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Abstract 
In this paper we describe an integrated multilevel learn
ing approach to multiagent coalition formation in a 
real-time environment. In our domain, agents negotiate 
to form teams to solve joint problems. The agent that 
initiates a coalition shoulders the responsibility of over
seeing and managing the formation process. A coali
tion formation process consists of two stages. During 
the initialization stage, the initiating agent identifies the 
candidates of its coalition, i.e., known neighbors that 
could help. The initiating agent negotiates with these 
candidates during the finalization stage to determine the 
neighbors that are willing to help. Since our domain is 
dynamic, noisy, and time-constrained, the coalitions are 
not optimal. However, our approach employs learning 
mechanisms at several levels to improve the quality of 
the coalition formation process. At a tactical level, we 
use reinforcement learning to identify viable candidates 
based on their potential utility to the coalition, and 
case-based learning to refine negotiation strategies. At 
a strategic level, we use distributed, cooperative case-
based learning to improve general negotiation strate
gies. We have implemented the above three learning 
components and conducted experiments in multisensor 
target tracking and CPU re-allocation applications. 

1 Introduction 
Multiagent coalition formation is important for distributed 
applications ranging from electronic business to mobile and 
ubiquitous computing where adaptation to changing re
sources and environments is crucial. It increases the ability 
of agents to execute tasks and maximize their payoffs. 
Moreover, coalitions can dynamically disband when they 
are no longer needed or effective. Thus the automation of 
coalition formation wil l not only save considerable labor 
time, but also may be more effective at finding beneficial 
coalitions than human in complex settings [Jennings, 2002]. 

Although considerable research has been conducted either 
in coalition formation among self-interested agents (e.g., 
[Tohme and Sandholm, 1999], [Sandholm et al, 1999], 

[Sen and Dutta, 2000]), or in coalition formation among 
cooperative agents (e.g., [Shchory et al, 1997]), little work 
has been done in coalition formation among both self-
interested and cooperative agents. Furthermore, there have 
been no attempts to study coalition formation among such 
agents in a dynamic, real-time, uncertain, and noisy envi
ronment, which is a typical real-world environment and in 
which a sub-optimal coalition needs to be formed in a real
time manner. 

We propose an integrated multilevel learning approach to 
multiagent coalition formation. In our approach, agents are 
assumed to be cautiously cooperative—they are willing to 
help only when they think they benefit from it—and honest. 
However, due to the noisy, uncertain, dynamic and real-time 
nature of our domain, not every agent can be correct in its 
perceptions and assumptions. Thus, to achieve a coalition, 
an initiating agent has to negotiate with other agents. 
Through concurrent, multiple 1 -to-1 negotiations, the initiat
ing agent identifies the agents that are willing to help. The 
formation process is successful if the initiating agent suc
cessfully persuades enough agents to join the coalition. 

Note that in this paper, we focus on improving the quality 
of the coalition formation process, and not on the quality of 
the coalition after it is formed and executed. 

Note also that our approach is an example of the "good 
enough, soon enough" design paradigm. In our domain, an 
agent has incomplete information about the environment, 
the task execution is time constrained, and the communica
tion between agents is not reliable, so an optimal coalition 
formed from the deep learning is impractical. Thus, a sub-
optimal yet fast coalition formation process is warranted. 

2 Coalition Formation 
In our problem domain, when an agent cannot solve a task 
execution or resource allocation problem by itself or can get 
more benefits from collaborating with other agents, it initi
ates a coalition formation process to form a coalition and 
solve the problem jointly. Figure 1 depicts our coalition 
formation modules that make up the two stages: initializa
tion and finalization. The feasibility study and the ranking 
of candidates are the initialization stage whereas the nego-
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tiations and their management the finalization stage. This 
two-stage model [Soh and Tsatsoulis, 2001] allows an agent 
to form an initial coalition hastily and quickly to react an 
event and to rationalize to arrive at a working final coalition 
as time progresses, as a result of our previously described 
domain nature. 

Figure 1. An overview of the coalition formation process 

Here we briefly describe each module of the design: 
(1) Dynamic Profiling: Every agent dynamically profiles 
each neighbor as a vector in the agent about the negotiation 
relationship between them, and profiles each negotiation 
task as a case in the casebase about the negotiation strategy 
description and negotiation outcome. 
(2) Feasibility Study: This module analyzes the problem 
and computes (a) whether the agent has the resources to do 
something about it, and (b) if yes, the list of agents that the 
agent thinks could help. 
(3) Ranking of Candidates: This module scores and ranks 
each candidate, and proportionately assigns the requested 
demand to each candidate, based on its potential utility (sec
tion 3.1). 
(4) Management: This module initiates negotiations with 
top-ranked candidates. That is, the module manages multi
ple, concurrent 1 -to-1 negotiations. For each negotiation 
task, it first finds a negotiation strategy through CBR. 
Then, it spawns a thread to execute that negotiation task. 
The module oversees the various negotiation threads and 
modifies the tasks in real-time. For example, the module 
will terminate all remaining negotiations once it finds out 
that it no longer can form a viable coalition. The module 
will reduce its requests or demands once it has secured 
agreements from successful negotiations. And so on. In 
effect, this management simulates a 1 -to-many negotiation. 
(5) CBR: Given the problem description of a task, the 
CBR module retrieves the best case from the casebase, and 
adapts the solution of that best case to the current problem. 
This is based on the work of [Soh and Tsatsoulis, 2001]. 
(6) Negotiation: Our negotiation protocol is argumenta
tive. The initiating agent provides evidence for its request 
to persuade the responding agent. The responding agent 
evaluates these evidence pieces and if they are higher than a 

dynamic persuasion threshold, then the responding agent 
will agree to the request. The responding agent also has the 
ability to counter-offer due to time constraints or poor evi
dence. This is based on the work of [Soh and Tsatsoulis, 
2001]. 
(7) Acknowledgment: Once all negotiations are com
pleted, if a coalition has been formed, the agent confirms the 
success of the coalition to all agents who have agreed to 
help. If the agent has failed to form a coalition, it informs 
the agents who have agreed to help so they can release 
themselves from the agreements. 

In the next section, we wil l discuss the learning mecha
nisms, a critical part of our coalition formation approach. 

3 Learning 
Our learning approach incorporates reinforcement learning 
and case-based learning at two levels. At a tactical level, we 
use reinforcement learning to identify viable candidates 
based on their potential utility to the coalition, and case-
based learning to refine specific negotiation strategies. At a 
strategic level, we use distributed, cooperative case-based 
learning to improve general negotiation capabilities. 

3.1 Reinforcement Learn ing 

Reinforcement learning is evident at the coalition initializa
tion and finalization stages. During initialization, the initiat
ing agent measures the potential utility of a candidate based 
on a weighted sum of (1) its past cooperation relationship 
with the initiator such as the candidate's helpfulness, friend
liness, and the agent's helpfulness and importance to the 
candidate, (2) its current cooperation relationship with the 
initialing agent such as whether the two agents have already 
been negotiating about other problems, and (3) its ability to 
help towards the current problem. An initiating agent thus 
wil l more likely approach the agents that have been helpful 
before, thus reinforcing the cooperation relationship among 
them. 

During finalization, an initiating agent also appeals to a 
candidate about how helpful the initiating agent has been in 
the past. A candidate is more easily persuaded if it realizes 
that a particular agent has been helpful in the past, and thus 
once again reinforcing their cooperation relationship. For 
details, please refer to [Soh and Tsatsoulis, 2001]. 

3.2 Case-Based Learn ing 
We use CBR to retrieve and adapt negotiation strategies 
for negotiations during coalition finalization. We also 
equip our CBR module with both individual and coopera
tive learning capabilities (Figure 2). Individual learning 
refers to learning based on an agent's perceptions and 
actions, without direct communication with other agents. 
Cooperative learning refers to learning other agents' ex
perience through interaction among agents. When an 
agent identifies a problematic case in its casebase, it ap
proaches other agents to obtain a possibly better case. 
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Figure 2. The relationship between case learning and CBR as 
well as negotiation tasks in an agent 

There has been research in distributed and cooperative 
CBR. [Prasad and Plaza, 1996] proposed treating corporate 
memories as distributed case libraries. Resource discovery 
was achieved through (1) negotiated retrieval that dealt with 
retrieving and assembling case pieces from different re
sources in a corporate memory to form a good overall case, 
and (2) federated peer learning that dealt with distributed 
and collective CBR [Plaza et ai, 1997]. [Martin et ah, 
1999] extended the model using the notion of competent 
agents. [Martin and Plaza, 1999] employed an auction-
based mechanism that focused on agent-mediated systems 
where the best case was selected from the bid cases. 

Our methodology employs a cautious utility-based adap
tive mechanism to combine the two learning approaches, an 
interaction protocol for soliciting and exchanging informa
tion, and the idea of a chronological casebase. It empha
sizes individual learning and only triggers cooperative learn
ing when necessary. Our cooperative learning also differs 
from collective CBR in that it does not merge case pieces 
into one as it considers entire cases. In addition, our re
search focus here is to define a mechanism that combines 
individual and cooperative learning. 

Note that the communication and coordination overhead 
of cooperative learning may be too high for cooperative 
learning to be cost-effective or timely. Moreover, since an 
agent learns from its own experience and its own view of 
the world, its solution to a problem may not be applicable 
for another agent facing the same problem. This injection of 
foreign knowledge may also be risky as it may add to the 
processing cost without improving the solution quality of an 
agent [Marsella et al.% 1999]. 

3.2.1 Chronological Casebase and Case Utility 
We have utilized the notion of a chronological casebase 
in which each case is stamped with a time-of-birth (when 
it was created) and a time-of-membership (when it joined 
the casebase). All initial cases are given the same time-
of-birth and time-of-membership. In addition, we profile 
each case's usage history (Table 1). An agent evaluates 
the utility of a case based on its usage history. If the case 
has a low utility, it may be replaced (or forgotten). If the 

case is deemed problematic, then a cooperative learning 
will be triggered and the case will be replaced. Table 2 
shows the heuristics we use in tandem with the chrono
logical casebase. When a negotiation completes, if the 
new case adds to the casebase's diversity, the agent 
learns it. If the casebase's size has reached a preset limit, 
then the agent considers replacing one of the existing 
cases with the new case. For our individual case-based 
learning, we use heuristics / / / , / /2 , and H3. 

Table 1. The usage history that an agent profiles of each ease 

Table 2. Heuristics that support the chronological casebase 

3.2.2 Cooperative Learning 
Figure 3 depicts our cooperative learning design. We 
adhere to a cautious approach to cooperative learning: 
(1) The agent evaluates the case to determine whether it is 
problematic. To designate a case as problematic, we use 
heuristics H4 and H5\ a (frequently used) case is problem
atic if it has a low success rate (TSU/TU) and a high incur
rence rate (TINC/TU). The profiling module keeps track of 
the utility of the cases. 
(2) The agent only requests help from a selected agent that 
it thinks is good at a particular problem. We want to ap
proach neighbors who have initiated successful negotiations 
with the current agent, with the hope that the agent may be 
able to learn how those neighbors have been able to be suc
cessful. This is determined based on the profile of each 
neighbor that the agent maintains. The exchange protocol is 
carried out by the case request and case response modules. 
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(3) If the foreign case is similar to the problematic case, the 
agent adapts the foreign case before adopting it into its 
cascbase. At the same time, the usage history parameters of 
the new case are reset. 
(4) If a problematic case cannot be fixed after K times, it 
will be removed (Heuristics H6 and H7). 

Figure 3. The cooperative learning design 

4 Experiments and Results 
We have implemented a multiagent syrtem with multiple 
agents that perform multi-sensor target tracking and adap
tive CPU reallocation in a noisy environment (simulated by 
a JAVA-based program called RADSIM). Each agent has 
the same capabilities, but is located at a unique position. 
Each agent controls a sensor and can activate the sensor to 
search-and-detect the environment. When an agent detects a 
moving target, it tries to implement a tracking coalition by 
cooperating with at least two neighbors. And this is when a 
CPU shortage may arise: the activity may consume more 
CPU resource. When an agent detects a CPU shortage, it 
needs to form a CPU coalition to address the crisis. 

The multiagent system is implemented in C++. In the 
current design, each agent has 3 + JV threads. The core 
thread is responsible for making decisions and managing 
tasks. A communication thread is used to interact with the 
message passing system of the sensor. An execution thread 
actuates the physical sensor: calibration, search-and-detect 
for a target, etc. Each agent also has N negotiation threads 
to conduct multiple, concurrent negotiations. 

We used two simulations for our experiments. We con
ducted experiments in a simulation called RADSIM where 
communication may be noisy and unreliable, and one or two 
targets may appear in the environment. We also designed 
and implemented our own CPU shortage simulation module. 
Each task is designated with a CPU usage amount plus a 
random factor. When an agent detects a CPU shortage, the 
tasks that it currently performs slow down. Thus, a CPU 
shortage that goes unresolved will result in failed negotia
tions since our negotiations are time-constrained. 

4.1 Impacts of Learning 

We also conducted experiments with four versions of learn
ing: (1) both case-based reasoning and reinforcement learn

ing (CBRRL), (2) only case-based reasoning (NoRL), (3) 
only reinforcement learning (NoCBR), and (4) no learning 
at all (NoCBRRL). Figure 4 shows the result in terms of the 
success rates for negotiations and coalition formations. 

Figure 4. Success rates of negotiations and coalition formations for 
different learning mechanisms 

The agent design with both case-based reasoning/learning 
and reinforcement learning outperformed others in both 
negotiation success rate and coalition formation success 
rate. That means with learning, the agents were able to ne
gotiate more effectively (perhaps more efficiently as well) 
that led to more coalitions formed. Without either learning 
(but not both), the negotiation success rates remained about 
the same but the coalition formation rate tended to deterio
rate. This indicates that without one of the learning meth
ods, the agents were still able to negotiate effectively, but 
may be not efficiently (resulting in less processing time for 
the initiating agent to post-process an agreement). With no 
learning, the agents fared noticeably poorly. 

4.2 Resource Allocation and System Coherence 
We conducted experiments in CPU re-allocation to test the 
coherence of our system. We refer to the CPU allocation as 
a sustenance resource since in order for an agent to obtain 
more CPU, it needs to incur CPU usage while negotiating 
for the resource. By varying the amount of the initial CPU 
allocation to each agent, we created mildly-constrained, 
overly-constrained, and unevenly-constrained scenarios. 
Tables 3 and 4 compared the agents' behavior in terms of 
successes in negotiations and coalition formations. In par
ticular, the coalition success rate is the number of success
fully formed coalitions over the number of coalitions initi
ated, where a coalition is successfully formed when the 
CPU obtained satisfies the agent's need. We observed the 
following: 
(1) In all experiments, the reduction in CPU shortage of 
each agent and the whole system was obvious. Gradually, 
the CPU resource was reallocated more evenly among 
agents. The possibility of a CPU shortage decreases and 
each agent's shortage amount decreases. This shows a 
coherent, cooperative behavior among the agents. 
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(2) In all experiments, after some period of time, each 
agent's CPU allocation converged to an average level 
(14%). After that, each agent fluctuated around that level. 
(3) We also observed that the coalition formation was the 
most successful for the system as a whole when there were 
roughly the same number of resourceful and resource-
starved agents (Experiment #3) and this type of system also 
required the least number of negotiations and coalitions to 
converge. 

Table 3. Comparison between negotiations in experiments 

Table 4. Comparison between coalitions in experiments 

4.3 Individual & Cooperative Case-Based Learning 

For our investigation of individual and cooperative case-
based learning, we conducted two sets of experiments, 
Comprehensive Experiment A (CEA) and Comprehensive 
Experiment B (CEB). We carried out CEA to study the 
effects of individual learning in subsequent cooperative 
learning and the roles of cooperative learning in agents of 
different initial knowledge. We performed CEB to investi
gate the effects of the environment on the agents' learning. 

4.3.1 Comprehensive Experiment A (CEA) 
We conducted four sets of experiments in CEA as shown in 
Table 5. The goal of these experiment sets was to investi
gate how learning differed given different casebase sizes, 
and how learning differed given different types of initial 
casebases (some had cases collected from different agents 
from an earlier run, some had only their own cases). Note 
that for the following experiments we set the limit on the 
casebase size as 30 where case replacement started to take 
place. We used two main parameters to evaluate the case-
bases: utility and diversity. First, we rank the outcome of 
each case following the utility values of Table 6. 

Table 5. Experiment sets. For example, in ESI, every agent 
has 16 cases in its casebase; and so on 

Table 6. Utility of each outcome for a case 

The average utility of the case base is the average product 
of each case's TU value and the utility value of its outcome. 
The diversity measure of a casebase is computed as the av
erage difference between each pair of cases in the casebase. 
Three slopes, sizeSlope, diffSlope, and utilSlope, were com
puted as growth rate between the first learning point and the 
last learning point, for size, diversity, and utility, respec
tively. Table 7 shows one example of the results on initiat
ing casebases. 

Table 7. Utility and difference gains for both Sub-Experiments 
Expl and Exp2, after the second stage, for initiating casebases 

Looking at all our results, we observed the following: 
(1) Cooperative learning results in more utility and diver
sity per learning occurrence than individual learning, 
(2) A small casebase learns more effectively in terms of 
utility and diversity, but not faster since our learning is 
problem-driven. A large casebase learns in a similar man
ner as an average casebase except when it is greater than the 
preset limit that triggers case replacement. 
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(3) The initial casebase affects the effectiveness of learn
ing. Both types of learning bring more utility and diversity 
to an initial casebase previously grown within an agent than 
one that has been influenced by other agents. 

4.3.1 Comprehensive Experiment B (CEB) 
The objective of CEB was to see how the learning results 
changed in different environments, as shown in Table 8. 

Tabic 8. Sub-Experiments setup in CEB 

A tracking coalition is more taxing since it requires at 
least three agents to be successfully formed. Moreover, a 
tracking task is durational such that it takes time to actually 
carry out the tracking task. However, a CPU re-allocation 
task is carried out at a point in time. In addition, a tracking 
task is highly time-constrained. A coalition has to be 
formed in time to catch the target before the target moves 
out of the sensor coverage area. Thus, negotiations related 
to tracking are more difficult to manage. For these three 
sets of sub-experiments, they had a few things in common: 
(1) all of them began with the same set of initial case bases, 
and (2) every sub-experiment ran with the both individual 
and cooperative learning. We observed the following: 
(1) Different environments affect agents' learning behavior. 
Depending on the frequency of a task and its characteristics, 
an agent may rely more on individual learning or coopera
tive learning. For example, if a type of tasks (tracking) is 
time consuming and durational, then increasing its fre
quency actually weakens the potential benefit of individual 
learning and encourages more cooperative learning. 
(2) The environments impact the two initiating and respond
ing roles differently, especially for negotiations associated 
with tough requirements (such as at least three members of a 
tracking coalition). Since an initiating agent has to shoulder 
the coalition management and decision making, it is able to 
learn more diverse and useful cases. But, negotiating as a 
responder, an agent's responsibility is less and thus consid
ers fewer issues; thus the learning is less impressive. 

5 Conclusions 
We have described an integrated multilevel approach to 
coalition formation, using case-based learning and rein
forcement learning to learn better tactics as the agent solves 
a problem, and distributed, cooperative case-based learning 
to learn improve the agent's knowledge base strategically. 
We have conducted several experiments and the results have 
been promising in proving the feasibility of our approach. 
With learning, our agents negotiate and form coalitions bet
ter. Our future work will focus on tying the outcome of an 
executed coalition (already formed) to the planning stage to 
improve our strategic learning. 
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