
The Concurrent, Continuous FLUX

Yves Martin
Technische Universitat Dresden

D-01062 Dresden, Germany
yml@inf.tu-dresden.de

Abstract

FLUX belongs to the high-level programming lan
guages for cognitive agents that have been devel
oped in recent years. Based on the established,
general action representation formalism of the Flu
ent Calculus, FLUX allows to implement complex
strategies in a concise and modular fashion. In
this paper, we extend the FLUX language to reason
about domains involving continuous change and
where actions occur concurrently. Using constraint
logic programming, we show that this reasoning is
performed in an efficient way.

1 Introduction
One of the most challenging and promising goals of Artificial
Intelligence research is the design of autonomous agents, in
cluding robots, that solve complex tasks in a dynamic world.
To reach autonomy in partially known, constantly changing
environments requires the high-level cognitive capabilities of
reasoning and planning. Using a mental model of the state
of their environment allows for the agents to calculate the
outcome of different action sequences in advance and then
choose the best plan to execute for a specific goal in mind.

Formal theories of reasoning about actions and change
have the expressive power to provide such high-level capa
bilities. The Fluent Calculus [Thielscher, 1999], as one of the
established action representation formalisms, uses the con
cept of state update axioms to solve the representational and
inferential aspect of the classical Frame Problem. Based
on this formal theory, the high-level programming method
FLUX has been developed in recent years [Thielscher, 2002].
Using the paradigm of constraint logic programming, the
powerful FLUX kernel provides general reasoning facilities,
so that the agent programmer can focus on the high-level de
sign of intelligent agents.

Autonomous agents in real-world environments have to
take into account that the execution of actions takes differ
ent amounts of time. Some actions can be modeled as dis
crete changes, others involve continuous change and should
rather be seen as the initiation or termination of complex pro
cesses. Such processes may contain parameters whose values
change continuously and which are formalized as functions

over time. A car moving on a road with a constant veloc
ity v, for instance, can be represented by a 'process fluent'
Movement where the parameter x0 denotes the
location of the car at the time when the motion was initi
ated. The fluent Movement itself, although it describes the
particular continuous change for the
location x of the car at the time t, wil l stay unchanged until
some other action wil l affect it. Continuous change is then
modeled by fluents describing arbitrarily complex, continu
ous processes. These fluents remain stable in between the oc
currence of two consecutive actions, and yet they internally
represent continuous change.

In a world full of ongoing processes, however, an agent ex
ecuting a plan is not the only source of change. Also the laws
of physics frequently imply an evolution of the environment,
like for example, the action of a falling ball bouncing when it
reaches the floor. The fundamental property of such so-called
natural actions [Reiter, 1996] is that they must occur at their
predicted times, provided no earlier actions (natural or delib
erative) prevent them from occurring. Because such actions
may occur simultaneously, concurrency must be accommo
dated.

In this paper, we present a FLUX system which allows for
the design of intelligent agents that reason and plan in do
mains involving continuous change and where actions occur
concurrently. Using the paradigm of constraint logic pro
gramming, our extension to FLUX integrates both kinds of
actions, deliberative and natural, into one method for the
planning and execution of actions. Reasoning in terms of
time intervals, our method allows for the efficient genera
tion of plans in concurrent, continuous environments. Our
work is based on the theoretical approach presented in [Herr
mann and Thielscher, 1996; Thielscher, 2001a]. Other exist
ing agent programming methods like the robot control lan
guage developed in [Shanahan and Witkowski, 2000] or the
GOLOG programming language [Levesque et al., 1997], do
not handle, in domains involving concurrency and continu
ous change, the concept of a natural action at all or only
have separate accounts for natural actions on the one hand
[Reiter, 2001] and for deliberative actions on the other hand
[Grosskreutz, 2002].

In the next section, we introduce our example scenario and
shortly recapitulate the fundamentals of the FLUX system.
We then give briefly the theoretic solution in the Fluent Cal-

REASONING ABOUT ACTIONS AND CHANGE 1085

cuius. Thereafter, we present our extension of FLUX to con
current, continuous domains and discuss the employed con
strained handling techniques. In the last section we conclude
and show some possible future work. Al l programs are avail
able on our web site: h t t p : / /www. f l u x a g e n t . o r g /

2 FLUX
The example agent program in this paper is set in a waterway
scenario. The agent has to steer a barge through a system of
canals. The water levels in the canals are dependent on tides.
At some places of the canals there are locks which a ship can
only pass on a high tide. Due to the geographical facts the tide
levels differ for different locks. The canals themselves are
too small to turn around but sometimes there are intersections
where the agent steering the barge can choose one direction
(see also Fig. 1).

To develop an agent for this scenario, we use the high-
level programming method FLUX which is grounded in the
action theory of the Fluent Calculus. The Fluent Calculus
is a many-sorted predicate logic language with four stan
dard sorts: FLUENT, STATE, ACTION, and slT(for situations)
[Thielscher, 1999]. States are compose of fluents (as atomic
states) using the standard function o : STATE STATE
STATE and constant STATE (denoting the empty state).
The program for our agent, for example, uses these two flu
ents: representing that the barge is at cell
at time and Tide denoting that at time the wa
ter level at lock I is at high/low tide. Similarly as in the
Situation Calculus [Reiter. 2001], the constant denotes the
initial situation and the situation after having per
formed action a in situation s at time t. The state of a situation
s is denoted by the standard function State(s). For example,
the initial state in the waterway scenario of Fig. 1 may be
axiomatized as2

The reader may notice that an incomplete state with addi
tional negative information has been specified, i.e., the sub-
STATE may contain many more fluents, but no more At or
Tide fluents. The foundational axioms of the Fluent Calculus
ensure that the composition function exhibits the proper
ties of the union function for sets (with is the empty set), so
that a state is identified with all the fluents that hold. On this
basis, the macros Holds and Holds we defined as
follows:

' in anticipation of the integration of continuous change, the ar
gument t denotes the time when a fluent becomes true or an action
takes place.

2Predicate and function symbols, including constants, start with
a capital letter whereas variables arc in lower case. Free variables
in formulas are assumed universally quantified. Variables of sorts
FLUENT, STATE, ACTlON,and SIT shall be denoted by letters /, z, a,
and s, respectively. The function o is written in infix notation.

Figure 1: An example waterway scenario where the goal for
the agent is to steer the barge from cell (1,2) to the harbor at
cell (3,2). There are three locks at cells (1,3), (1,1), (2,2).

In our waterway scenario there are two elementary actions:
GoByShip{d), the deliberative action of the agent to steer
the barge to the next cell which lies in the direction d, and
TurnTide the natural action indicating the turn to the
tide w at lock I. The fundamental Frame Problem is solved
in the Fluent Calculus by a so-called state update axiom for
each action, which describes the effects of the action in terms
of the difference between the states before and after the ex
ecution of it. For example, the action TurnTide can be
specified as

where " - " and " + " are macros for fluent removal and addi
tion; and the macro Poss denot
ing in the Fluent Calculus that at time t action a is possible in
state State(s).

To reflect the incomplete knowledge of an agent about its
environment, incomplete states are encoded in FLUX as open
lists, that is, lists with a variable tail, of fluents [Thielscher,
2002]. These lists are accompanied by constraints for negated
state knowledge as well as for variable range restrictions. The
constraints are of the form NotHolds\ , indicating that flu
ent does not hold in state and NotHoldsAlll indicat
ing that no instance of holds in z. In order to process these
constraints, so-called declarative Constraint Handling Rules
[Friihwirth, 1998] have been defined and proved correct un
der the foundational axioms of the Fluent Calculus (for details
see [Thielscher, 2002]).

For example, the initial state depicted in Fig. 1 may be
specified by this clause,
i n i t (Z O) : -

Z 0 = [a t (1 , 2 , 0 . 0) , t i d e (l o c k l , h i g h , 0 . 0) , t i d e (
l o c k 2 , h i g h , 0 . 0) , t i d e (l o c k 3 , h i g h , 0 . 0)

n o t _ h o l d s _ a l l (a t (_ , _ , _) , Z) ,
n o t _ h o l d s _ a l l (t i d e (_ , _ , _) , Z) .

1086 REASONING ABOUT ACTIONS AND CHANGE

which also reflects the negative information that no , fluent
occurs in sub-state (the location of our agent is unique),
and that there are no more Tide fluents other than specified
in state

The predicate Poss realizes the precondition ax
ioms for actions, that is, it defines under which conditions an
action is possible at time t in state z. There is one such pred
icate clause for each action. Conditioning in FLUX is based
on the foundational predicates Knows KnowsNot\
and Knows Val representing that the agent knows that
fluent / holds (respectively, does not hold) in state and that
there exist ground instances of the variables in such that
fluent / is known to be true in state Take, for example,
the precondition axiom for the action TurnTide which is
implemented as follows,

poss (tu rn t i de (L ,W) ,T , Z) :-
(W=high, k n o w s _ v a l ([L , T R] , t i d e (L , l o w , T R) , Z) ,
d u r a t i o n (L , l o w , D) ;
W=low/ k n o w s _ v a l ([L , T R] , t i d e (L , h i g h , T R) , Z) ,
d u r a t i o n (L , h i g h , D)) ,

{T =:= TR + D} .

where the auxiliary predicate Duration denotes the
duration of the corresponding tide at lock/. The execu
tion time of the action wil l be constrained, using the syn
tax of the constraint handling library CLP(R) of the Eclipse-
Prolog system, to be the sum of the starting time of the old
tide plus the duration of the old tide.

As in the Fluent Calculus, the effects of actions are
encoded as state update axioms. For this purpose, the
FLUX kernel provides a definition of the auxiliary predi
cate Update Its intuitive meaning is that
state is the result of positive and negative effects and

respectively, wrt. state In other words, the pred
icate encodes the state equation
On this basis, the agent programmer can easily implement
the update axioms by clauses which define the predicate
StateUpdate as for example in the following en
coding for the action TurnTide

s t a t e _ u p d a t e (Z l , t u r n t i d e (L , W) , T , Z 2) : -
h o l d s (t i d e (L , W O , T O) , Z l) ,
W=high, u p d a t e (Z l , [t i d e (L , h i g h , T)] ,

[t i de (L ,WO,TO)] ,Z2) ;
W=low, u p d a t e (Z l , [t i d e (L , l o w , T)] ,

[t i de (L ,WO,TO)] ,Z2) .

3 The concurrent, continuous Fluent Calculus

The Fluent Calculus for concurrent actions is based on the
additional pre-defined sort CONCURRENT, of which ACTION
is a sub-sort [Thielscher, 2001a]. Single actions which are
performed simultaneously are composed to terms of sort
CONCURRENT by a new binary function. The latter is de
noted by "•" and written in infix notation. This function
shares with the function combining fluents to states the prop
erties of associativity, commutativity, idempotency and exis
tence of a unit element. The constant (read: of
sort CONCURRENT acts as the unit element wrt. function ".".
Similar to the Holds macro the abbreviation is used
to denote that concurrent action C1 is included in concurrent

action

State update axioms for concurrent actions are recursive.
They specify the effect of an action relative to the effect of
arbitrary other, concurrent actions:

I.e., are the additional negative and positive, re
spectively, effects which occur if action a is performed be
sides c. Here, can be a single action or a compound action
which produces synergic effects, that is, effects which no sin
gle action would have if performed alone. Using recursive
state update axioms, the effect of, say, two simultaneous but
independent actions can be inferred by first inferring the ef
fect of one of them and, then, inferring the effect of the other
action on the result of the first inference. The recursions stops
with the base case of the empty action, which is defined as:

Two or more actions may interfere when executed concur
rently, which is why the condition in the above state update
axiom may restrict the applicability of the implication in view
of concurrent action c.

Integrating continuous change in the Fluent Calculus re
quires the introduction of process fluents which can repre
sent arbitrarily complex, continuous processes. Because such
processes may be modeled by equations of motions, contin
uous time must be represented. To this end, the new sort
REAL is added, which is to be interpreted as the real numbers
[Thielscher, 2001a]. The sort is accompanied by the usual
arithmetic operations along with their standard interpretation.
The continuous Fluent Calculus includes the pre-defined flu
ent StartTime where is of sort REAL, determining the
time Start at which a state arises, provided that StartTime
is unique:

As already indicated throughout the paper, a parameter t of
sort REAL is also used to denote the time at which a fluent
arises as in or to represent the occurrence of an
action as in A standard requirement for the possi
bility to perform a concurrent action c at time t in state may
then be expressed as follows:4

The Fluent Calculus for continuous change includes
the distinction between deliberative and natural actions
[Thielscher, 2001a]. The latter are not subject to the free
wil l of a planning agent. Rather they happen automatically
under specific circumstances. In our example domain, the

3 Variables of the new sort CONCURRENT are denoted by the let
ter c.

4In our example domain we have no actions that are in mutual
conflict. Therefore, we do not need to specify additional constraints
in this precondition axiom.

REASONING ABOUT ACTIONS AND CHANGE 1087

action of the turn of the tide is a natural one. The standard
predicate Natural [adopted from [Reiter, 1996]] declares
the action a to be natural. To facilitate the formalization
of the automatic evolution of natural actions, the continu
ous Fluent Calculus introduces two macros. The expression
ExpectedNatActions\ shall indicate that in state ac
tions c are all the natural actions that are expected to happen
at time /:

Given the above notion, the macro NextNatActions
stands for the concurrent action c being all natural actions that
happen in state z at time t with t being the earliest possible
time point at which natural actions are expected:

The Fluent Calculus for continuous change uses the notion of
a situation tree with trajectories [Thielscher, 2001a] where a
trajectory is associated with a situation and denotes the fur
ther evolution of the state determined by the natural actions
that are expected to happen. We do not follow this approach
in this paper, as the original motivation for employing tra
jectories has been domains with uncertainty about the occur
rence of natural actions, and we do not consider such domains
here. The incorporation of domains with uncertain natural ac
tions is left for further work. Instead, we include the natural
actions in the situation terms, as with deliberative actions.

4 Integrating Concurrency and Continuous
Change into FLUX

Similar to the binary function which denotes the compo
sition of states from single fluents and is represented in FLUX
by a list of fluents, we represent the binary function "•" as a
list of actions in FLUX. In this way, we introduce concur
rency into FLUX, i.e., all the actions in the list are performed
concurrently. On this basis, the unit element of the function
"•", the constant is encoded as the empty list [] .

Given the notion of a list of concurrent actions, the state up
date axioms for the actions are defined recursively in FLUX.
The predicate Res specifies the
effect of performing at time t the list of concurrent actions li
in state z\ and situation s i , and leading to the new state z%
and the new situation Do after the execution of the
concurrent actions. It represents one plan step and is encoded
as follows
r e s (Z l , S l , [] ,T ,Z2 ,S1) : -

h o l d s (s t a r t t i m e (T O) , Z l) ,
u p d a t e (Z l , [s t a r t t i m e (T)] , [s t a r t t i m e (T O)] , Z 2) .

r e s (Z l , S l , [A | L] , T , Z 2 , d o ([A | L] , T , S 1)) : -
update* [A|L] , [] , [A] ,L1) ,
s t a t e _ u p d a t e (Z l , A, T, Z3) ,
r e s (Z 3 , _ , L l , T , Z 2 , _) .

where the clause for the base case of the recursion extends
the effect of the constant "e", which by itself has none, to
update the pre-defined fluent Start71me(t) needed for FLUX

with continuous change to the new value t. Similar to the
encoding of the macros for fluent removal and addition, the
predicate Update is used in the clause for the recursive case
to implement the elimination of one single action from a term
of arbitrary other, concurrent actions.

Consider, for example, the state update axiom of the single
action GoByShip(d) which is implemented as:
s ta te_upda te (Z l ,gobysh ip (D) ,T,Z2) : -

k n o w s _ v a l ([X , Y] , a t (X , Y , T O) , Z l) ,
h o l d s (s t a r t t i m e (S T) , Z 1) , {T >= ST + 1 .0} ,
a d j a c e n t (X , Y , D , X 1 , Y l) ,
u p d a t e (Z l , [a t (X I , Y l , T)] , [a t (X , Y , T O)] , Z 2) .

That is, the location of the barge together with the
agent wil l be updated from the old position to
the new cell where the auxiliary predicate
Adjacent computes the adjacent cell
lying in direction d of cell The travel from one cell to
another is assumed to take one hour in our example scenario.
Therefore, although the execution time t of this action is not
fixed by the clause in any way, the effects of the action man
ifest at least one hour later as the formation of the old state.
Now take, e.g., the FLUX query
? - i n i t (Z 0) , r e s (Z 0 , s O , [g o b y s h i p (3) ,

t u r n t i d e (l o c k 3 , l o w)] , 2 . 0 , Z 1 , S 1) .
together with the above definition of the state update axiom
and the definitions for the predicate Init (with the addi
tional inclusion of fluent s t a r t t i m e (0 .0)) and the state up
date axiom of action TurnTide given in Section 2. Together
with an appropriate encoding of the fact that a high tide lasts
two hours at the third lock, d u r a t i o n (lock3 , h i g h , 2 .0) ,
and the knowledge that going south is represented by direc
tion number 3, our extension of FLUX can infer the effects
of this concurrent action by first inferring the effects of ac
tion gobyship(3) and on the result of this inference infer
the effects of action t u r n t i d e (l ock3 , low) . FLUX yields
the correct substitution:

Z l = [a t (1 , 1 , 2 . 0) , t i d e (l o c k l , h i g h , 0 . 0) ,
t i d e (l o c k 2 , h i g h , 0 . 0) , t i d e (l o c k 3 , l o w , 2 . 0) ,
s t a r t t i m e (2 . 0) | Z]

S l=do ([gobysh ip (3) ,
t u r n t i d e (l o c k 3 , l o w)] , 2 . 0 , s O)

Continuous time is, as already shown above and in Sec
tion 2, easily integrated into FLUX. The Eclipse-Prolog sys
tem Version 5.4, which we use, includes the constraint han
dling library CLP(R). This library allows for solving linear
constraints with real numbers. Its syntax requires for con
straints to be included in braces.

The precondition axioms and state update axioms for nat
ural actions are encoded in our extension of FLUX in the
same fashion as for deliberative actions (see Section 2). Ad
ditionally, we include an implementation for the predicate
Natural(a) which is as follows for the example domain:

:- A= tu rn t ide(L ,W) ,
(L = l o c k l ; L= lock2 ; L= lock3) .

Given this predicate, we model the macro
ExpectedNatActions by the built-in second order
predicate SetOf as follows:
s e t o f (A , (n a t u r a l (A) , p o s s (A , T , Z)) , C)
On this basis, the macro NextNatActionsI is defined in
FLUX as:

1088 REASONING ABOUT ACTIONS AND CHANGE

NextNatTime(T,Z) : -
n a t u r a l (A) , poss (A ,T ,Z) ,
not (n a t u r a l (A l) , poss(A1,T1 ,Z) , T1<T), ! .

NextNatAct ions(C,T,Z) :- NextNatTime(T,Z) ,
s e t o f (A , (n a t u r a l (A) , p o s s (A , T , Z)) , C) .
Having defined natural actions in the same way as delib

erative ones leads to the question: How to combine delibera
tive and natural actions into one common approach for plan
ning? Natural actions must occur at their predicted times.
The times for the execution of deliberative actions are not
fixed in advance. How to determine these execution times?
The examination of every possible time would lead to a com
binatorial explosion and is, in general, not possible for time
of sort REAL. One general solution, which reduces the search
space to a minimum and still yields answers for all possible
domains, is to use qualitative instead of quantitative infor
mation. We only consider periods of time in our approach.
There we discriminate three time intervals for a deliberative
action wrt. the next expected natural action(s): Firstly, the
deliberative action can be postponed to the next plan step and
the (possible set of) natural action(s) is executed. Secondly,
the deliberative action is performed before all natural actions
which are expected next. Finally, the deliberative action and
the natural actions are joined toeether to a new concurrent
action. The predicate Exec encodes the
recursive planner for a plan with depth steps integrating de
liberative and natural actions into one method. The computed
plan leads from state z\ and situation si to the new state z2
and the new situation s2. The predicate is implemented as
e x e c (Z l , S l , Z l , S l , 0) .

exec(Z l ,S I ,Z2 ,S2 ,Depth) : -
Depth>0 / Nex tNa tAc t ions (C ,T ,Z) ,
({71=7} , C1=C;
a c t i o n (A) , p o s s (A , T A , Z l) ,
h o l d s (s t a r t t i m e (T O) , Z l) , {TA>=T0},
({TA<T, T1=TA}, C1=[A] ;
{TA=T, T1=T}, append ([A] ,C ,C1))) ,

r e s (Z l , S l , C l , T l , Z 3 , S 3) , Depth l i s Dep th -1 ,
exec(Z3 ,S3 ,Z2 ,S2 ,Depth l) .

where the predicate Action(a) defines the action a to be de
liberative and the auxiliary built-in predicate Append appends
two list. For our example domain, the predicate Action is en
coded by the fact a c t i o n (gobyship To ensure that
the time never goes backward, the execution time TA of the
deliberative action is constrained in an appropriate way.

Reasoning with time constraints instead of real time ren
ders planning efficient. Using this plan method we are left
with only three choices regarding the execution time of a de
liberative action. Furthermore, the order of these choices,
which represents a kind of heuristic, can be adjusted to the
concrete domain at hand. Only after a plan, where the con
straint solution lies in the appropriate time intervals, has been
computed, a concrete time for the execution of the actions is
fixed and the actions are executed.

To complete our planning method, we include the follow
ing definition of the predicate Goal(z) denoting the goal state
z,
goal (Z) : - k n o w s (a t (3 , 2 , _) , Z) .
where the goal in our example scenario is that the barge
is situated at the harbor in cell (3,2) (see also Fig. 1).

Given the predicate Goal, we define a recursive predicate
Ida representing the sequence of actions
which leads from the initial state in the initial situation
to the goal state in steps. This predicate implements the
iterative deepening algorithm, which is optimal and complete
[Russell and Norvig, 1995]. It is encoded as follows:
ida(Z0,S0,Z,S,N) : -
exec(Z0,S0,Z,S,N) , goa l (Z) ;
N l i s N+ l , f i ndp lan (ZO,SO,Z ,S ,N l) .
The precondition axiom for the action GoByShip is speci

fied in the following way:
poss(gobysh ip(D) , T,Z) : -

k n o w s _ v a l ([X , Y] , a t (X , Y , _) , Z) ,
d i r e c t i o n s (X , Y , D L) , member(D,DL)
ad jacent (X, Y ,D,X1 , YD ,
(l o c k p l a c e (L , X l , Y l) ,
knows_va l ([L ,W,T0] , t i de (L ,W,TO) ,Z) ,
(W=high; W=low,
d u r a t i o n (L , l o w , T D) , {T>=T0+TD}));

not (l o c k p l a c e (L , X l , Y l)) .
That is, after having determined the current location, the aux
iliary predicate Directions delivers a list of possi
ble directions for the cell i and the standard predicate
Member selects one direction ri. Afterwards, with the help
of the auxiliary predicate LockPlace denoting the oc
currence of a lock / at cell the adjacent cell
is searched for a lock. If there is none, the action is possi
ble without further constraints for the execution time t. In
the other case, the water level at the lock must be high or the
action has to be executed after the disappearance of the low
tide. Specifying the preconditions for the actions GoByShip
and TurnTide as given above and in Section 2, respectively,
fulfills the general condition for the possibility to perform a
concurrent action as given in Section 3.

Consider now, for example, all specified FLUX clauses to
gether with suitably specified facts for the example domain
and the following query:
? - i n i t (Z O) , i d a (Z 0 , s 0 , Z , S , l) .
Our extended FLUX system then generates a plan with four
steps and yields the following substitutions and linear con
straints:
Z = [s t a r t (T A _ 2) , a t (3 , 2 , T A _ 2) , t i d e (l o c k 3 ,

h i g h , 4 . 0) , t i d e (l o c k l , l o w , 4 . 0) ,
t i d e (l o c k 2 , h i g h , 0 . 0) | _]

S = d o ([g o b y s h i p (2)] , do ([gobysh ip (1) ,
t u r n t i d e (l o c k l , l o w) , t u r n t i d e (l o c k 3 , h i g h)] ,
d o ([g o b y s h i p (2) , t u r n t i d e (l o c k 3 , l o w)] ,
d o ([g o b y s h i p (3) j , s O , T A _ l) , 2 . 0) , 4 . 0) , T A _ 2)

L inear c o n s t r a i n t s : TA_1>=1.0, TA_1<2.0
TA_2>=5.0, TA_2<6.0

The above sequence of actions s constitutes a solution to our
planning problem given in Fig. 1. It is not yet completely
specified. Rather, the execution times of some deliberative
actions are given as time intervals. The reader may also notice
that some deliberative actions are planned simultaneously to
gether with natural actions. Finally, we can apply the built-in
predicate Minimize(t), which tries to find a minimal solution
for a constraint variable t, to the above linear constraints and
get the following:

REASONING ABOUT ACTIONS AND CHANGE 1089

TA_1 = 1 . 0 TA_2 = 5 . 0

5 Discussion
We have presented an extension to FLUX for domains involv
ing continuous change and where actions occur concurrently.
Our method is based on the theoretic solution in the Fluent
Calculus [Thielscher, 2001a].

Our extension allows for the generation of plans includ
ing both, deliberative and natural actions. If necessary, the
system generates and executes concurrent actions, i.e., where
two or more single actions are performed simultaneously. In
order to plan efficiently, our FLUX program computes with
time intervals instead of single time points using the paradigm
of constraint logic programming. We have illustrated how
this method can be successfully applied to example domains
like the waterway scenario. Additionally, our approach can
easily be applied, with only minor modifications, to more
complex domains involving, for example, compound concur
rent actions which produce synergic effects.

Other high-level programming languages for reasoning
about action and change, like GOLOG or the robot control
language, have not yet an approach to integrate both, delib
erative and natural actions in a common system to generate
plans. The robot control language [Shanahan and Witkowski,
2000] does not have the notion of a natural action. The
systems based on GOLOG either accommodate only natu
ral actions [Reiter, 2001] or handle only deliberative actions
[Grosskreutz and Lakemeyer, 2000] in domains involving
concurrency and continuous change.

The extension to domains involving uncertainty about the
occurrence of a natural action has not been tackled in this
paper. An approach to this problem could be the use of con
ditional planning. Conditional plans based on a generalized
concept of plan skeletons as search heuristics have been in
corporated into FLUX [Thielscher, 2001b]. To use condi
tional plans as a method to accommodate such domains is an
important aspect of future work.

Acknowledgments
I want to thank my supervisor Michael Thielscher, Olaf
Perner and all members of the FLUX Group at Technische
Universitat Dresden for many fruitful discussions about this
work. Three anonymous reviewers provided helpful com
ments on this article for which I am grateful.

References
[Friihwirth, 1998] Thorn Friihwirth. Theory and practice of

constraint handling rules. Journal of Logic Programming,
37(l-3):95-138, 1998.

[Grosskreutz and Lakemeyer, 2000] Henrik Grosskreutz and
Gerhard Lakemeyer. cc-Golog: Towards more realistic
logic-based robot control. In H. Kautz and B. Porter, ed
itors, Proceedings of the AAAI National Conference on
Artificial Intelligence, pages 476-482, Austin, TX, July
2000.

[Grosskreutz, 2002] Henrik Grosskreutz. Towards more re
alistic logic-based robot controllers in the Golog frame
work. PhD thesis, RWTH Aachen, Germany, February
2002.

[Herrmann and Thielscher, 1996] Christoph S. Herrmann
and Michael Thielscher. Reasoning about continuous pro
cesses. In B. Clancey and D. Weld, editors, Proceedings
of the AAA! National Conference on Artificial Intelligence,
pages 639-644, Portland, OR, August 1996. MIT Press.

[Levesquetva/., 1997] Hector J. Levesquc, Raymond Re
iter, Yves Lesperance, Fangzhen Lin, and Richard B.
Scherl. GOLOG: A logic programming language for dy
namic domains. Journal of Logic Programming, 31(1-
3):59-83, 1997.

[Reiter, 1996] Ray Reiter. Natural actions, concurrency and
continuous time in the situation calculus. In L. C. Aiello,
J. Doyle, and S. Shapiro, editors, Proceedings of the In
ternational Conference on Principles of Knowledge Rep
resentation and Reasoning (KR), pages 2-13, Cambridge,
MA, November 1996. Morgan Kaufmann.

[Reiter, 2001] Raymond Reiter. Logic in Action. MIT Press,
2001.

[Russell and Norvig, 1995] Stuart J. Russell and Peter
Norvig. Artificial Intelligence: A Modern Approach.
Prentice-Hall, 1995.

[Shanahan and Witkowski, 2000] Murray Shanahan and
Mark Witkowski. High-level robot control through
logic. In C. Castelfranchi and Y. Lesperance, editors,
Proceedings of the International Workshop on Agent
Theories Architectures and Languages (ATAL), volume
1986 of LNCS, pages 104-121, Boston, MA, July 2000.
Springer.

[Thielscher, 1999] Michael Thielscher. From Situation Cal
culus to Fluent Calculus: State update axioms as a solution
to the inferential frame problem. Artificial Intelligence,
l l l (l -2) :277-299, 1999.

[Thielscher, 2001a] Michael Thielscher. The concurrent,
continuous Fluent Calculus. Studia Logica, 67(1), 2001.

[Thielscher, 2001b] Michael Thielscher. Inferring implicit
state knowledge and plans with sensing actions. In F.
Baader, G. Brewka, and T. Eiter, editors, Proceedings of
the German Annual Conference on Artificial Intelligence
(KI), volume 2174 of LNAI, pages 366-380, Vienna, Aus
tria, September 2001. Springer.

[Thielscher, 2002] Michael Thielscher. Programming of rea
soning and planning agents with FLUX. In D. Fensel, D.
McGuinness, and M.-A. Williams, editors, Proceedings of
the International Conference on Principles of Knowledge
Representation and Reasoning (KR), Toulouse, France,
April 2002. Morgan Kaufmann.

1090 REASONING ABOUT ACTIONS AND CHANGE

