy for scheduling runs of the algorithm on
the processors.

In the case of one problem instance and one processor,
Russell and Zilberstein [1991] suggested iteratively doubling
the contract lengths. With this schedule, for any interruption
time t, the last contract completed (i f one exists) is always
of length at least t /4 . This factor of four is the acceleration
ratio of the schedule, a worst-case measure of its efficiency.
Zilberstein et al. [1999] showed that no schedule can achieve
an acceleration ratio less than four.

The generalization to multiple problem instances has been
considered [Zilberstein et al., 1999], as has the generaliza
tion to scheduling contracts on parallel processors [Bernstein
et al, 2002]. Optimal acceleration ratios have been derived in
both cases. The more general multi-processor, multi-instance
case has not previously been studied. In this paper, we pro
vide a schedule for this case, and we prove that this schedule
is optimal among a restricted, though still interesting, class of
schedules. The optimality proof is a nontrivial extension of
the previous proofs, and contains as a lemma a generalization
of the monotone convergence principle.

This work is most closely related to Horvitz's continual
computation framework [Horvitz, 2001]. In his framework,

SCHEDULING 1211

as in ours, computation is performed with limited knowledge
about the deadline or desired result. However, the assump
tions underlying the two frameworks are different. In the con
tinual computation framework, the limited knowledge comes
in the form of probability distributions. In contrast, our use of
acceleration ratio does not require probabilistic information.
Furthermore, contract algorithms and parallel processing are
both not considered in continual computation.

Our contract scheduling results can be directly applied to
a robot search problem. In this problem, m robots search for
a goal that is located on one of p intersecting rays. The aim
is to minimize the time-competitive ratio, which is the worst-
case ratio of the total time spent searching to the time for a
single robot to traverse directly to the goal. The optimal ratio
for the one-robot case was derived previously [Baeza-Yates
etal, 1993].

We address the general multi-robot case, for which search
strategies are formally equivalent to contract schedules. For
our class of schedules, we derive a formula relating the accel
eration ratio of a schedule to the time-competitive ratio of the
corresponding search strategy. The optimal time-competitive
ratio is derived as a corollary.

This work is the first to draw a precise connection between
contract scheduling and multi-robot search, and the first to
provide nontrivial results for the multi-robot case. Kao
al [1998] studied the multi-robot problem, but used a dif
ferent performance measure. They minimized the distance-
competitive ratio, which is the worst-case ratio of the total
distance traveled during the search to the distance between
the origin and the goal.

2 Scheduling a Contract Algorithm
2.1 Problem Descript ion
An anytime algorithm A, when applied to an optimization
problem instance i for time t, produces a solution of some
real-valued quality The function QA is called A's
performance profile. In general, one does not know an al
gorithm's performance profile. Nevertheless the concept of
a performance profile is useful in reasoning about anytime
algorithms. We assume that the performance profile of an
anytime algorithm on any problem instance is defined for all

and is a nondecreasing function oft.
The distinctions among different types of anytime algo

rithms arise from different assumptions about which param
eters are known prior to execution. When both t and i are
known in advance, the algorithm is called contract. When
only i is known in advance, the algorithm is called interrupt-
ible. For the case where both are unknown, we will say that
the algorithm is multi-interruptible, because it acts like mul
tiple interruptible algorithms running in parallel.

Suppose we have a contract algorithm A, which we can run
on a machine with m processors. At some unknown deadline,
a solution to one of n problem instances will be requested.
This setup requires a multi-interruptible algorithm, which we
can create by scheduling contracts in such a way that progress
is continually made on each problem instance. Upon inter
ruption and query, the result returned is that of the longest
completed contract dedicated to the desired problem instance.

Note that although G depends on A", we omit the subscript.
Dependence on the schedule will be made implicit through
out the paper for ease of notation. For every schedule, the
index ordering must correspond to the completion time or
dering. Furthermore, no two contracts may complete at the
exact same time. The formal statement of these two condi
tions is that is equivalent to for all k, I. Also,
a schedule must have for This
ensures that after time a solution is available for
each problem instance.

To compare schedules, we use a worst-case metric called
acceleration ratio. The acceleration ratio tells us how much
faster our constructed algorithm would need to run in order to
ensure the same quality as if the query time and problem were
known, and a dedicated processor was assigned to producing
a result. Intuitively, it measures how well a schedule handles
the uncertainty about the problem instance and interruption
time.

Before formally defining acceleration ratio, we must state
some more technical details of the problem and present some
more definitions. First, we take the view that when a contract
completes at time t, its solution is available to be returned
upon interruption at any time r t. Second, we assume that

1212 SCHEDULING

Figure 1: Scheduling a contract algorithm on three processors
to create a two-problem multi-interruptible algorithm.

In the next section, we provide a schedule that is optimal
within a restricted, though still interesting, class of schedules.
We state below in precise terms the properties that delineate
the class of schedules under consideration. Schedules having
the three properties below will be called cyclic schedules.

The first property states that problem instances arc com
pleted in a round-robin manner. This seems sensible, as the
desired problem instance is unknown. However, we cannot
yet prove that for every non-problem-round-robin schedule,
there is an equally good problem-round-robin schedule.

Property 1 (Problem-round-robin) mod for all
k.

The next property states that the lengths of contracts for
each problem instance must increase with time. Given that
performance profiles are nondecrcasing, it seems that it would
never be beneficial to use a schedule that doesn't satisfy this
property. However, as with the first property, we cannot
yet prove this. One difficulty lies in having to satisfy the
problem-round-robin property mentioned above. We would
like to be able to "remove" useless contracts from a schedule,
but we have not found a way to do this while guaranteeing
that the resulting schedule will be problem-round-robin.

Property 2 (Length-increasing) For all and
then

The final property states that processors return results in a
round-robin manner. This property does not play a part in our
lower bound derivation, but it is used in drawing a connection
to the robot search problem. We introduce it at this point only
for ease of exposition.

Property 3 (Processor-round-robin) mod m for
all k.

We can prove a lemma that allows us to cast acceleration
ratio in simpler terms when we are considering only cyclic
schedules. In the proof, the following facts arc established:
acceleration ratio can be stated without reference to perfor
mance profiles; the only interruption times that need to be
considered are completion times; and upon interruption, the
result returned is from the contract with index exactly n less
than index of the current contract.

To show that equality holds, assume the contrary and derive
a contradiction with the fact that is defined as the
smallest constant enforcing the inequality between
and

Next we show that

For each is left-continuous everywhere and piece-
wise constant, with the pieces delimited by time points
So for all is left-continuous and piecewise linear
and increasing. Thus, the local maxima of occur at
the points Gk; no other times may play a role in the supre-
mum.

Finally,

follows from the problem-round-robin and length-increasing
properties, and the fact that no two contracts can finish at the
exact same time.

To conclude this section, we define the minimal accelera
tion ratio for m processors and ?/ problems to be

where the infimum is taken over the set of cyclic schedules.
In the following sections, we provide tight bounds for this
ratio.

2.2 An Exponential Schedule
A simple approach to scheduling contract algorithms is to
have the contract lengths increase exponentially. We consider
the schedule

It is easily verified that this is a cyclic schedule. The follow
ing theorem gives an expression for this schedule's accelera
tion ratio.

SCHEDULING 1213

We can now give a precise definition of acceleration ratio.

Theorem 1 The acceleration ratio for the exponential sched
ule is

There are a few things to note about the ratio we just de
rived. As the number of processors approaches infinity, it
tends to one. This is intuitive; by adding processors, we can
get arbitrarily close to the omniscient algorithm. As the num
ber of problems approaches infinity, the ratio tends to infinity.
Finally, the ratio depends only on the ratio of problems to pro
cessors, and not on the absolute numbers.

We turn now to showing that no cyclic schedule can
achieve a smaller ratio.

2.3 Lower Bound
We define a function to represent the sum of the lengths of all
the contracts finishing no later than contract k finishes:

We can derive an inequality involving only the acceleration
ratio and { # * } .

Lemma 2 For all cyclic schedules X and all k,

1214 SCHEDULING

Combining this inequality with Theorem 1, we get the desired
result.

3 Multi-Robot Search on Rays
The results from the previous section can be directly ap
plied to a formally similar problem involving multiple robots
searching for a goal. The problem is described as follows.
Initially, m robots stand at the intersection of p rays (with
m p). The robots, all moving in a continuous fashion and

Figure 2: The search problem with three robots and five rays.

at the same speed, search for a goal at an unknown location
on one of the rays (see Figure 2). The search ends as soon as
one of the robots finds the goal. Because there are not enough
robots to cover all of the rays, finding a good search strategy
is nontrivial. At this level of detail, the search problem may
seem very different from the contract scheduling problem.
Below we provide a more precise description of the search
problem and show how the contract scheduling results can be
applied.

A search is an infinite sequence of search extents, or return
trips departing from the origin. Formally, a search strategy is
a triple where

is the robot executing search extent
is the ray on which search extent takes place, and
is the length of search extent By adding the same con
ditions as in the contract scheduling case, we get an exact
correspondence between schedules and search strategies. A
cyclic search strategy is defined in the same way as a cyclic
schedule.

A natural metric for the efficiency of a search strategy is
the time-competitive ratio, the worst-case ratio of the total
time spent searching to the time required for a single robot to
traverse directly to the goal. We assume that the goal is not
considered discovered until a robot actually moves beyond it.
We assume also that the location of the goal is such that it
cannot be found on the first search extent on any of the rays.
This means that for each ray a, we consider only locations

Before formally defining time-competitive ratio, we need
to introduce a new function and explain its use in the defini
tion. Let us define to be the index of the first search ex
tent that goes past point t on ray a. This means that if the goal
is located at point t on ray a, then it is found during search ex
tent The total search time up through extent is

(The factor of two results from search extents going
out and back on rays.) However, since the search ends as soon
as the goal is found, the last extent does not go to completion,
and thus we must subtract out This leads us to
the following formal definition for time-competitive ratio.

SCHEDULING 1215

Definition 2 The time-competitive ratio,

We can now give a formula for the relationship between
acceleration ratio and time-competitive ratio for cyclic sched
ules and search strategies.
Theorem 3 For all cyclic search strategies (schedules) X,

where X' is the same as X, but with
Proof: Because of the length-increasing and problem-round-
robin properties, we know that the first search extent to pass
a point on a ray comes p extents after the last extent on that
same ray. Formally, we have that for all a and all

Thus we have

4 Conclusion
In this paper, we addressed two apparently different schedul
ing problems, one involving contract algorithms, and the
other involving robots searching on rays. For the contract
scheduling problem, we provided a schedule and proved its
optimality among the class of cyclic schedules. We further
showed how contract scheduling results can be applied to the
robot search problem, thus unifying the two problems.

A natural direction for future research is to study less re
stricted classes of schedules and search strategies. One in
triguing question is whether lower acceleration ratios can be
achieved with schedules that are not problem-round-robin
or length-increasing. It would also be interesting to know
whether the contract scheduling and robot search problems
have similarities beyond those that result from using cyclic
schedules and search strategies.

Acknowledgments
We thank William Hesse and Laszlo Babai for providing key
insights into the proof of Lemma 3. We also thank Theodore
Perkins and Charles Sutton for comments on earlier drafts.
Support for this work was provided in part by the NSF un
der grant IIS-0219606 and by NASA under grants NAG-2-
1394 and NAG-2-1463. Daniel Bernstein was supported by a
NASA GSRP Fellowship. Any opinions, findings, and con
clusions or recommendations expressed in this material are
those of the authors and do not reflect the views of the NSF
or NASA.

1216 SCHEDULING

where and This equa
tion is a linear nonhomogeneous difference equation [Mick-
ens, 1987]. The behavior of {qk} depends on the roots of the
characteristic polynomial,

We know that is bounded below, and since con
verges, is also bounded above. Thus to demonstrate
convergence, it suffices to show that / has no roots on the
unit circle.

Consider the polynomial

Clearly z = 1 is a root of g but not o f / . To show that / has
no roots on the unit circle, we wil l show that g has no roots
on the unit circle other than z = 1.

We must show that for all then
then

References
[Baeza-Yates et al.,1993] Ricardo Baeza-Yates, Joseph Cul

berson, and Gregory Rawlins. Searching in the plane. In
formation and Computation, 106:234-252, 1993.

[Bernstein et al, 2002] Daniel S. Bernstein, Theodore J.
Perkins, Shlomo Zilberstein, and Lev Finkelstein.
Scheduling contract algorithms on multiple processors. In
Proceedings of the Eighteenth National Conference on Ar
tificial Intelligence, 2002.

iDean and Boddy, 1988] Thomas Dean and Mark Boddy. An
analysis of time-dependent planning. In Proceedings of
the Seventh National Conference on Artificial Intelligence,
1988.

[Horvitz, 1987] Eric Horvitz. Reasoning about beliefs and
actions under computational resource constraints. In Work
shop on Uncertainty in Artificial Intelligence, 1987.

[Horvitz, 2001] Eric Horvitz. Principles and applications
of continual computation. Artificial Intelligence Journal,
126(1-2):159-196,2001.

[Kao et al, 1998] Ming-Yang Kao, Yuan Ma, Michael
Sipser, and Yiqun Yin. Optimal constructions of hybrid
algorithms. Journal of Algorithms, 29:142-164, 1998.

[Mickens, 1987] Ronald E. Mickens. Difference Equations.
Van Nostrand Reinhold Company, Inc., New York, NY,
1987.

[Russell and Zilberstein, 1991] Stuart J. Russell and Shlomo
Zilberstein. Composing real-time systems. In Proceedings
of the Twelth International Joint Conference on Artificial
Intelligence, 1991.

[Zilberstein et al, 1999] Shlomo Zilberstein, Francois
Charpillet, and Philippe Chassaing. Real-time problem-
solving with contract algorithms. In Proceedings of the
Sixteenth International Joint Conference on Artificial
Intelligence, 1999.

SCHEDULING 1217

