
A Continuation Method for Nash Equilibria in Structured Games

Ben Blum
Stanford University

bblum@stanford.edu

Christian R. Shelton
Stanford University

cshelton@cs.stanford.edu

Daphne Koller
Stanford University

koller@cs.stanford.edu

Abstract

We describe algorithms for computing Nash equilibria in
structured game representations, including both graphi
cal games and multi-agent influence diagrams (MAIDs).
The algorithms are derived from a continuation method
for normal-form and extensive-form games due to Govin-
dan and Wilson; they follow a trajectory through the
space of perturbed games and their equilibria. Our algo
rithms exploit game structure through fast computation
of the Jacobian of the game's payoff function. They are
guaranteed to find at least one equilibrium of the game
and may find more. Our approach provides the first exact
algorithm for computing an exact equilibrium in graphi
cal games with arbitrary topology, and the first algorithm
to exploit fine-grain structural properties of MAIDs. We
present experimental results for our algorithms. The run
ning time for our graphical game algorithm is similar to,
and often better than, the running time of previous ap
proximate algorithms. Our algorithm for MAIDs can ef
fectively solve games that arc much larger than those that
could be solved using previous methods.

1 Introduction
Game theory is a mathematical framework that describes in
teractions between multiple rational agents and allows for
reasoning about their outcomes. However, the complexity
of standard game descriptions grows exponentially with the
number of agents involved. For many multi-agent situations,
this blowup presents a serious problem. Recent work in
artificial intelligence [La Mura, 2000; Kearns et al, 2001;
Koller and Milch, 2001] proposes the use of structured game
representations that utilize a notion of locality of interaction;
these representations allow a wide range of complex games
to be represented compactly.

In this paper we consider the task of computing Nash equi
libria for structured games. A Nash equilibrium is a strategy
profile such that it is no agent's interest to deviate unilaterally.
A naive approach to finding Nash equilibria is to convert the
structured game into a standard game representation, and ap
ply a standard game-theoretic solution algorithm iMcKelvey
and McLennan, 1996]. This approach is, in general, infea-
sible for all but the simplest games. We would like an algo
rithm that exploits the structure in these game representations
for efficient computation.

MULTIAGENT SYSTEMS

In this paper, we describe a set of algorithms that use con-
tinuation methods for solving structured games. These algo
rithms follow a trajectory of equilibria of perturbed games
until an equilibrium of the original game is found. Our algo
rithms are based on the recent work of Govindan and Wil
son [2002; 2003a; 2003b] (GW hereafter), which apply to
standard game representations (normal-form and extensive-
form). We show how the structure of the games can be ex
ploited to perform the key computational step of the algo
rithms of GW.

Our methods address both graphical games [Kearns et ai,
2001] and multi-agent influence diagrams (MAIDs) [Koller
and Milch, 2001]. We present the first algorithm for finding
exact equilibria in graphical games of arbitrary structure. We
also provide the first algorithm that can take advantage of the
fine-grained structure of MAIDs, and therefore can handle
MAIDs which are significantly outside the scope of previous
methods. We provide experimental results demonstrating the
efficiency of our approach relative to previous methods.

2 Game Representations and Equilibria
2.1 Game Theory
We begin by briefly reviewing concepts from game theory
used in this paper, referring to Owen [1995] for a good intro
duction. A game defines an interaction between a set N of
agents. Each agent n e N has a set of available strategies

, where a strategy determines the agent's behavior in the
game. The precise definition of the set depends on the
game representation, as we discuss below. A strategy pro-
file a defines a strategy for each Given a
strategy profile , the game defines a payoff for each
agent We use to denote the strategy profiles of
the agents N - _ . Similarly, we use to refer to
the set of all strategy profiles of agents in

A solution to a game is a prescription of a strategy profile
for the agents. The agent's goal is to maximize its payoff.
Thus, a basic desideratum for a solution profile is stability
— it should not be in any agent's interests to deviate from
it. More precisely, the fundamental notion of a Nash equilib
rium [Nash, 1951] is defined to be a strategy profile a such
that, for all for all
other strategies ' ~~ . Thus, if an agent knew that the oth
ers were playing according to an equilibrium profile, it would
have no incentive to deviate.

757

An e-equilibrium is a strategy profile such that no agent can
improve its expected payoff by more than by unilaterally
changing its strategy. Unfortunately, finding an -equilibrium
is not necessarily a step toward finding an exact equilibrium:
the fact that is an -equilibrium does not guarantee the ex
istence of an exact equilibrium in the neighborhood of a.

Normal-Form Games
A general-sum normal-form game defines a simultaneous-
move multiagent scenario in which each agent independently
selects an action and then receives a payoff that depends on
the actions selected by all of the agents. More precisely, let
G be a normal-form game with a set N of agents. Each agent
n N has a discrete action set Sn and a payoff array Gn
with entries for every action profile in

Equilibrium strategies often require that agents randomize
their choice of action. A mixed strategy is a probability
distribution over Sn. The set , is the set of all mixed strate
gies. The support of a mixed strategy is the set of actions in
Sn that have non-zero probability. A strategy for agent n
is said to be a pure strategy if it has only a single action in its
support. The set of mixed strategy profiles is
A mixed strategy profile is thus an m-vector, where
m = Every game is guaranteed to have at least
one mixed-strategy equilibrium, and the number of equilibria
may be exponential in the number of agents.

Extensive-Form Games
An extensive-form game is represented by a tree in which
each node represents a choice either of an agent or of nature.
Each of nature's choice nodes is associated with a probability
distribution over its outgoing branches. Each leaf of
the tree is associated with a vector of payoffs , where

denotes the payoff to agent at leaf . The choices
of the agents and nature dictate which path of the tree is fol
lowed and therefore the payoffs to the agents.

The decision nodes belonging to each agent are partitioned
into information sets, where each information set is a set of
states among which the agent cannot distinguish. Thus, an
agent's strategy must take the same action at all nodes in the
same information set. We define an agent history for a
node y in the tree and an agent n to be a sequence containing
the information sets traversed in the path from the root to y,
and the action selected at each one. Thus, two nodes have
the same agent-n history if the paths used to reach them are
indistinguishable to n. (The paths may differ in other ways,
such as nature's decisions or the decisions of other agents.)
We make the common assumption of perfect recall: an agent
does not forget information known nor the choices made at
previous decisions. More precisely, if two nodes y, y' are in
the same information set for agent then

We need a representation of a strategy for an extensive-
form game; unlike the case of normal-form games, there are
several quite different choices. For our purposes, the most
appropriate representation is the sequence form [Koller and
Megiddo, 1992; von Stengel, 1996]. Here, the strategy an for
an agent n is represented as a vector of real values of size hn,
one for each distinct history for a leaf z in the tree.
The number , abbreviated , is the product of
the probabilities controlled by agent n along the history

758

From this representation, we can easily derive the probability
of taking an action at a particular information set.

The set of sequence form strategies for agent n is therefore
a subset of , where is at most the number of leaves
in the tree. The set of legal sequence form strategies
for agent n is defined by a set of linear constraints on vec-
tors in . The set of sequence form strategy profiles is
then defined as The payoff to agent n in an
extensive-form game can be shown to be

(1)

Thus, the payoffs arc a sum, over the leaves in the tree, of the
payoff at a leaf times the product of the sequence form param
eters for that leaf.1 Importantly, this expression has a similar
multi-linear form to the payoff in a normal-form game, but us
ing sequence form strategies rather than mixed strategies. In
an extensive form game satisfying perfect recall, any mixed
strategy equilibrium can be represented using an essentially
equivalent sequence form strategy profile.

2.2 Structured Representations

Graphical Games
The size of the payoff arrays required to describe a normal-
form game grows exponentially with the number of agents.
Kearns et al. 12001] introduced the framework ol\ graphical
games, which provide a more structured representation based
on probabilistic graphical models. Graphical games capture
local structure in multi-agent interactions, allowing a com
pact representation for scenarios where each agent's payoff is
only affected by a small subset of other agents. Examples of
interactions where this structure occurs include agents that in
teract along organization hierarchies and agents that interact
according to geographic proximity.

A graphical game is described like a normal-form game.
The basic representation (slightly generalized) is a directed
graph with one node for each agent. An edge from agent n1

to agent n in the graph indicates that agent n's payoffs depend
on the action of agent n'. More precisely, we define Famn to
be the set of agents consisting of n itself and its parents in the
graph. The agent's payoff is an array indexed only by the
actions of the agents in Famn. Thus, the description of the
game is exponential in the in-degree of the graph and not in
the total number of agents. In this case, we use
to refer to strategy profiles of the agent in Famn

Multi-agent Influence Diagrams
The description length of extensive-form games often also
grows exponentially with the number of agents. In many
situations this large tree can be represented more com
pactly. Multi-agent influence diagrams (MAIDs) [Koller and
Milch, 2001] allow a structured representation of games in
volving time and information by extending influence dia
grams [Howard and Matheson, 1984] to the multi-agent case.

A MAID is represented as a directed acyclic graph over
nodes of three types: chance, decision, and utility. (Utility

1 For notational simplicity, Gn{z) includes nature's probabilities.

MULTIAGENT SYSTEMS

nodes are assumed to have no children.) Chance nodes repre
sent nature's actions, and a conditional probability distribu-
tion (CPD) is associated with each such node, describing the
distribution over outcomes of that variable conditioned on the
values of its parents. Each decision node is associated with
a single agent. The parents of a decision node represent the
variables whose values are known to the agent when mak
ing that decision. Thus, an agent's decision rule for a node
can specify a different strategy for each assignment of values
to the node's parents. In effect, each such assignment corre
sponds to an information set. A randomizing decision rule for
a decision node is simply a CPD: a distribution over its values
for each instantiation of its parents.

Each utility node is associated with an agent, and repre
sents a component in that agent's payoff. The utility node
takes real values as a deterministic function of its parents.
Thus, that component of the agent's payoff depends only on a
subset of the variables in the MAID. The agent's overall util
ity is the sum of the utilities obtained at its different utility
nodes. It is easy to show that a MAID defines an extensive-
form game. If we use CPDs and decision rules that are tree-
structured, then the MAID representation is no larger than
the corresponding extensive-form representation, and is expo
nentially smaller in many cases. Note that a graphical game is
simply a MAID where each agent has a single decision node
and a single utility node, and where the parents of an agent
n's utility node are the decision nodes for the agents in Famn.

3 Continuation Methods
We begin with a high-level overview of continuation meth
ods, referring the reader to [Watson, 2000] for a more detailed
discussion. Continuation methods work by solving a simpler
perturbed problem and then tracing the solution as the mag
nitude of the perturbation decreases, converging to a solution
to the original problem.

More precisely, let be a scalar parameterizing a contin
uum of perturbed problems. When = 0, the perturbed prob
lem is the original one; when = 1, the perturbed problem
is one for which the solution is known. Let w represent the
vector of real values of the solution. For any perturbed prob
lem defined by we characterize solutions by the equation

= 0, where F is a real-valued vector function (so
that 0 is a vector of zeros). The function F is such that if

= 0 holds then w is a solution to the problem per
turbed by .

The continuation method traces solutions along the mani
fold of solution pairs satisfying = 0. Specif
ically, if we have a solution pair we would like to
trace that solution to adjacent solutions. Differential changes
to w and must cancel out so that F remains equal to 0.
Thus, locally, changes dw and dX along the path must obey

which is equivalent to
the matrix equation

(2)

If the matrix has a null-space of rank 1 every
where, the curve is uniquely defined. If properly constructed,
the curve starting at = 1 is guaranteed to cross = 0, at

MULTIAGENT SYSTEMS

which point the corresponding value of w is a solution to the
original problem. A continuation method begins at the known
solution for = 1 . The null-space of the Jacobian at a
current solution defines a direction, along which the
solution is moved by a small amount. The process then re
peats, tracing the curve until = 0. The cost of each step in
this computation, given the Jacobian, is cubic in the size of
the Jacobian, due to the required matrix operations.

Continuation methods involve the tracing of a dynamical
system through the continuous variation of the parameter .
For computational purposes, discrete steps must be taken. As
a result, error inevitably accumulates as the path is traced.
One can use several techniques to reduce the error, which we
do not describe for lack of space. Unfortunately, these tech
niques can potentially send the algorithm into a cycle, and in
practice they occasionally do. If the algorithm cycles, random
restarts and a decrease in step size can improve convergence.

4 Continuation Methods for Games
We now review the work of Kohlberg and Mertens [1986]
and GW on applying the continuation method to the task of
finding equilibria in games. These algorithms form the ba
sis for our extension to structured games, described in the
next section. The continuation method perturbs the game by
adding A times a fixed bonus to each agent's payoffs, such
that an agent's bonus depends only on its own actions. If the
bonuses are large enough (and unique), the bonuses dominate
the original game structure, and the agents need not consider
their opponents' plays. Thus, for = 1, the perturbed game
has only one equilibrium: each agent plays the action with the
largest bonus. We then use the continuation method to follow
a path in the space of and equilibrium profiles for the re
sulting perturbed game, decreasing until it is zero; at this
point, the corresponding strategy profile is an equilibrium of
the original game. We now make this intuition more precise.

4.1 Normal Form Games
In order to apply Eq. (2), we need to characterize the equi
libria of perturbed games as the zeros of a function F. We
first define an auxiliary function measuring the benefit of de
viating from a given strategy profile. Specifically, is a
vector payoff function of the payoff to agent n for deviating
from the mixed strategy profile a by playing each action s:

We now define a retraction operator R : to
be an operator that maps arbitrary ra-vectors w to the point
in the space of mixed strategies which is nearest to w
in Euclidean distance. As outlined in the structure theo
rem of Kohlberg and Mertens [1986], an equilibrium is
recoverable from by the retraction operator R:

In fact, this condition is a full charac
terization of equilibria. Thus, we can define an equilibrium
as a solution to the equation Conversely,
if and we have the equivalent
condition that Thus, we can search
for a point _ which satisfies this equality, in which
case is guaranteed to be an equilibrium.

759

We now define the game perturbation and associated con
tinuation method. For a target game G with payoff function
V, we create an easily soluble perturbed game by adding an
rn-vector 6 of unique bonuses that agents receive for play
ing certain actions, independently of what all other agents
do. In perturbing the game G by b, we arrive at a new game

in which for each , and for any t
If we make 6 sufficiently

large, then has a unique equilibrium, in which each
agent plays the pure strategy s for which is maximal.

Now, let V be the payoff function for the target game G.
The induced payoff function is also perturbed from

. Thus, the form of our continuation equation is:

(3)
We have that is the payoff function for the perturbed
game is zero if and only if is an
equilibrium of the game is unperturbed, so

is an equilibrium of G.
The expensive step in the continuation method is the cal

culation of the Jacobian required for the computation
that maintains the constraint of Eq. (2). Here, we have that

, where I is the identity ma
trix. The hard part is the calculation of For pure strate
gies and , the value at location (s1, s2)
in is equal to the expected payoff to agent n1 when
it plays the pure strategy s1, agent plays the pure strategy
.s2, and all other agents act according to the strategy profile a:

Computing Eq. (4) requires a number of multiplications
which is exponential in the game size; the sum is over the
exponentially large space

4.2 Extensive F o r m Games
The same method applies to extensive-form games, using the
sequence form parameterization of strategies. We first need
to define the bonus vector, and the retraction operator which
allows us to characterize equilibria.

The bonus vector in the extensive-form adds a bonus for
each sequence of each agent. GW show that a sufficiently
large bonus guarantees a unique equilibrium for the perturbed
game. The retraction operator R takes a general vector and
projects it onto the valid region of sequence forms. As all of
the constraints are linear, the projection amounts to a decom
posable quadratic program (QP) that can be solved quickly.
We employ standard QP methods. The Jacobian of the retrac
tion is easily computable from the set of active constraints.

The solution for the sequence form is now surprisingly
similar to that of the normal-form. The key property of the
sequence form strategy representation is that the payoff func
tion is a multi-linear function of the extensive-form parame
ters, as shown in Eq. (1). The elements of the Jacobian
also have the same general structure. In particular the element
corresponding to sequence s1 for agent n1 and sequence s2
for agent n2 is

Figure 1: (a) An abstract diagram of the path. The horizontal axis
represents and the vertical axis represents the space of strategy
profiles (actually multidimensional). The algorithm starts on the
right at =1 and follows the dynamical system until = 0 at
point 1, where it has found an equilibrium of the original game. It
can continue to trace the path and find the equilibria labeled 2 and 3.
(b) Two-stage road building MAID tor three agents.

where is the set of leaves that are consistent with the
sequences s1 (for agent n1) and s2 (for agent n2)- We take

to be the empty set (and hence if s1 and s2
are incompatible. Eq. (5) is precisely analogous to Eq. (4) for
normal-form games. We have a sum, over outcomes, of the
utility of the outcome multiplied by the strategy probabilities
for all other agents. Note that this sum is over the leaves of
the tree, which may be exponential in the number of agents.

Zero-probability actions in extensive-form games give rise
to an additional subtlety. Such actions induce a probability
of zero for entire trajectories in the tree, possibly leading to
equilibria based on unrealizable threats and other undesirable
phenomena. For us, they can also lead to bifurcations in the
continuation path, preventing convergence. Thus, we con
strain all sequence form parameters to be greater than or equal
to e for some small e. This constraint ensures that the contin
uation path is a 1-manifold. The algorithm thus finds an equi
librium to a perturbed game, where agents have a small prob
ability of choosing an unintended action. As c tends to zero,
these equilibria converge to perfect equilibria of the original
game [Owen, 1995], a (nonempty) subset of all equilibria.
For e small enough, continuity implies that there is always
an exact perfect equilibrium in the vicinity of the perturbed
equilibrium, which can easily be found using local search.

4.3 Path Properties

In the case of normal-form games, the structure theorem of
Kohlberg and Mertens [1986] implies that, with probability
one over all choices for 6, the path of the algorithm is a one-
manifold without boundary. GW provide an analogous struc
ture theorem that guarantees the same property for extensive-
form games. Figure 1 (a) shows an abstract representation of
the path followed by the continuation method. The equilib
rium for large positive is unique, so the one-manifold can
not double back to the side of = Furthermore, the
perturbed games along the path can have only a finite number
of discrete equilibria, so the path cannot travel back and forth
indefinitely. Therefore, it must cross the = 0 hyperplane
at least once, yielding an equilibrium. In fact, the path may
cross multiple times, yielding many equilibria in a single run.
As the path must eventually continue to the side, it
wil l find an odd number of equilibria when run to completion.

In both normal-form and extensive-form games, the path
is piece-wise polynomial, with each piece corresponding to a

MULTIAGENT SYSTEMS 760

different support set of the strategy profile. These pieces are
called support cells. The path is not smooth at cell bound
aries, due to discontinuities in the Jacobian of the retrac
tion operator, and hence in when the support changes.
Thus, in following the path, care must be taken to step up to
these boundaries exactly.

In the case of two agents, the path is piece-wise linear and,
rather than taking steps, the algorithm can jump from "elbow"
to "elbow" along this path. When this algorithm is applied to
a two-agent game and a particular bonus vector is used, the
steps from support cell to support cell that the algorithm takes
are exactly equal to the pivots of the Lemke-Howson solution
algorithm [Lemke and Howson, 1964] for two-agent games,
and the two algorithms find precisely the same set of solu
tions. Thus, the continuation method is a strict generalization
of the Lemke-Howson algorithm that allows different pertur
bation rays and games of more than two agents.

4.4 I terated Polymatr ix Approx imat ion
Because perturbed games may themselves have an exponen
tial number of equilibria, and the path may wind back and
forth through any number of them, the continuation algorithm
can take a while to trace its way back to a solution to the orig
inal game. We can speed up the algorithm using an initializa
tion procedure based on the iterated polymatrix approxima
tion (IPA) algorithm of GW. A polymatrix game is a normal-
form game where the payoffs to a agent n are equal to the sum
of the payoffs from a set of two-agent games, each involving
n and another agent. Polymatrix games can be solved quickly
using the Lemke-Howson algorithm [1964].

Given a normal-form game G and a strategy profile c we
can construct a polymatrix game Pa whose Jacobian at o is
the same as the Jacobian of G's payoff function V at a. The
game Pa is a linearized approximation to G around cr, and
can be computed efficiently from the Jacobian of G. GW pro
vide an iterative algorithm that, in each step, takes a profile o
and improves it using the solution of the polymatrix approx
imation Pa. This algorithm is not guaranteed to converge,
but in practice, it quickly moves "near" a good solution. We
then construct a perturbed game close to the original game for
which this approximate equilibrium is an exact equilibrium.
The continuation method is then run from this starting point
to find an exact equilibrium of the original game.

5 Exploiting Structure
As mentioned above, the calculation of at each step of the
algorithm consumes most of the time. Both in normal-form
and (in the worst case) in extensive-form games, it requires
time that is exponential in the number of agents. However,
as we show in this section, when using a structured represen
tation such as a graphical game or a MAID, we can effec
tively exploit the structure of the game to drastically reduce
the computational time required.

5.1 Graphical Games
Consider the computation of the normal-form Jacobian in
Eq. (4). The key insight is that the choice of strategy for an
agent outside the family of n1 does not affect . This ob
servation allows us to compute the n1 entries in the Jacobian

MULTIAGENT SYSTEMS

locally, considering only n1 's family. More precisely, we can
consider two cases. If n2 Famn1, then

Letting / be the maximal family size, and d the maximal
number of actions per agent, we have that the computation of
the Jacobian requires time

5.2 MAIDs
The Jacobian for MAIDs
To find equilibria in MAIDs, we extend the sequence form
continuation method of Section 4.2. As above, our key task is
computing the Jacobian of Eq. (5). The Jacobian has an entry
for each pair of sequences in the game (one for each agent).
We therefore begin by noting that the sequence form repre
sentation for MAIDs with perfect recall is no larger than the
agent's decision rules for that MAID. Due to perfect recall,
the last decision node (in topological order) must have in
coming edges from all of its previous actions and all parents
of previous actions. Moreover, it must have an information
set for any distinct agent history. Thus, the agent's decision
rule for that final decision has the same size as the sequence
form. Hence, the dimension m of the Jacobian ma
trix is linear in the size of the MAID (where size, as usual,
includes the size of the parameterization).

We next turn to the computation of the Jacobian entries.
Eq. (5) can be rewritten as

(8)

A leaf node z in the extensive-form game is simply an as
signment x to all of the variables in the MAID, and
is n1's utility given x. The sequence probability is
the product of the probabilities for the decisions of agent
n in the assignment x. Thus, Eq. (8) is an expectation of

. The expectation is over the distribu
tion defined by the Bayesian network whose structure is
the same as the MAID, and where the agents' decision nodes
have CPDs determined by

The agent's utility is the sum of its utility nodes.
Due to linearity of expectation, we can perform the computa
tion separately for each of the agent's utility nodes, and then
simply add up the separate contributions. Thus, we assume
from here on, without loss of generality, that n1 has only a
single utility node U.

The value of depends only on the values
of the set of nodes £>„, consisting of n1;'s decision nodes and

761

their parents. Thus, instead of computing the probabilities for
all assignments to all variables, we need only to compute the
marginal joint distribution over , and From this
distribution, we can compute the expectation in Eq. (5).

Using Bayesian Network Inference
Our analysis above reduces the required computations sig
nificantly. We need only compute one joint distribution for
every pair of agents ri1, n 2 . This joint distribution is the one
defined by the Bayesian network . Naively, this compu
tation requires that we execute Bayesian network inference

times: once for each ordered pair of agents n1, n-2. For-
tunately, we can exploit the structure of the MAID to perform
this computation much more efficiently.

The basis for our method is the clique tree algorithm
of Lauritzen and Spiegelhalter [1998]. A clique tree for a
Bayesian network is a data structure defined over an undi
rected tree over a set of nodes C. Each node is a subset
of the nodes in B called a clique. The clique tree satisfies cer
tain important properties. It must be family preserving: for
each node X in B, there exists a clique such that X
and its parents are a subset of Ci. It also satisfies a separation
requirement: if C2 blocks the path from C1 to C3, then, in the
distribution defined by we have that the variables in C\ are
conditionally independent of those in C3 given those in C2.

Each clique maintains a data structure, called a potential,
which is an unnormalized distribution over the variables in
Ci. The size of the potential for Ci is therefore exponential in

. The clique tree inference algorithm proceeds by passing
messages from one clique to another in the tree. The mes
sages are used to update the potential in the receiving clique.
After a process in which messages have been sent in both
directions over each edge in the tree, the tree is said to be
calibrated; at this point, the potential of every clique Ci con
tains precisely the joint distribution over the variables in Ci

according to B.
We can use the clique tree algorithm to perform inference

over Ba. Now, consider the final decision node for agent ni.
Due to the perfect recall assumption, all of nis previous de-
cisions and all of their parents are also parents of this decision
node. The family preservation property therefore implies that
Dni is fully contained in some clique. Thus, the expectation
of Eq. (8) requires the computation of the joint distribution
over three cliques in the tree: the one containing (7, the one
containing Dni, and the one containing Dn2. We need to
compute this joint distribution for every pair of agents n1, n2 .

The first key insight is that we can reduce this problem
to one of computing the joint marginal distribution for all
pairs of cliques in the tree. Assume we have computed
PB(CI,CJ) for every pair of cliques Ci, Cj. Now, consider
any triple of cliques C1, C2, C3- There are two cases: ei
ther one of these cliques is on the path between the other
two, or not. In the first case, assume without loss of gen
erality that C2 is on the path from C\ to C3. In this case, by
the separation requirement, we have that PB(C1, C2 , C3) =
PB(C1C2)PB{C2,C3)/PB(C2)- In the second case, there
exists a unique clique C* which blocks the paths between any
pair of these cliques. Again, by the separation property, C*
renders these cliques conditionally independent, so we can
use a similar method to compute P B { C 1 , C2 , C3).

762

Thus, we have reduced the problem to one of computing
the marginals over all pairs of cliques in a calibrated clique-
tree. We can use dynamic programming to execute this pro
cess efficiently. We construct a table that contains PB(Ci, Cj)
for each pair of cliques Ci,Cj. We construct the table in or
der of length of the path from Ci to Cj. The base case is when
Ci and Cj are adjacent in the tree. In this case, we have that

The probability
expressions in the numerator are simply the clique potentials
in the calibrated tree. The denominator can be obtained by
marginalizing either of the two cliques. For cliques Ci and
Cj that are not adjacent, we let Ck be the node adjacent to
Cj on the path from Ci to Cj. The clique Ck is one step
closer to Ci, so, by construction, we have already computed
P(Ci ,C k) . We can now apply the separation property again:

Let be the number of cliques in the tree, and d be size
of the largest clique (the number of entries in its potential).
The cost of calibrating the clique tree for is . The
cost of computing Eq. (9) for all pairs of cliques is
Finally, the cost of computing the S i,S j entry of the Jacobian
is 0(d4). In games where interactions between the agents
are highly structured, the size d of the largest clique can be a
constant even as the number of agents grows. In this case,
the complexity grows only quadratically in the number of
cliques, and hence also in the number of agents.

6 Results
6.1 Graphica l Games
We compared two versions of our algorithm: cont, the sim
ple continuation method, and the continuation
method with the IPA initialization. We compared our results
to the published results of the the algorithm of Vickrey and
Roller 12002] (VK hereafter). The VK method only returns
e-equilibria, but their approach is the only one that applies
to graphical games whose interaction structure is not a (bi-
connected) tree and for which timing results are available.
The VK paper contains several different algorithms. We com
pared against the algorithm which had the smallest approxi
mation error for a given problem.

Following VK, our algorithms were run on two classes of
games, of varying size. The Road game, denoting a situa
tion where agents must build in land plots along a road, is
played on a 2-by-L grid; each agent has three actions, and
its payoffs depend only on the actions of its (grid) neighbors.
Following VK, we constructed a game where the payoff for
an agent is simply the sum of payoffs of games played sepa
rately with its neighbors, and where each such subgame has
the payoff structure of rock-paper-scissors. This game is, in
fact, a polymatrix game, and hence is very easy to solve us
ing our methods. We also experimented with a ring graph
with three actions per agent and random payoffs.

For each class of games, we chose a set of game sizes to run
on. For each, we selected, randomly in cases where the pay
offs were random, a set of at least ten (and up to one hundred
for MAIDs) test games to solve. We then solved each game

MULTIAGENT SYSTEMS

Figure 2: Results for graphical games: (a) Running time for road game with rock-paper-scissors payoffs. Results for ring game with random
payoffs: (b) running time; (c) number of iterations of cont; (d) average time per iteration of cont.

with a different random perturbation vector, 6, and recorded
the time and number of iterations necessary to reach the first
equilibrium. We then averaged over test cases. The error
bars show the variance due to the choice of perturbation vec
tor and, for random games, the choice of game. For smaller
games, the algorithms always converged to an equilibrium. In
about 40% of the larger games (more than 20 agents), the al
gorithms did not converge on the first trial; in these cases, we
restarted the same game with a different random perturbation
vector. On average, about 2 restarts were sufficient for these
difficult games. In a few large graphical games (e.g. 9% of
games with 45 agents), IPA did not converge after 10 restarts;
in these cases we did not record results for IPA+COnt. In the
other restarted cases, we recorded the time for the converging
run. Our results are shown in Figures 2(a,b).

In all cases, our algorithm found an equilibrium with error
at most , essentially machine precision. In the Road
games, we compared against the times for VK using their hill
climbing method which found -equilibria with error of 10 - 4 .
In these games, the cont method is more efficient for smaller
games, but then becomes more costly. Due to the polymatrix
nature of this game, the cont solves it immediately with
the Lemke-Howson algorithm, and is therefore significantly
less expensive than

In the random-payoff ring games, had an equilibrium
error of about 0.01 using their cost minimization method with
a grid discretization of Here, our algorithms are more ef
ficient than for smaller games (up to 20-30 agents), with

performing considerably better than cont. How
ever, the running time of our algorithms grows more rapidly
than that of so that for larger games, they become imprac
tical. Nevertheless, our algorithms performed well in games
with up to 50 agents and 3 actions per agent, games which
were previously intractable for exact algorithms.

Here, we also plotted the number of iterations and time
per iteration for cont in Figures 2(c,d). The number of itera
tions varies based both on the game and perturbation ray cho
sen. However, the time per iteration is almost exactly cubic as
predicted. We note that, when is used, the continuation
method converges almost immediately (within a second).

6.2 MAIDs
Roller and Milch [2001] define a relevance graph over the
decision nodes in a where there is an edge from Di to
D2 if the decision rule at D\ impacts the choice of decision
rule at D2- They show that the task of finding equilibria for a
MAID can be decomposed, in that only decision nodes in the

MULTIAGENT SYSTEMS

same strongly connected component in the relevance graph
must be considered together. However, their approach is un
able to deal with structure within a strongly connected com
ponent, and they resorted to converting the game to extensive
form, and using a standard equilibrium solver. Our approach
addresses the complementary problem, dealing specifically
with this finer-grained structure. Thus, we focused our exper
iments on MAIDs with cyclic relevance graphs.

We ran our algorithms on two classes of games, with vary
ing sizes. The first, a simple chain, alternates between deci
sion and chance nodes with each decision node belonging to
a different agent. Each agent has two utility nodes, each con
nected to its decision node and to a neighbor's (except for the
end agents who have one utility node for their single neigh
bor). Al l probability tables and payoff matrices are random.
Our second example is shown in Figure 1(b). It is an exten
sion of the graphical road game from above. Each agent must
submit plans simultaneously for the type of building
(home or store) that they will build along a road. However,
building proceeds from left to right and so before
committing to a build, an agent can see a noisy estimate of
the plans of the agent to its left . Agents would pre
fer to be the first one to start a new type of building (i.e., be
different than their left neighbors, but the same as their right
neighbors). They also take a penalty if their building and plan
decisions differ. Carefully chosen payoffs ensure non-trivial
mixed strategies.

Figures 3(a,b) show the running times for computing an
equilibrium as the number of agents is increased for both
types of games. We compared our results to those achieved
by converting the game to extensive-form and running
bit, a standard equilibrium computation package. Our timing
results for Gambit do not include the time for the conversion
to extensive-form.

Figures 3(c,d) show the number of iterations and running
time per iteration for the case of the two-stage road game.
The running time per iteration is once again well fit by a cu
bic. The variance is mainly due to the execution of the retrac
tion operator whose running time depends on the number of
strategies in the support.

7 Discussion and Conclusions
In the last few years, several papers have addressed the is
sue of finding equilibria in structured games. For graphical
games, the exact algorithms proposed so far apply only to the
very restricted class of games where the interaction structure

763

Figure 3: Results for MAIDs: (a) Running times for the chain MAID. Results for two-stage Road MAID: (b) running time; (c) number of
iterations; (d) time per iteration.

is an undirected tree, and where each has only two possible
actions [Kearns et ai, 2001; Li t tman et al, 2002].

There have been several algorithms proposed for the com
putation of e-equilibria in general graphical games, most of
which (impl ic i t ly or expl ici t ly) define an equil ibr ium as a
set of constraints over a discretized space of mixed strate
gies, and then use some constraint solving method: Kearns
et al [2001] use a tree-propagation algorithm; Vickrey, and
Koller [2002] use variable elimination methods (VK1) ; and
Ort iz and Kearns [2003] use arc-consi;.tency constraint prop
agation fol lowed by search. Vickrey and Koller [2002] also
propose a gradient ascent algorithm (VK2) . The running
times of KLS and V K 1 both depend on the tree-width of the
graph, whereas the running times of our algorithm, V K 2 , and
OK depend on the degree of the graph. However, these latter
three algorithms all require mult iple iterations and no bounds
are currently known on the number of iterations required.

For M A I D s , Koller and Mi l ch [2001] (K M) define a no
tion of independence between agents' decision, and provide
an algorithm that can decompose the problem based on fair ly
coarse independence structure. Our algorithm is able to ex
ploit a much finer-grained structure, resolving an open prob
lem left by K M . La Mura [2000] (L M) proposes a continu
ation method for finding one or all equil ibria in a G net, a
representation which is very similar to M A I D s . This pro
posal only exploits a very l imited set of structural proper
ties (a strict subset of KM and of our algorithm). The pro
posal was also never implemented, and several issues regard
ing non-converging paths seem unresolved.

We have presented an algorithm for computing exact equi
l ibria in structured games. Our algorithm is based on the
methods of GW, but shows how the key computational steps
in their approach can be performed much more efficiently by
exploit ing the game structure. Our method allows us to pro
vide the first exact algorithm for general graphical games, and
the first algorithm that takes fu l l advantage of the indepen
dence structure of a M A I D . Our methods can find exact equi
l ibria in games wi th large numbers of agents, games which
were previously intractable for exact methods.

Acknowledgments. This work was supported by ONR
M U R I Grant N00014-00-1-0637, and by A i r Force contract
F30602-00-2-0598 under DARPA's TASK program.

References
[Govindan and Wilson, 2002] S. Govindan and R. Wilson. Struc

ture theorems for game trees. Proc. Natl Academy of Sciences,
99(13):9077-9080, 2002.

764

[Govindan and Wilson, 2003a] S. Govindan and R. Wilson. Com
puting Nash equilibria by iterated polymatrix approximation.
J. Economic Dynamics and Control, 2003. to appear.

[Govindan and Wilson, 2003b] S. Govindan and R. Wilson. A
global Newton method to compute Nash equilibria. / Economic
Theory, 2003. to appear.

[Howard and Matheson, 1984] R. A. Howard and J. E. Matheson.
Influence diagrams. In Readings on the Principles and Applica
tions of Decision Analysis, volume 2, pages 719-762. Strategic
Decision Group, 1984. article dated 1981.

[Kearns et al, 2001] M. Kearns, M. L. Littman, and S. Singh.
Graphical models for game theory. In Proc. UAI, 2001.

iKohlbcrg and Mertens, 1986] E. Kohlberg and J.-F. Mertens. On
the strategic stability of equilibria. Econometrica, 54(5): 1003-
1038, September 1986.

I Koller and Megiddo, 1992] D. Koller and N. Megiddo. The conv
plexity of two-person zero-sum games in extensive form. Games
and Economic Bahavior, 4:528-552, 1992.

[Kollcr and Milch, 2001J D. Kollcr and B. Milch. Multi-agent in
fluence diagrams for representing and solving games. In Proc.
IJCAI, pages 1027-1034, 2001.

[La Mura, 2000] P. La Mura. Game networks. In Proc. UAI, pages
335-342, 2000.

lLauritzen and Spiegelhalter, 1998] S. L. Lauritzen and D. J.
Spiegelha Iter. Local computations with probabilities on graph
ical structures and their application to expert systems. J Royal
Statistical Society, B 50(2): 157-224, 1998.

[Lemke and Howson, 1964] C. E. Lemke and J. T. Howson, Jr.
Equilibrium points in bimatrix games. J. Society of Applied
Mathematics, 12(2):413-423, June 1964.

[Littman et al, 2002] M. L. Littman, M. Kearns, and S. Singh. An
efficient exact algorithm for singly connected graphical games.
In NIPS-14, volume 2, pages 817-823, 2002.

[McKelvey and McLennan, 1996] R. D. McKelvey and A. McLen
nan. Computation of equilibria in finite games. In Handbook of
Computational Economics, vol. 1, pages 87-142. Elsevier, 1996.

[Nash, 1951] J. Nash. Non-cooperative games. The Annals of
Mathematics, 52(2):286-295, September 1951.

[Ortiz and Kearns, 20031 L. E. Ortiz and M. Kearns. Nash propa
gation for loopy graphical games. In NIPS-15, 2003. to appear.

[Owen, 1995] G. Owen. Game Theory. Academic Press, UK, 1995.
[Vickrey and Koller, 2002] D. Vickrey and D. Koller. Multi-agent

algorithms for solving graphical games. In Proc. AAAI, 2002.
[von Stengel, 19961 B. von Stengel. Efficient computation of be

havior strategies. Games and Economic Behavior, 14, 1996.
[Watson, 2000] L. T. Watson. Theory of globally convergent

probability-one homotopies for nonlinear programming. SIAM
J. on Optimization, l l (3):76I-780, 2000.

MULTIAGENT SYSTEMS

