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Abstract 

We describe algorithms for computing Nash equilibria in 
structured game representations, including both graphi
cal games and multi-agent influence diagrams (MAIDs). 
The algorithms are derived from a continuation method 
for normal-form and extensive-form games due to Govin-
dan and Wilson; they follow a trajectory through the 
space of perturbed games and their equilibria. Our algo
rithms exploit game structure through fast computation 
of the Jacobian of the game's payoff function. They are 
guaranteed to find at least one equilibrium of the game 
and may find more. Our approach provides the first exact 
algorithm for computing an exact equilibrium in graphi
cal games with arbitrary topology, and the first algorithm 
to exploit fine-grain structural properties of MAIDs. We 
present experimental results for our algorithms. The run
ning time for our graphical game algorithm is similar to, 
and often better than, the running time of previous ap
proximate algorithms. Our algorithm for MAIDs can ef
fectively solve games that arc much larger than those that 
could be solved using previous methods. 

1 Introduction 
Game theory is a mathematical framework that describes in
teractions between multiple rational agents and allows for 
reasoning about their outcomes. However, the complexity 
of standard game descriptions grows exponentially with the 
number of agents involved. For many multi-agent situations, 
this blowup presents a serious problem. Recent work in 
artificial intelligence [La Mura, 2000; Kearns et al, 2001; 
Koller and Milch, 2001 ] proposes the use of structured game 
representations that utilize a notion of locality of interaction; 
these representations allow a wide range of complex games 
to be represented compactly. 

In this paper we consider the task of computing Nash equi
libria for structured games. A Nash equilibrium is a strategy 
profile such that it is no agent's interest to deviate unilaterally. 
A naive approach to finding Nash equilibria is to convert the 
structured game into a standard game representation, and ap
ply a standard game-theoretic solution algorithm iMcKelvey 
and McLennan, 1996]. This approach is, in general, infea-
sible for all but the simplest games. We would like an algo
rithm that exploits the structure in these game representations 
for efficient computation. 
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In this paper, we describe a set of algorithms that use con-
tinuation methods for solving structured games. These algo
rithms follow a trajectory of equilibria of perturbed games 
until an equilibrium of the original game is found. Our algo
rithms are based on the recent work of Govindan and Wil
son [2002; 2003a; 2003b] (GW hereafter), which apply to 
standard game representations (normal-form and extensive-
form). We show how the structure of the games can be ex
ploited to perform the key computational step of the algo
rithms of GW. 

Our methods address both graphical games [Kearns et ai, 
2001] and multi-agent influence diagrams (MAIDs) [Koller 
and Milch, 2001]. We present the first algorithm for finding 
exact equilibria in graphical games of arbitrary structure. We 
also provide the first algorithm that can take advantage of the 
fine-grained structure of MAIDs, and therefore can handle 
MAIDs which are significantly outside the scope of previous 
methods. We provide experimental results demonstrating the 
efficiency of our approach relative to previous methods. 

2 Game Representations and Equilibria 
2.1 Game Theory 
We begin by briefly reviewing concepts from game theory 
used in this paper, referring to Owen [1995] for a good intro
duction. A game defines an interaction between a set N of 
agents. Each agent n e N has a set of available strategies 

, where a strategy determines the agent's behavior in the 
game. The precise definition of the set depends on the 
game representation, as we discuss below. A strategy pro-
file a defines a strategy for each Given a 
strategy profile , the game defines a payoff for each 
agent We use to denote the strategy profiles of 
the agents N - _ . Similarly, we use to refer to 
the set of all strategy profiles of agents in  

A solution to a game is a prescription of a strategy profile 
for the agents. The agent's goal is to maximize its payoff. 
Thus, a basic desideratum for a solution profile is stability 
— it should not be in any agent's interests to deviate from 
it. More precisely, the fundamental notion of a Nash equilib
rium [Nash, 1951] is defined to be a strategy profile a such 
that, for all for all 
other strategies ' ~~ . Thus, if an agent knew that the oth
ers were playing according to an equilibrium profile, it would 
have no incentive to deviate. 
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An e-equilibrium is a strategy profile such that no agent can 
improve its expected payoff by more than by unilaterally 
changing its strategy. Unfortunately, finding an -equilibrium 
is not necessarily a step toward finding an exact equilibrium: 
the fact that is an -equilibrium does not guarantee the ex
istence of an exact equilibrium in the neighborhood of a. 

Normal-Form Games 
A general-sum normal-form game defines a simultaneous-
move multiagent scenario in which each agent independently 
selects an action and then receives a payoff that depends on 
the actions selected by all of the agents. More precisely, let 
G be a normal-form game with a set N of agents. Each agent 
n N has a discrete action set Sn and a payoff array Gn 
with entries for every action profile in  

Equilibrium strategies often require that agents randomize 
their choice of action. A mixed strategy is a probability 
distribution over Sn. The set , is the set of all mixed strate
gies. The support of a mixed strategy is the set of actions in 
Sn that have non-zero probability. A strategy for agent n 
is said to be a pure strategy if it has only a single action in its 
support. The set of mixed strategy profiles is 
A mixed strategy profile is thus an m-vector, where 
m = Every game is guaranteed to have at least 
one mixed-strategy equilibrium, and the number of equilibria 
may be exponential in the number of agents. 

Extensive-Form Games 
An extensive-form game is represented by a tree in which 
each node represents a choice either of an agent or of nature. 
Each of nature's choice nodes is associated with a probability 
distribution over its outgoing branches. Each leaf of 
the tree is associated with a vector of payoffs , where 

denotes the payoff to agent at leaf . The choices 
of the agents and nature dictate which path of the tree is fol
lowed and therefore the payoffs to the agents. 

The decision nodes belonging to each agent are partitioned 
into information sets, where each information set is a set of 
states among which the agent cannot distinguish. Thus, an 
agent's strategy must take the same action at all nodes in the 
same information set. We define an agent history for a 
node y in the tree and an agent n to be a sequence containing 
the information sets traversed in the path from the root to y, 
and the action selected at each one. Thus, two nodes have 
the same agent-n history if the paths used to reach them are 
indistinguishable to n. (The paths may differ in other ways, 
such as nature's decisions or the decisions of other agents.) 
We make the common assumption of perfect recall: an agent 
does not forget information known nor the choices made at 
previous decisions. More precisely, if two nodes y, y' are in 
the same information set for agent then  

We need a representation of a strategy for an extensive-
form game; unlike the case of normal-form games, there are 
several quite different choices. For our purposes, the most 
appropriate representation is the sequence form [Koller and 
Megiddo, 1992; von Stengel, 1996]. Here, the strategy an for 
an agent n is represented as a vector of real values of size hn, 
one for each distinct history for a leaf z in the tree. 
The number , abbreviated , is the product of 
the probabilities controlled by agent n along the history  
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From this representation, we can easily derive the probability 
of taking an action at a particular information set. 

The set of sequence form strategies for agent n is therefore 
a subset of , where is at most the number of leaves 
in the tree. The set of legal sequence form strategies 
for agent n is defined by a set of linear constraints on vec-
tors in . The set of sequence form strategy profiles is 
then defined as The payoff to agent n in an 
extensive-form game can be shown to be 

(1) 

Thus, the payoffs arc a sum, over the leaves in the tree, of the 
payoff at a leaf times the product of the sequence form param
eters for that leaf.1 Importantly, this expression has a similar 
multi-linear form to the payoff in a normal-form game, but us
ing sequence form strategies rather than mixed strategies. In 
an extensive form game satisfying perfect recall, any mixed 
strategy equilibrium can be represented using an essentially 
equivalent sequence form strategy profile. 

2.2 Structured Representations 

Graphical Games 
The size of the payoff arrays required to describe a normal-
form game grows exponentially with the number of agents. 
Kearns et al. 12001] introduced the framework ol\ graphical 
games, which provide a more structured representation based 
on probabilistic graphical models. Graphical games capture 
local structure in multi-agent interactions, allowing a com
pact representation for scenarios where each agent's payoff is 
only affected by a small subset of other agents. Examples of 
interactions where this structure occurs include agents that in
teract along organization hierarchies and agents that interact 
according to geographic proximity. 

A graphical game is described like a normal-form game. 
The basic representation (slightly generalized) is a directed 
graph with one node for each agent. An edge from agent n1 

to agent n in the graph indicates that agent n's payoffs depend 
on the action of agent n'. More precisely, we define Famn to 
be the set of agents consisting of n itself and its parents in the 
graph. The agent's payoff is an array indexed only by the 
actions of the agents in Famn. Thus, the description of the 
game is exponential in the in-degree of the graph and not in 
the total number of agents. In this case, we use 
to refer to strategy profiles of the agent in Famn  

Multi-agent Influence Diagrams 
The description length of extensive-form games often also 
grows exponentially with the number of agents. In many 
situations this large tree can be represented more com
pactly. Multi-agent influence diagrams (MAIDs) [Koller and 
Milch, 2001] allow a structured representation of games in
volving time and information by extending influence dia
grams [Howard and Matheson, 1984] to the multi-agent case. 

A MAID is represented as a directed acyclic graph over 
nodes of three types: chance, decision, and utility. (Utility 

1 For notational simplicity, Gn{z) includes nature's probabilities. 
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nodes are assumed to have no children.) Chance nodes repre
sent nature's actions, and a conditional probability distribu-
tion (CPD) is associated with each such node, describing the 
distribution over outcomes of that variable conditioned on the 
values of its parents. Each decision node is associated with 
a single agent. The parents of a decision node represent the 
variables whose values are known to the agent when mak
ing that decision. Thus, an agent's decision rule for a node 
can specify a different strategy for each assignment of values 
to the node's parents. In effect, each such assignment corre
sponds to an information set. A randomizing decision rule for 
a decision node is simply a CPD: a distribution over its values 
for each instantiation of its parents. 

Each utility node is associated with an agent, and repre
sents a component in that agent's payoff. The utility node 
takes real values as a deterministic function of its parents. 
Thus, that component of the agent's payoff depends only on a 
subset of the variables in the MAID. The agent's overall util
ity is the sum of the utilities obtained at its different utility 
nodes. It is easy to show that a MAID defines an extensive-
form game. If we use CPDs and decision rules that are tree-
structured, then the MAID representation is no larger than 
the corresponding extensive-form representation, and is expo
nentially smaller in many cases. Note that a graphical game is 
simply a MAID where each agent has a single decision node 
and a single utility node, and where the parents of an agent 
n's utility node are the decision nodes for the agents in Famn. 

3 Continuation Methods 
We begin with a high-level overview of continuation meth
ods, referring the reader to [Watson, 2000] for a more detailed 
discussion. Continuation methods work by solving a simpler 
perturbed problem and then tracing the solution as the mag
nitude of the perturbation decreases, converging to a solution 
to the original problem. 

More precisely, let be a scalar parameterizing a contin
uum of perturbed problems. When = 0, the perturbed prob
lem is the original one; when = 1, the perturbed problem 
is one for which the solution is known. Let w represent the 
vector of real values of the solution. For any perturbed prob
lem defined by  we characterize solutions by the equation 

= 0, where F is a real-valued vector function (so 
that 0 is a vector of zeros). The function F is such that if 

= 0 holds then w is a solution to the problem per
turbed by . 

The continuation method traces solutions along the mani
fold of solution pairs satisfying = 0. Specif
ically, if we have a solution pair we would like to 
trace that solution to adjacent solutions. Differential changes 
to w and must cancel out so that F remains equal to 0. 
Thus, locally, changes dw and dX along the path must obey 

which is equivalent to 
the matrix equation 

(2) 

If the matrix has a null-space of rank 1 every
where, the curve is uniquely defined. If properly constructed, 
the curve starting at = 1 is guaranteed to cross = 0, at 
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which point the corresponding value of w is a solution to the 
original problem. A continuation method begins at the known 
solution for = 1 . The null-space of the Jacobian at a 
current solution defines a direction, along which the 
solution is moved by a small amount. The process then re
peats, tracing the curve until = 0. The cost of each step in 
this computation, given the Jacobian, is cubic in the size of 
the Jacobian, due to the required matrix operations. 

Continuation methods involve the tracing of a dynamical 
system through the continuous variation of the parameter . 
For computational purposes, discrete steps must be taken. As 
a result, error inevitably accumulates as the path is traced. 
One can use several techniques to reduce the error, which we 
do not describe for lack of space. Unfortunately, these tech
niques can potentially send the algorithm into a cycle, and in 
practice they occasionally do. If the algorithm cycles, random 
restarts and a decrease in step size can improve convergence. 

4 Continuation Methods for Games 
We now review the work of Kohlberg and Mertens [1986] 
and GW on applying the continuation method to the task of 
finding equilibria in games. These algorithms form the ba
sis for our extension to structured games, described in the 
next section. The continuation method perturbs the game by 
adding A times a fixed bonus to each agent's payoffs, such 
that an agent's bonus depends only on its own actions. If the 
bonuses are large enough (and unique), the bonuses dominate 
the original game structure, and the agents need not consider 
their opponents' plays. Thus, for = 1, the perturbed game 
has only one equilibrium: each agent plays the action with the 
largest bonus. We then use the continuation method to follow 
a path in the space of and equilibrium profiles for the re
sulting perturbed game, decreasing until it is zero; at this 
point, the corresponding strategy profile is an equilibrium of 
the original game. We now make this intuition more precise. 

4.1 Normal Form Games 
In order to apply Eq. (2), we need to characterize the equi
libria of perturbed games as the zeros of a function F. We 
first define an auxiliary function measuring the benefit of de
viating from a given strategy profile. Specifically, is a 
vector payoff function of the payoff to agent n for deviating 
from the mixed strategy profile a by playing each action s: 

We now define a retraction operator R : to 
be an operator that maps arbitrary ra-vectors w to the point 
in the space of mixed strategies which is nearest to w 
in Euclidean distance. As outlined in the structure theo
rem of Kohlberg and Mertens [1986], an equilibrium is 
recoverable from by the retraction operator R: 

In fact, this condition is a full charac
terization of equilibria. Thus, we can define an equilibrium 
as a solution to the equation Conversely, 
if and we have the equivalent 
condition that Thus, we can search 
for a point _ which satisfies this equality, in which 
case is guaranteed to be an equilibrium. 
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We now define the game perturbation and associated con
tinuation method. For a target game G with payoff function 
V, we create an easily soluble perturbed game by adding an 
rn-vector 6 of unique bonuses that agents receive for play
ing certain actions, independently of what all other agents 
do. In perturbing the game G by b, we arrive at a new game 

in which for each , and for any t  
If we make 6 sufficiently 

large, then has a unique equilibrium, in which each 
agent plays the pure strategy s for which is maximal. 

Now, let V be the payoff function for the target game G. 
The induced payoff function is also perturbed from 

. Thus, the form of our continuation equation is: 

(3) 
We have that is the payoff function for the perturbed 
game is zero if and only if is an 
equilibrium of the game is unperturbed, so 

is an equilibrium of G. 
The expensive step in the continuation method is the cal

culation of the Jacobian required for the computation 
that maintains the constraint of Eq. (2). Here, we have that 

, where I is the identity ma
trix. The hard part is the calculation of For pure strate
gies and , the value at location (s1, s2) 
in is equal to the expected payoff to agent n1 when 
it plays the pure strategy s1, agent plays the pure strategy 
.s2, and all other agents act according to the strategy profile a: 

Computing Eq. (4) requires a number of multiplications 
which is exponential in the game size; the sum is over the 
exponentially large space  

4.2 Extensive F o r m Games 
The same method applies to extensive-form games, using the 
sequence form parameterization of strategies. We first need 
to define the bonus vector, and the retraction operator which 
allows us to characterize equilibria. 

The bonus vector in the extensive-form adds a bonus for 
each sequence of each agent. GW show that a sufficiently 
large bonus guarantees a unique equilibrium for the perturbed 
game. The retraction operator R takes a general vector and 
projects it onto the valid region of sequence forms. As all of 
the constraints are linear, the projection amounts to a decom
posable quadratic program (QP) that can be solved quickly. 
We employ standard QP methods. The Jacobian of the retrac
tion is easily computable from the set of active constraints. 

The solution for the sequence form is now surprisingly 
similar to that of the normal-form. The key property of the 
sequence form strategy representation is that the payoff func
tion is a multi-linear function of the extensive-form parame
ters, as shown in Eq. (1). The elements of the Jacobian 
also have the same general structure. In particular the element 
corresponding to sequence s1 for agent n1 and sequence s2 
for agent n2 is 

Figure 1: (a) An abstract diagram of the path. The horizontal axis 
represents and the vertical axis represents the space of strategy 
profiles (actually multidimensional). The algorithm starts on the 
right at =1 and follows the dynamical system until = 0 at 
point 1, where it has found an equilibrium of the original game. It 
can continue to trace the path and find the equilibria labeled 2 and 3. 
(b) Two-stage road building MAID tor three agents. 

where is the set of leaves that are consistent with the 
sequences s1 (for agent n1) and s2 (for agent n2)- We take 

to be the empty set (and hence if s1 and s2 
are incompatible. Eq. (5) is precisely analogous to Eq. (4) for 
normal-form games. We have a sum, over outcomes, of the 
utility of the outcome multiplied by the strategy probabilities 
for all other agents. Note that this sum is over the leaves of 
the tree, which may be exponential in the number of agents. 

Zero-probability actions in extensive-form games give rise 
to an additional subtlety. Such actions induce a probability 
of zero for entire trajectories in the tree, possibly leading to 
equilibria based on unrealizable threats and other undesirable 
phenomena. For us, they can also lead to bifurcations in the 
continuation path, preventing convergence. Thus, we con
strain all sequence form parameters to be greater than or equal 
to e for some small e. This constraint ensures that the contin
uation path is a 1-manifold. The algorithm thus finds an equi
librium to a perturbed game, where agents have a small prob
ability of choosing an unintended action. As c tends to zero, 
these equilibria converge to perfect equilibria of the original 
game [Owen, 1995], a (nonempty) subset of all equilibria. 
For e small enough, continuity implies that there is always 
an exact perfect equilibrium in the vicinity of the perturbed 
equilibrium, which can easily be found using local search. 

4.3 Path Properties 

In the case of normal-form games, the structure theorem of 
Kohlberg and Mertens [1986] implies that, with probability 
one over all choices for 6, the path of the algorithm is a one-
manifold without boundary. GW provide an analogous struc
ture theorem that guarantees the same property for extensive-
form games. Figure 1 (a) shows an abstract representation of 
the path followed by the continuation method. The equilib
rium for large positive is unique, so the one-manifold can
not double back to the side of = Furthermore, the 
perturbed games along the path can have only a finite number 
of discrete equilibria, so the path cannot travel back and forth 
indefinitely. Therefore, it must cross the = 0 hyperplane 
at least once, yielding an equilibrium. In fact, the path may 
cross multiple times, yielding many equilibria in a single run. 
As the path must eventually continue to the side, it 
wil l find an odd number of equilibria when run to completion. 

In both normal-form and extensive-form games, the path 
is piece-wise polynomial, with each piece corresponding to a 
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different support set of the strategy profile. These pieces are 
called support cells. The path is not smooth at cell bound
aries, due to discontinuities in the Jacobian of the retrac
tion operator, and hence in when the support changes. 
Thus, in following the path, care must be taken to step up to 
these boundaries exactly. 

In the case of two agents, the path is piece-wise linear and, 
rather than taking steps, the algorithm can jump from "elbow" 
to "elbow" along this path. When this algorithm is applied to 
a two-agent game and a particular bonus vector is used, the 
steps from support cell to support cell that the algorithm takes 
are exactly equal to the pivots of the Lemke-Howson solution 
algorithm [Lemke and Howson, 1964] for two-agent games, 
and the two algorithms find precisely the same set of solu
tions. Thus, the continuation method is a strict generalization 
of the Lemke-Howson algorithm that allows different pertur
bation rays and games of more than two agents. 

4.4 I terated Polymatr ix Approx imat ion 
Because perturbed games may themselves have an exponen
tial number of equilibria, and the path may wind back and 
forth through any number of them, the continuation algorithm 
can take a while to trace its way back to a solution to the orig
inal game. We can speed up the algorithm using an initializa
tion procedure based on the iterated polymatrix approxima
tion (IPA) algorithm of GW. A polymatrix game is a normal-
form game where the payoffs to a agent n are equal to the sum 
of the payoffs from a set of two-agent games, each involving 
n and another agent. Polymatrix games can be solved quickly 
using the Lemke-Howson algorithm [1964]. 

Given a normal-form game G and a strategy profile c we 
can construct a polymatrix game Pa whose Jacobian at o is 
the same as the Jacobian of G's payoff function V at a. The 
game Pa is a linearized approximation to G around cr, and 
can be computed efficiently from the Jacobian of G. GW pro
vide an iterative algorithm that, in each step, takes a profile o 
and improves it using the solution of the polymatrix approx
imation Pa. This algorithm is not guaranteed to converge, 
but in practice, it quickly moves "near" a good solution. We 
then construct a perturbed game close to the original game for 
which this approximate equilibrium is an exact equilibrium. 
The continuation method is then run from this starting point 
to find an exact equilibrium of the original game. 

5 Exploiting Structure 
As mentioned above, the calculation of at each step of the 
algorithm consumes most of the time. Both in normal-form 
and (in the worst case) in extensive-form games, it requires 
time that is exponential in the number of agents. However, 
as we show in this section, when using a structured represen
tation such as a graphical game or a MAID, we can effec
tively exploit the structure of the game to drastically reduce 
the computational time required. 

5.1 Graphical Games 
Consider the computation of the normal-form Jacobian in 
Eq. (4). The key insight is that the choice of strategy for an 
agent outside the family of n1 does not affect . This ob
servation allows us to compute the n1 entries in the Jacobian 
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locally, considering only n1 's family. More precisely, we can 
consider two cases. If n2 Famn1, then 

Letting / be the maximal family size, and d the maximal 
number of actions per agent, we have that the computation of 
the Jacobian requires time  

5.2 MAIDs 
The Jacobian for MAIDs 
To find equilibria in MAIDs, we extend the sequence form 
continuation method of Section 4.2. As above, our key task is 
computing the Jacobian of Eq. (5). The Jacobian has an entry 
for each pair of sequences in the game (one for each agent). 
We therefore begin by noting that the sequence form repre
sentation for MAIDs with perfect recall is no larger than the 
agent's decision rules for that MAID. Due to perfect recall, 
the last decision node (in topological order) must have in
coming edges from all of its previous actions and all parents 
of previous actions. Moreover, it must have an information 
set for any distinct agent history. Thus, the agent's decision 
rule for that final decision has the same size as the sequence 
form. Hence, the dimension m of the Jacobian ma
trix is linear in the size of the MAID (where size, as usual, 
includes the size of the parameterization). 

We next turn to the computation of the Jacobian entries. 
Eq. (5) can be rewritten as 

(8) 

A leaf node z in the extensive-form game is simply an as
signment x to all of the variables in the MAID, and 
is n1's utility given x. The sequence probability is 
the product of the probabilities for the decisions of agent 
n in the assignment x. Thus, Eq. (8) is an expectation of 

. The expectation is over the distribu
tion defined by the Bayesian network whose structure is 
the same as the MAID, and where the agents' decision nodes 
have CPDs determined by  

The agent's utility is the sum of its utility nodes. 
Due to linearity of expectation, we can perform the computa
tion separately for each of the agent's utility nodes, and then 
simply add up the separate contributions. Thus, we assume 
from here on, without loss of generality, that n1 has only a 
single utility node U. 

The value of depends only on the values 
of the set of nodes £>„, consisting of n1;'s decision nodes and 
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their parents. Thus, instead of computing the probabilities for 
all assignments to all variables, we need only to compute the 
marginal joint distribution over , and From this 
distribution, we can compute the expectation in Eq. (5). 

Using Bayesian Network Inference 
Our analysis above reduces the required computations sig
nificantly. We need only compute one joint distribution for 
every pair of agents ri1, n 2 . This joint distribution is the one 
defined by the Bayesian network . Naively, this compu
tation requires that we execute Bayesian network inference 

times: once for each ordered pair of agents n1, n-2. For-
tunately, we can exploit the structure of the MAID to perform 
this computation much more efficiently. 

The basis for our method is the clique tree algorithm 
of Lauritzen and Spiegelhalter [1998]. A clique tree for a 
Bayesian network is a data structure defined over an undi
rected tree over a set of nodes C. Each node is a subset 
of the nodes in B called a clique. The clique tree satisfies cer
tain important properties. It must be family preserving: for 
each node X in B, there exists a clique such that X 
and its parents are a subset of Ci. It also satisfies a separation 
requirement: if C2 blocks the path from C1 to C3, then, in the 
distribution defined by we have that the variables in C\ are 
conditionally independent of those in C3 given those in C2. 

Each clique maintains a data structure, called a potential, 
which is an unnormalized distribution over the variables in 
Ci. The size of the potential for Ci is therefore exponential in 

. The clique tree inference algorithm proceeds by passing 
messages from one clique to another in the tree. The mes
sages are used to update the potential in the receiving clique. 
After a process in which messages have been sent in both 
directions over each edge in the tree, the tree is said to be 
calibrated; at this point, the potential of every clique Ci con
tains precisely the joint distribution over the variables in Ci 

according to B. 
We can use the clique tree algorithm to perform inference 

over Ba. Now, consider the final decision node for agent ni. 
Due to the perfect recall assumption, all of nis previous de-
cisions and all of their parents are also parents of this decision 
node. The family preservation property therefore implies that 
Dni is fully contained in some clique. Thus, the expectation 
of Eq. (8) requires the computation of the joint distribution 
over three cliques in the tree: the one containing (7, the one 
containing Dni, and the one containing Dn2. We need to 
compute this joint distribution for every pair of agents n1, n2 . 

The first key insight is that we can reduce this problem 
to one of computing the joint marginal distribution for all 
pairs of cliques in the tree. Assume we have computed 
PB(CI,CJ) for every pair of cliques Ci, Cj. Now, consider 
any triple of cliques C1, C2, C3- There are two cases: ei
ther one of these cliques is on the path between the other 
two, or not. In the first case, assume without loss of gen
erality that C2 is on the path from C\ to C3. In this case, by 
the separation requirement, we have that PB(C1, C2 , C3) = 
PB(C1C2)PB{C2,C3)/PB(C2)- In the second case, there 
exists a unique clique C* which blocks the paths between any 
pair of these cliques. Again, by the separation property, C* 
renders these cliques conditionally independent, so we can 
use a similar method to compute P B { C 1 , C2 , C3). 
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Thus, we have reduced the problem to one of computing 
the marginals over all pairs of cliques in a calibrated clique-
tree. We can use dynamic programming to execute this pro
cess efficiently. We construct a table that contains PB(Ci, Cj) 
for each pair of cliques Ci,Cj. We construct the table in or
der of length of the path from Ci to Cj. The base case is when 
Ci and Cj are adjacent in the tree. In this case, we have that 

The probability 
expressions in the numerator are simply the clique potentials 
in the calibrated tree. The denominator can be obtained by 
marginalizing either of the two cliques. For cliques Ci and 
Cj that are not adjacent, we let Ck be the node adjacent to 
Cj on the path from Ci to Cj. The clique Ck is one step 
closer to Ci, so, by construction, we have already computed 
P(Ci ,C k ) . We can now apply the separation property again: 

Let be the number of cliques in the tree, and d be size 
of the largest clique (the number of entries in its potential). 
The cost of calibrating the clique tree for is . The 
cost of computing Eq. (9) for all pairs of cliques is 
Finally, the cost of computing the S i,S j entry of the Jacobian 
is 0(d4). In games where interactions between the agents 
are highly structured, the size d of the largest clique can be a 
constant even as the number of agents grows. In this case, 
the complexity grows only quadratically in the number of 
cliques, and hence also in the number of agents. 

6 Results 
6.1 Graphica l Games 
We compared two versions of our algorithm: cont, the sim
ple continuation method, and the continuation 
method with the IPA initialization. We compared our results 
to the published results of the the algorithm of Vickrey and 
Roller 12002] (VK hereafter). The VK method only returns 
e-equilibria, but their approach is the only one that applies 
to graphical games whose interaction structure is not a (bi-
connected) tree and for which timing results are available. 
The VK paper contains several different algorithms. We com
pared against the algorithm which had the smallest approxi
mation error for a given problem. 

Following VK, our algorithms were run on two classes of 
games, of varying size. The Road game, denoting a situa
tion where agents must build in land plots along a road, is 
played on a 2-by-L grid; each agent has three actions, and 
its payoffs depend only on the actions of its (grid) neighbors. 
Following VK, we constructed a game where the payoff for 
an agent is simply the sum of payoffs of games played sepa
rately with its neighbors, and where each such subgame has 
the payoff structure of rock-paper-scissors. This game is, in 
fact, a polymatrix game, and hence is very easy to solve us
ing our methods. We also experimented with a ring graph 
with three actions per agent and random payoffs. 

For each class of games, we chose a set of game sizes to run 
on. For each, we selected, randomly in cases where the pay
offs were random, a set of at least ten (and up to one hundred 
for MAIDs) test games to solve. We then solved each game 
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Figure 2: Results for graphical games: (a) Running time for road game with rock-paper-scissors payoffs. Results for ring game with random 
payoffs: (b) running time; (c) number of iterations of cont; (d) average time per iteration of cont. 

with a different random perturbation vector, 6, and recorded 
the time and number of iterations necessary to reach the first 
equilibrium. We then averaged over test cases. The error 
bars show the variance due to the choice of perturbation vec
tor and, for random games, the choice of game. For smaller 
games, the algorithms always converged to an equilibrium. In 
about 40% of the larger games (more than 20 agents), the al
gorithms did not converge on the first trial; in these cases, we 
restarted the same game with a different random perturbation 
vector. On average, about 2 restarts were sufficient for these 
difficult games. In a few large graphical games (e.g. 9% of 
games with 45 agents), IPA did not converge after 10 restarts; 
in these cases we did not record results for IPA+COnt. In the 
other restarted cases, we recorded the time for the converging 
run. Our results are shown in Figures 2(a,b). 

In all cases, our algorithm found an equilibrium with error 
at most , essentially machine precision. In the Road 
games, we compared against the times for VK using their hill 
climbing method which found -equilibria with error of 10 - 4 . 
In these games, the cont method is more efficient for smaller 
games, but then becomes more costly. Due to the polymatrix 
nature of this game, the cont solves it immediately with 
the Lemke-Howson algorithm, and is therefore significantly 
less expensive than  

In the random-payoff ring games, had an equilibrium 
error of about 0.01 using their cost minimization method with 
a grid discretization of Here, our algorithms are more ef
ficient than for smaller games (up to 20-30 agents), with 

performing considerably better than cont. How
ever, the running time of our algorithms grows more rapidly 
than that of so that for larger games, they become imprac
tical. Nevertheless, our algorithms performed well in games 
with up to 50 agents and 3 actions per agent, games which 
were previously intractable for exact algorithms. 

Here, we also plotted the number of iterations and time 
per iteration for cont in Figures 2(c,d). The number of itera
tions varies based both on the game and perturbation ray cho
sen. However, the time per iteration is almost exactly cubic as 
predicted. We note that, when is used, the continuation 
method converges almost immediately (within a second). 

6.2 MAIDs 
Roller and Milch [2001] define a relevance graph over the 
decision nodes in a where there is an edge from Di to 
D2 if the decision rule at D\ impacts the choice of decision 
rule at D2- They show that the task of finding equilibria for a 
MAID can be decomposed, in that only decision nodes in the 
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same strongly connected component in the relevance graph 
must be considered together. However, their approach is un
able to deal with structure within a strongly connected com
ponent, and they resorted to converting the game to extensive 
form, and using a standard equilibrium solver. Our approach 
addresses the complementary problem, dealing specifically 
with this finer-grained structure. Thus, we focused our exper
iments on MAIDs with cyclic relevance graphs. 

We ran our algorithms on two classes of games, with vary
ing sizes. The first, a simple chain, alternates between deci
sion and chance nodes with each decision node belonging to 
a different agent. Each agent has two utility nodes, each con
nected to its decision node and to a neighbor's (except for the 
end agents who have one utility node for their single neigh
bor). Al l probability tables and payoff matrices are random. 
Our second example is shown in Figure 1(b). It is an exten
sion of the graphical road game from above. Each agent must 
submit plans simultaneously for the type of building 
(home or store) that they will build along a road. However, 
building proceeds from left to right and so before 
committing to a build, an agent can see a noisy estimate of 
the plans of the agent to its left . Agents would pre
fer to be the first one to start a new type of building (i.e., be 
different than their left neighbors, but the same as their right 
neighbors). They also take a penalty if their building and plan 
decisions differ. Carefully chosen payoffs ensure non-trivial 
mixed strategies. 

Figures 3(a,b) show the running times for computing an 
equilibrium as the number of agents is increased for both 
types of games. We compared our results to those achieved 
by converting the game to extensive-form and running 
bit, a standard equilibrium computation package. Our timing 
results for Gambit do not include the time for the conversion 
to extensive-form. 

Figures 3(c,d) show the number of iterations and running 
time per iteration for the case of the two-stage road game. 
The running time per iteration is once again well fit by a cu
bic. The variance is mainly due to the execution of the retrac
tion operator whose running time depends on the number of 
strategies in the support. 

7 Discussion and Conclusions 
In the last few years, several papers have addressed the is
sue of finding equilibria in structured games. For graphical 
games, the exact algorithms proposed so far apply only to the 
very restricted class of games where the interaction structure 

763 



Figure 3: Results for MAIDs: (a) Running times for the chain MAID. Results for two-stage Road MAID: (b) running time; (c) number of 
iterations; (d) time per iteration. 

is an undirected tree, and where each has only two possible 
actions [Kearns et ai, 2001; Li t tman et al, 2002]. 

There have been several algorithms proposed for the com
putation of e-equilibria in general graphical games, most of 
which ( impl ic i t ly or expl ici t ly) define an equil ibr ium as a 
set of constraints over a discretized space of mixed strate
gies, and then use some constraint solving method: Kearns 
et al [2001] use a tree-propagation algorithm; Vickrey, and 
Koller [2002] use variable elimination methods (VK1) ; and 
Ort iz and Kearns [2003] use arc-consi;.tency constraint prop
agation fol lowed by search. Vickrey and Koller [2002] also 
propose a gradient ascent algorithm (VK2) . The running 
times of KLS and V K 1 both depend on the tree-width of the 
graph, whereas the running times of our algorithm, V K 2 , and 
OK depend on the degree of the graph. However, these latter 
three algorithms all require mult iple iterations and no bounds 
are currently known on the number of iterations required. 

For M A I D s , Koller and Mi l ch [2001] ( K M ) define a no
tion of independence between agents' decision, and provide 
an algorithm that can decompose the problem based on fair ly 
coarse independence structure. Our algorithm is able to ex
ploit a much finer-grained structure, resolving an open prob
lem left by K M . La Mura [2000] ( L M ) proposes a continu
ation method for finding one or all equil ibria in a G net, a 
representation which is very similar to M A I D s . This pro
posal only exploits a very l imited set of structural proper
ties (a strict subset of KM and of our algorithm). The pro
posal was also never implemented, and several issues regard
ing non-converging paths seem unresolved. 

We have presented an algorithm for computing exact equi
l ibria in structured games. Our algorithm is based on the 
methods of GW, but shows how the key computational steps 
in their approach can be performed much more efficiently by 
exploit ing the game structure. Our method allows us to pro
vide the first exact algorithm for general graphical games, and 
the first algorithm that takes fu l l advantage of the indepen
dence structure of a M A I D . Our methods can find exact equi
l ibria in games wi th large numbers of agents, games which 
were previously intractable for exact methods. 
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