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Abstract 
This paper introduces the Point-Based Value Iteration 
(PBVI) algorithm for POMDP planning. PBVI approx
imates an exact value iteration solution by selecting a 
small set of representative belief points and then tracking 
the value and its derivative for those points only. By us
ing stochastic trajectories to choose belief points, and by 
maintaining only one value hyper-plane per point, PBVI 
successfully solves large problems: we present results on 
a robotic laser tag problem as well as three test domains 
from the literature. 

1 Introduction 
The value iteration algorithm for planning in partially ob
servable Markov decision processes (POMDPs) was intro
duced in the 1970s [Sondik, 1971]. Since its introduction 
numerous authors have refined it [Cassandra et al> 1997; 
Kaelbling et a/., 1998; Zhang and Zhang, 2001] so that it can 
solve harder problems. But, as the situation currently stands, 
POMDP value iteration algorithms are widely believed not to 
be able to scale to real-world-sized problems. 

There are two distinct but interdependent reasons for the 
limited scalability of POMDP value iteration algorithms. The 
more widely-known reason is the so-called curse of dimen
sionality [Kaelbling et al.% 1998]: in a problem with n phys
ical states, POMDP planners must reason about belief states 
in an (n - l)-dimensional continuous space. So, naive ap
proaches like discretizing the belief space scale exponentially 
with the number of states. 

The less-well-known reason for poor scaling behavior is 
what we will call the curse of history: POMDP value iter
ation is in many ways like breadth-first search in the space 
of belief states. Starting from the empty history, it grows 
a set of histories (each corresponding to a reachable belief) 
by simulating the POMDP. So, the number of distinct action-
observation histories considered grows exponentially with the 
planning horizon. Various clever pruning strategies [Littman 
et al„ 1995; Cassandra et al% 1997] have been proposed to 
whittle down the set of histories considered, but the pruning 
steps are usually expensive and seem to make a difference 
only in the constant factors rather than the order of growth. 

The two curses, history and dimensionality, are related: the 
higher the dimension of a belief space, the more room it has 

for distinct histories. But, they can act independently: plan
ning complexity can grow exponentially with horizon even 
in problems with only a few states, and problems with a 
large number of physical states may still only have a small 
number of relevant histories. In most domains, the curse 
of history affects POMDP value iteration far more strongly 
than the curse of dimensionality [Kaelbling et al.9 1998; 
Zhou and Hansen, 2001]. That is, the number of distinct his
tories which the algorithm maintains is a far better predictor 
of running time than is the number of states. The main claim 
of this paper is that, if we can avoid the curse of history, there 
are many real-world POMDPs where the curse of dimension
ality is not a problem. 

Building on this insight, we present Point-Based Value It
eration (PBVI), a new approximate POMDP planning al
gorithm. PBVI selects a small set of representative belief 
points and iteratively applies value updates to those points. 
The point-based update is significantly more efficient than 
an exact update (quadratic vs. exponential), and because it 
updates both value and value gradient, it generalizes better 
to unexplored beliefs than interpolation-type grid-based ap
proximations which only update the value [Lovejoy, 1991; 
Brafman, 1997; Hauskrecht, 2000; Zhou and Hansen, 2001; 
Bonet, 2002]). In addition, exploiting an insight from policy 
search methods and MDP exploration [Ng and Jordan, 2000; 
Thrun, 1992], PBVI uses explorative stochastic trajectories to 
select belief points, thus reducing the number of belief points 
necessary to find a good solution compared to earlier ap
proaches. Finally, the theoretical analysis of PBVI included 
in this paper shows that it is guaranteed to have bounded error. 

This paper presents empirical results demonstrating the 
successful performance of the algorithm on a large (870 
states) robot domain called Tag, inspired by the game of 
lasertag. This is an order of magnitude larger than other prob
lems commonly used to test scalable POMDP algorithms. In 
addition, we include results for three well-known POMDPs, 
where PBVI is able to match (in control quality, but with 
fewer belief points) the performance of earlier algorithms. 

2 An overview of POMDPs 
The POMDP framework is a generalized model for plan
ning under uncertainty [Kaelbling etal, 1998; Sondik, 1971]. 
A POMDP can be represented using the following n-tuple: 

where 5 is a (finite) set of discrete 
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A number of algorithms have been proposed to implement 
this backup by directly manipulating a-vectors, using a com
bination of set projection and pruning operations fSondik, 
1971; Cassandra et ai, 1997; Zhang and Zhang, 2001]. 
We now describe the most straight-forward version of exact 
POMDP value iteration. 

In practice, many of the vectors in the final set V may be 
completely dominated by another vector 
or by a combination of other vectors. Those vectors can be 
pruned away without affecting the solution. Finding dom
inated vectors can be expensive (checking whether a single 
vector is dominated requires solving a linear program), but is 
usually worthwhile to avoid an explosion of the solution size. 

To better understand the complexity of the exact update, let 

tance of pruning away unnecessary vectors is clear. It also 
highlights the impetus for approximate solutions. 

3 Point-based value iteration 
It is a well understood fact that most POMDP problems, even 
given arbitrary action and observation sequences of infinite 
length, are unlikely to reach most of the points in the belief 
simplex. Thus it seems unnecessary to plan equally for all 
beliefs, as exact algorithms do, and preferable to concentrate 
planning on most probable beliefs. 

The point-based value iteration (PBVI) algorithm solves a 
POMDP for a finite set of belief points 
It initializes a separate a-vector for each selected point, and 
repeatedly updates (via value backups) the value of that a-
vector. As shown in Figure 1, by maintaining a full a-vector 
for each belief point, PBVI preserves the piece-wise linear
ity and convexity of the value function, and defines a value 
function over the entire belief simplex. This is in contrast 
to grid-based approaches [Lovejoy, 1991; Brafman, 1997; 
Hauskrecht, 2000; Zhou and Hansen, 2001; Bonet, 2002], 
which update only the value at each belief grid point. 

Figure 1: POMDP value function representation using PBVI (on the 
left) and a grid (on the right). 

The complete PBVI algorithm is designed as an anytime 
algorithm, interleaving steps of value iteration and steps of 
belief set expansion. It starts with an initial set of belief points 
for which it applies a first series of backup operations. It then 
grows the set of belief points, and finds a new solution for the 
expanded set. By interleaving value backup iterations with 
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expansions of the belief set, PB VI offers a range of solutions, 
gradually trading off computation time and solution quality. 
We now describe how we can efficiently perform point-based 
value backups and how we select belief points. 

3.1 Point-based value backup 
To plan for a finite set of belief points we modify the 
backup operator such that only one vector per be
lief point is maintained. For a point-based update 
we start by creating projections (exactly as in Eqn 

Next, the cross-sum operation (Eqn 6) is much simplified by 
the fact that we are now operating over a finite set of points. 
We construct 

(9) 

Finally, we find the best action for each belief point (Step 3): 

(10) 

When performing point-based updates, the backup creates 
projections as in exact VI. However the final so

lution is limited to containing only components (in 
time Thus a full point-based value up
date takes only polynomial time, and even more crucial, the 
size of the solution set remains constant. As a result, the 
pruning of a vectors (and solving of linear programs), so cru
cial in exact POMDP algorithms, is now unnecessary. The 
only pruning step is to refrain from adding to V any vector 
already included, which arises when two nearby belief points 
support the same vector 

In problems with a finite horizon / i , we run h value backups 
before expanding the set of belief points. In infinite-horizon 
problems, we select the horizon so that 

3.2 Belief point set expansion 
As explained above, PBVI focuses its planning on relevant 
beliefs. More specifically, our error bound below suggests 
that PBVI performs best when its belief set is uniformly dense 
in the set of reachable beliefs. So, we initialize the set B to 
contain the initial belief and expand B by greedily choos
ing new reachable beliefs that improve the worst-case density 
as rapidly as possible. 

The last inequality holds because each a-vector represents 
the reward achievable starting from some state and following 
some sequence of actions and observations. 

2Thc actual choice of norm doesn't appear to matter in practice; 
some of our experiments below used Euclidean distance (instead of 
L\) and the results appear identical. 

3We experimented with other strategies such as adding a fixed 
number of new beliefs, but since value iteration is much more ex
pensive than belief computation the above algorithm worked best. If 
desired, we can impose a maximum size on B based on time con
straints or performance requirements. 

4If not all beliefs are reachable, we don't need to sample all of 
densely, but replace by the set of reachable beliefs below. The 
error bounds and convergence results hold on 
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4 Experimental results 
The domain of Tag is based on the popular game of lasertag. 
The goal is to search for and tag a moving opponent [Rosen-
crantz et al, 2003]. Figure 2a shows the live robot as it 
moves in to capture an opponent. In our POMDP formula
tion, the opponent moves stochastically according to a fixed 
policy. The spatial configuration of the domain used for plan
ning is illustrated in Figure 2b. This domain is an order of 
magnitude larger (870 states) than mosr other POMDP prob
lems considered thus far in the literature [Cassandra, 1999], 
and is proposed as a new challenge for fast, scalable, POMDP 
algorithms. A single iteration of optimal value iteration on a 
problem of this size could produce over 1020 a-vectors before 
pruning. 

Figure 2: Tag domain (870 states, 5 actions, 30 observations) 

The state space is described by the cross-product of 
two features, Robot = a n d Opponent — 

Bom agenis siart in independently-
selected random positions, and the game finishes when 
Opponent The robot can select from five actions: 
{North, South, East, West, lag}. A reward of -1 is imposed 
for each motion action; the Tag action results in a +10 re
ward if Robot = Opponent, or - 1 0 otherwise. Throughout 
the game, the Robot's position is fully observable, and the ef
fect of a Move action has the predictable deterministic effect, 
e.g.: 

The position of the opponent is completely unobservable un
less both agents are in the same cell. At each step, the op
ponent (with omniscient knowledge) moves away from the 
robot with Pr = 0.8 and stays in place with Pr = 0.2, e.g.: 

Figure 3 shows the performance of PBV1 on the Tag do
main. Results are averaged over 10 runs of the algorithm, 
times 100 different (randomly chosen) start positions for each 
run. It shows the gradual improvement in performance as 
samples are added (each shown data point represents a new 
expansion of the belief set with value backups). In addition to 
PBVI, we also apply the QMDP approximation as a baseline 

domains. In the Tag domain, however, it lacks the represen
tational power to compute a good policy. 

5 Additional experiments 
5.1 Comparison on wel l -known problems 
To further analyze the performance of PBVI, we applied it 
to three well-known problems from the POMDP literature. 
We selected Maze33, Hallway and Hallway 2 because they arc 
commonly used to test scalable POMDP algorithms [Littman 
etal, 1995; Brafman, 1997; Poon, 2001 J. Figure 3 presents 
results for each domain. Replicating earlier experiments, re
sults for Maze33 arc averaged over 151 runs (reset after goal, 
terminate after 500 steps); results for Hallway and Hallway2 
are averaged over 251 runs (terminate at goal, max 251 steps). 
In all cases, PBVI is able to find a good policy. Table 1 
compares PBVl's performance with previously published re
sults, comparing goal completion rates, sum of rewards, pol
icy computation time, and number of required belief points. 
In all domains, PBVI achieves competitive performance, but 
with fewer samples. 

5.2 Val idat ion of the belief set expansion 
To further investigate the validity of our approach for gen
erating new belief states (Section 3.2), we compared our 
approach with three other techniques which might appear 
promising. In all cases, we assume that the initial belief b0 
(given as part of the model) is the sole point in the initial set, 
and consider four expansion methods: 

1. Random (RA) 
2. Stochastic Simulation with Random Action (SSRA) 
3. Stochastic Simulation with Greedy Action (SSGA) 
4. Stochastic Simulation with Explorative Action (SSEA) 

The RA method consists of sampling a belief point from a 
uniform distribution over the entire belief simplex. SSEA is 
the standard PBVI expansion heuristic (Section 3.2). SSRA 
similarly uses single-step forward simulation, but rather than 
try all actions, it randomly selects one and automatically ac
cepts the posterior belief unless it was already in B. Finally, 
SSGA uses the most recent value function solution to pick the 
greedy action at the given belief 6, and performs a single-step 
simulation to get a new belief 

We revisited the Hallway, Hallway2, and Tag problems 
from sections 4 and 5.1 to compare the performance of these 
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Figure 3: PBVI performance for four problems: Tag(left), Maze33(center-left), Hallway(center-right) and Hallway2(right) 

Table 1: Results for POMDP domains. Those marked were com
puted by us; other results were likely computed on different plat
forms, and therefore time comparisons may be approximate at best. 
All results assume a standard (not lookahead) controller. 

four heuristics. For each problem we apply PBVI using each 
of the belief-point selection heuristics, and include the QMDP 
approximation as a baseline comparison. Figure 4 shows the 
computation time versus the reward performance for each do
main. 

The key result from Figure 4 is the rightmost panel, which 
shows performance on the largest, most complicated domain. 
In this domain our SSEA rule clearly performs best. In 
smaller domains (left two panels) the choice of heuristic mat
ters less: all heuristics except random exploration (RA) per
form equivalently well. 

6 Related work 
Significant work has been done in recent years to improve 
the tractability of POMDP solutions. A number of increas
ingly efficient exact value iteration algorithms have been 
proposed [Cassandra et al., 1997; Kaelbling et al., 1998; 
Zhang and Zhang, 2001]. They are successful in finding op
timal solutions, however are generally limited to very small 
problems (a dozen states) since they plan optimally for all 
beliefs. PBVI avoids the exponential growth in plan size by 

restricting value updates to a finite set of (reachable) beliefs. 

There are several approximate value iteration algorithms 
which are related to PBVI. For example, there are many grid-
based methods which iteratively update the values of discrete 
belief points. These methods differ in how they partition the 
belief space into a grid [Brafman, 1997; Zhou and Hansen, 
2001]. 

More similar to PBVI are those approaches which update 
both the value and gradient at each grid point [Lovejoy, 1991; 
Hauskrecht, 2000; Poon, 2001]. While the actual point-based 
update is essentially the same between all of these, the over
all algorithms differ in a few important aspects. Whereas 
Poon only accepts updates that increase the value at a grid 
point (requiring special initialization of the value function), 
and Hauskrecht always keeps earlier a-vectors (causing the 
set to grow too quickly), PBVI requires no such assumptions. 
A more important benefit of PBVI is the theoretical guaran
tees it provides: our guarantees are more widely applicable 
and provide stronger error bounds than those for other point-
based updates. 

In addition, PBVI is significantly smarter than previous 
algorithms about how it selects belief points. PBVI selects 
only reachable beliefs; other algorithms use random beliefs, 
or (like Poon's and Lovejoy's) require the inclusion of a large 
number of fixed beliefs such as the corners of the probabil
ity simplex. Moreover, PBVI selects belief points which im
prove its error bounds as quickly as possible. In practice, our 
experiments on the large domain of lasertag demonstrate that 
PBVFs belief-selection rule handily outperforms several al
ternate methods. (Both Hauskrecht and Poon did consider 
using stochastic simulation to generate new points, but nei
ther found simulation to be superior to random point place
ments. We attribute this result to the smaller size of their test 
domains. We believe that as more POMDP research moves to 
larger planning domains, newer and smarter belief selection 
rules will become more and more important.) 

Gradient-based policy search methods have also been used 
to optimize POMDP solutions [Baxter and Bartlett, 2000; 
Kearns et al, 1999; Ng and Jordan, 2000], successfully solv
ing multi-dimensional, continuous-state problems. In our 
view, one of the strengths of these methods lies in the fact 
that they restrict optimization to reachable beliefs (as does 
PBVI). Unfortunately, policy search techniques can be ham
pered by low-gradient plateaus and poor local minima, and 
typically require the selection of a restricted policy class. 
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Figure 4: Belief expansion results for three problems: Hallway(left), Hallway2(center) and Tag(right) 

7 Conclusion 
This paper presents P B V I , a scalable anytime algorithm for 
approximately solving POMDPs. We applied PBVI to a 
robotic version of lasertag, where it successfully developed 
a policy for capturing a moving opponent. Other POMDP 
solvers had trouble computing useful policies for this domain. 
PBVI also compared favorably wi th other solvers on three 
wel l -known smaller test problems. We attribute PBVI 's suc
cess to two features, both of which directly target the curse 
of history. First, by using a trajectory-based approach to se
lect belief points, PBV I focuses planning on reachable be
liefs. Second, because it uses a fixed set of belief points, it 
can perform fast value backups. 

In experiments, P B V I beats back the curse of history far 
enough that we can solve POMDPs an order of magnitude 
larger than most previous algorithms. Wi th this success, we 
can now identify the next hurdle for POMDP research: con
trary to our expectation, it turns out to be the old-fashioned 
M D P problem of having too many distinct physical states. 
This problem hits us in the cost of updating the point-based 
value function vectors. (This cost is quadratic in the num
ber of physical states.) Whi le this problem is not necessar
i ly easy to overcome, we believe that sparse matrix computa
tions, together wi th other approaches f rom the existing liter
ature [Poupart and Bouti l ier, 2003; Roy and Gordon, 2003], 
w i l l allow us to to scale PBV I to problems which are at least 
another order of magnitude larger. So, PBV I represents a 
considerable step towards making POMDPs usable for real-
wor ld problems. 
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