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Abstract 

Huge amounts of data are stored in autonomous, 
geographically distributed sources. The discov
ery of previously unknown, implicit and valuable 
knowledge is a key aspect of the exploitation of 
such sources. In recent years several approaches 
to knowledge discovery and data mining, and in 
particular to clustering, have been developed, but 
only a few of them are designed for distributed data 
sources. We propose a novel distributed clustering 
algorithm based on non-parametric kernel density 
estimation, which takes into account the issues of 
privacy and communication costs that arise in a dis
tributed environment. 

1 Introduction 
Knowledge discovery is a process aiming at the extraction 
of previously unknown and implicit knowledge out of large 
databases, which may potentially be of added value for some 
given application [Fayyad et al., 1996]. 

Data mining, which is devoted to the automated extrac
tion of unknown patterns from given data, is a central element 
among the steps of the overall knowledge discovery process; 
the steps include preparation of the data to be analyzed as well 
as evaluation and visualization of the discovered knowledge. 
The large variety of data mining techniques which have been 
developed over the past decade include: methods for pattern-
based similarity search, cluster analysis, decision-tree based 
classification, generalization taking the data cube or attribute-
oriented induction approach, and mining of association rules 
[Chen et al. , 1996] 

The increasing demand to scale up to massive data sets 
which are inherently distributed over networks with limited 
bandwidth and computational resources has led to methods 
for parallel and distributed knowledge discovery [Kargupta 
et al., 2000], The related pattern extraction problem in dis
tributed knowledge discovery is referred to as distributed data 
mining. Distributed data mining is expected to perform par
tial analysis of data at individual sites and then to send the 
outcome as partial result to other sites where it is sometimes 
aggregated to the global result. 

One of the most common approaches of business applica
tions to perform distributed data mining is to centralize dis

tributed data into a data warehouse on which to apply the 
usual data mining techniques. Data warehousing is a popular 
technology which integrates data from multiple data sources 
into a single repository in order to efficiently execute complex 
analysis queries [Moro and Sartori, 2001]. However, despite 
its commercial success, this approach may be impractical or 
even impossible for some business settings, for instance: 

• when huge amounts of data are (frequently) produced at 
different sites and the cost for their centralization cannot 
scale in terms of communication, storage and computa
tion; 

• whenever data owners cannot or do not want to release 
information, for instance to protect privacy or because 
disclosing such information may result in a competitive 
advantage or a considerable commercial added value. 

One of the most studied data mining techniques in central
ized environments is data clustering. The goal of this tech
nique is to decompose or partition a data set into groups such 
that both intra-group similarity and inter-group dissimilarity 
are maximized. Despite the success of data clustering in cen
tralized environments, only a few approaches to the problem 
in a distributed environment are available to date. 

In this work we present KDEC, a novel approach to dis
tributed data clustering based on sampling density estimates. 
In KDEC each data source transmits an estimate of the prob
ability density function of its local data to a helper site, and 
then executes a density based clustering algorithm that is 
driven by the overall density estimate, which is built by the 
helper from the samples of the local densities. 

The paper is organized as follows. In Section 2 we de
scribe related work and highlight differences with respect to 
our approach. Section 3 and 4 present the KDEC scheme to 
distributed data clustering. Finally, Section 5 concludes the 
paper and outlines ongoing and future research work. 

2 Related work 
In [Johnson and Kargupta, 1999] a tree clustering approach is 
taken to build a global dendrogram from individual dendro
grams that are computed at local data sites subject to a given 
set of requirements. In contrast to the approach presented in 
this paper, the distributed data sets are assumed to be hetero
geneous, therefore every site has access only to a subset of 
the features of an object. The proposed solution implements 
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a distributed version of the single-link clustering algorithm 
which generates clusters that are substantially different from 
the ones generated by density-based methods. In particular, 
it suffers from the so-called chaining effect, by which any 
of two well separated and internally homogeneous groups of 
objects connected only by a dense sequence of objects are re
garded as a single cluster. [Kargupta et al, 2001] proposes a 
technique for distributed principal component analysis, Col
lective PCA. It is shown that the technique satisfies efficiency 
and data security requirements and can be integrated with ex
isting clustering methods in order to cluster distributed, high-
dimensional heterogeneous data. Since the dimensionality 
of the data is reduced prior to clustering by applying PCA, 
the approach is orthogonal to ours. Another related research 
direction deals with incremental clustering algorithms. The 
BIRCH iZhang et a/., 1996] and related BUBBLE method 
[Ganti et al, 1999], compute the most accurate clustering, 
given the amount of memory available, while minimizing the 
number of I/O operations. It uses a dynamic index struc
ture of nodes that store synthetic, constant-time maintainable 
summaries of sets of data objects. The method is sufficiently 
scalable requiring 0(N\ogN) time and linear I/O. However, 
since it uses the centroid to incrementally aggregate objects, 
the method exhibits a strong bias towards globular clusters. 
IncrementalDBSCAN LEster et a/., 1998] is a dynamic clus
tering method supporting both insertions and deletions, which 
is shown to be equivalent to the well-known static DBSCAN 
algorithm. Since in turn DBSCAN can be shown to be equiv
alent to a method based on density estimation when the kernel 
function is the square pulse and the clusters are density-based, 
IncrementalDBSCAN is less general than methods based on 
kernel density estimates. Its time complexity is 0(N\ogN). 

3 Data Clustering 
3.1 The cluster analysis problem 
Cluster analysis is a a descriptive data mining task which 
aims at decomposing or partitioning a usually multivariate 
data set into groups such that the data objects in one group 
are similar to each other and are different as possible from 
those in other groups. Therefore, a clustering algorithm J?(-) 
is a mapping from any data set S of objects to a clustering of 
5, that is, a collection of pairwise disjoint subsets of 5. Clus
tering techniques inherently hinge on the notion of distance 
between data objects to be grouped, and all we need to know 
is the set of interobject distances but not the values of any of 
the data object variables. Several techniques for data cluster
ing are available but must be matched by the developer to the 
objectives of the considered clustering task [Grabmeier and 
Rudolph, 2002]. In partition-based clustering, for example, 
the task is to partition a given data set into multiple disjoint 
sets of data objects such that the objects within each set are 
as homogeneous as possible. Homogeneity here is captured 
by an appropriate cluster scoring function. Another option 
is based on the intuition that homogeneity is expected to be 
high in densely populated regions of the given data set. Con
sequently, searching for clusters may be reduced to searching 
for dense regions of the data space which are more likely to 
be populated by data objects. That leads us to the approach 

of density estimation based clustering. 

3.2 Density est imation based cluster ing 
In density estimation (DE) based clustering the search for 
densely populated regions is accomplished by estimating a 
so-called probability density function from which the given 
data set is assumed to have arisen. Many techniques for 
DE-based clustering are available from the vast KDD liter
ature [Ankerst et al, 1999; Ester et al, 1996; Schikuta, 1996; 
Hinneburg and Keim, 1998] and statistics [Silverman, 1986]. 
In both areas, the proposed clustering methods require the 
computation of a non-parametric estimation of the density 
function from the data. One important family of non-
parametric estimates is known as kernel estimators. The idea 
is to estimate a density function by defining the density at 
any data object as being proportional to a weighted sum of 
all objects in the data set, where the weights are defined by 
an appropriately chosen kernel function. In the following 
we introduce kernel-based density estimation [Parzen, 1962; 
Silverman, 1986] and our approach to density estimation 
based clustering. 

Let us assume a set of data 
points or objects. Kernel estimators originate from the in
tuition that the higher the number of neighbouring data ob
jects x; of some given object , the higher the density 
at this object x. However, there can be many ways of cap
turing and weighting the influence of data objects. When 
given the distance between one data object x and another Jc, 
as an argument, the influence of jf; may be quantified by us
ing a so called kernel function. A kernel function K (x) is 
a real-valued, non-negative function on R which has finite 
integral over R. When computing a kernel-based density es
timation of the data set 5, any element jf,- in S is regarded 
as to exert more influence on some than elements 
which are farther from than the element. Accordingly, 
kernel functions are often non-increasing with . Promi
nent examples of kernel functions are the square pulse func
tion and the Gaussian function 

A kernel-based density estimate is 
defined, modulo a normalization factor, as the sum over all 
data objects xi in S of the distances between scaled by 
a factor A, called window width, and weighted by the kernel 
function K: 

(1) 

The influence of data objects and the smoothness of the 
estimate is controlled by both the window width h and the 
shape of kernel K\ h controls the smoothness of the estimate, 
whereas K determines the decay of the influence of a data 
object according to the distance. Even if the number N of data 
objects is very large, in practice it is not necessary to compute 
N distances for calculating the kernel density estimate at a 
given object x. In fact, the value of commonly used kernel 
functions is negligible for distances larger than a few h units; 
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it may even be zero if the kernel has bounded support, as it 
is the case, for example, for the square pulse. Using kernel-
based density estimation, it is straightforward to decompose 
the clustering problem into three phases as follows. 

1. Choose a window width h and a kernel function K. 
2. Compute the kernel-based density estimate 

from the given data set. 
3. Detect regions of the data space where the value of the 

estimate is high and group all data objects of space re
gions into corresponding clusters. 

In the literature, many different definitions of cluster have 
been proposed formalizing the clusters referred to in step 3 
above. A density-based cluster [Ester el al, 1996] collects 
all data objects included in a region where density exceeds 
a threshold. Center-defined clusters [Hinneburg and Kcim, 
1998] are based on the idea that every local maximum of 
corresponds to a cluster including all data objects which can 
be connected to the maximum by a continuous, uphill path in 
the graph of (p. Finally, an arbitrary-shape cluster LHinneb-
urg and Keim, 1998] is the union of center-defined clusters 
having their maxima connected by a continuous path whose 
density exceeds a threshold. 

Algorithm 1 (DE-cluster) implements the computation of 
center-defined clusters by a climbing procedure driven by the 
density estimate. The main procedure is DECluster, taking 
as inputs an instance S of the class of data objects, the kernel 
function K, the window width h, and returning a clustering 
represented by C, which stores a mapping from each x, to 
the unique integer label ofxif,'s cluster. It is assumed that S 
is an instance of a class which provides the following meth
ods: get(i) to access object x, given index i, NQ(k,x) and 
Radius to retrieve, given the indexes and maxi
mum distance of. nearest neighbours. Uphill computes 
the steepest direction on the graph of the estimated density as 
the versor of its gradient, computed by function DEGradient 
(cf. [Hinneburg and Keim, 1998]). Uphill then moves in that 
direction a fractionS . _ of the distance S.Radius of the 
k th nearest neighbour o f f , and finally returns the index of the 
nearest neighbour in S of the reached position. Every nested 
call to FixedPoint marks the current object x, as visited and 
calls Uphill to get the index of the next data object Xj. If 
such object has already been visited, the proximity of a local 
maximum has been reached and j is taken as new cluster la
bel. Otherwise is inductively assumed to lie at the bottom 
end of a path leading to the proximity of a local maximum, 
and to be already labeled accordingly. (I f is not marked as 
clustered, a recursive call ensures that the assumption holds.) 

The complexity of the DE-cluster algorithm is that of call
ing N — S.count times FixedPoint. At the beginning of every 
iteration in DECluster, the sets of clustered and visited ob
jects are equal. FixedPoint is never called with a clustered 
object as argument, and visits unclustered objects at most 
once. Therefore, even if the number of visited data objects 
in one call of FixedPoint is bounded only by N, the number 
of visited data objects in all calls is still only N. For each 
visited object a single K-nearest neighbour query suffices to 
compute the gradient and the next uphill object. The methods 

can be efficiently implemented by 

equipping the class of S with a spatial access method like the 
KD-, or MVP-, or M-tree. Therefore, the time complexity of 
DEClusler is 0(Nq(N)), where q(N) is the cost of a k near
est neighbour query in any such access method. Note that in 
many practical cases, q(N) is very close to log TV. 

4 Distributed Data Clustering 
The body of work on applications of data clustering in dis
tributed environments, the problem of so called distributed 
data clustering (DDC), is comparatively small. In this sec
tion we adopt the kernel density estimation based clustering 
approach presented above for the distributed case assuming 
homogeneous data, which means that a data object cannot be 
split across two sites. 

4.1 The D D C Problem 
We define the problem of homogeneous distributed data clus
tering for a clustering algorithm A as follows. Let 

be a data set of objects. Let 
1 , . . . , M, be a finite set of sites. Each site stores one data 
set Dj, and it wil l be assumed that . The DDC 
problem is to find a site clustering Cj residing in the data 
space of L j, for such that 
(i). (correctness requirement) 

(ii). Time and communications costs are minimized (effi
ciency requirement) 

(iii). At the end of the computation, the size of the subset of S 
which has been transferred out of the data space of any 
site is minimized (privacy requirement). 
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The traditional solution to the homogeneous distributed data 
clustering problem is to simply collect all the distributed data 
sets Dj into one centralized repository where their union S 
is computed, and the clustering C of the union S is com
puted and transmitted to the sites. Such approach, however, 
does not satisfy our problem's requirements both in terms of 
privacy and efficiency. We therefore propose a different ap
proach yielding a kernel density estimation based clustering 
scheme, called KDEC. 

4.2 The K D E C Scheme for D D C 
The key idea of the KDEC scheme is based on the follow
ing observation: Although the density estimate computed on 
each local data set gives information on the distribution of 
the objects in the data set, it conceals the objects themselves. 
Moreover, the local density estimate can be coded to provide 
a more compact representation of the data set for the purpose 
of transmission. In the sequel, we tacitly assume that all sites 
Lj agree on using a global kernel function K and a global 
window width h. We wil l therefore omit K and h from our 
notation, and write . Density estimates 
in the form of Equation (1) are additive, i.e. the global den
sity estimate can be decomposed info the sum of the 
site density estimates, one estimate for every data set Dj. 

(2) 

Thus, the local density estimates can be transmitted to and 
summed up at a distinguished helper site yielding the global 
estimate which can be returned to all sites. Each site Lj may 
then apply, in its local data space, the hill-climbing technique 
of Algorithm 1 (DE-cIuster) to assign clusters to the local data 
objects. There is nevertheless a weakness in such a plan: the 
definition of a density estimate explicitly refers to all the data 
objects J?;. Hence, knowing how to manipulate the estimate 
entails knowing the data objects, which contradicts the pri
vacy requirement. However, only an intensional, algebraic 
definition of the estimate includes knowledge of the data ob
jects. Multidimensional sampling theory provides the basis 
for an alternative extensional representation of the estimate 
which makes no explicit reference to the data objects. 

The theoretical idea of sampling is to represent a function 
/ by a sampling series, that is, a summation of suitable ex
pansion functions weighted by the values of / at a discrete 
subset of its domain [Higgins, 1996]. In the following, let the 
/th coordinate of be denoted by and let Diag 

= , denote th< diagonal matrix 
having diagonal w, i.e., defined by if 
Diag Further l e t ' a vector 
of sampling periods. The sampled form of at intervals 

is the s e q u e n c e d e f i n e d by 
(3) 

where • is the inner product between vectors. Therefore, 
is the sequence of the values of at all the real, n-
dimensional vectors whose i th coordinates are spaced by a 
multiple of the i th sampling period Ti , 1 = 1 , . . . , / ! . The sam
pled forms of the local density estimates are defined in a sim
ilar way by . . . , M . It 

is immediate to see by (2) that addivity holds for the sampled 
forms: 

(4) 

Therefore, after receiving the sampled forms of the 
M density estimates, the helper site can compute by (4) the 
sampled form of the overall estimate and transmit it to the 
sites Lj. Sites Lj can then cluster local data with respect to the 
overall density estimate, using the gradient of the sampling 
series 

(5) 

as needed in the hill-climbing function. 
We briefly discuss the extent to which the series (5) can 

be used to represent It is well known that, under 
mild conditions, sampling a function is an invertible 
transformation if, for every coordinate i = 1 , . . . n, there is 
a frequency such that the Fourier transform of g differs 
from zero only in the interval , and the samples 
are computed with a period not greater than 
(cf. [Higgins, 1996]). Under these assumptions, the value of 
the sampling series computed at x equals g(x). Unfortunately, 
most popular kernel functions (hence summations of kernel 
functions) do not satisfy these hypotheses since the support 
of their Fourier transform is unbounded. Consequently sam
pling density estimates yields an information loss. However, 
it can be shown that the Fourier transform of a kernel density 
estimate is negligible everywhere except for not greater 
than Therefore, the global density estimate can be re
constructed from its samples by (5) introducing only a small 
error if 

It is worth noting that the infinite series (5) need not be ap
proximated, if it has finitely many nonzero terms. The latter 
case holds if the used kernel function has a bounded support, 
since the density estimate wil l also have bounded support. If, 
however, the kernel function has unbounded support, like the 
Gaussian kernel, then the density estimate can be approxi
mated by regarding its value to be zero everywhere except 
inside an appropriately chosen bounded region. 

According to this approach, we propose the following al
gorithmic KDEC scheme for computing the kernel density es
timation based clusters for local data spaces at M distributed 
data sites Lj (see Algorithm 2). Every local site runs the pro
cedure SiteDECluster whereas the helper site runs Helper. 
SiteDECluster is passed a reference H to the helper and the 
local data set D, and returns a clustering in a class instance 
C. Helper is passed a list of references L to the local sites. 
The procedure SiteNegotiate carries out a negotiation with 
the other local sites through HelperNegotiate at the helper 
site to determine the sampling periods x, the bounding cor
ners of the sampling rectangle , the kernel K, and 
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the window width h. The negotiation procedures contain ap
propriate handshaking primitives to ensure that all sites par
ticipate and exit negotiations only if an agreement has been 
reached. Each local site computes the sampled form of the 
estimate of D, by calling function Sample, and sends it to 
the helper. (Function DE computes the density estimate and 
is omitted for brevity.) The helper receives the sampled es
timates, sums them by sampling indexes into a global sam
ple, and returns it to all sites. Procedures Send and Receive 
implement appropriate blocking and handshaking to ensure 
the transmission takes place. Each local site uses the global 
sample in functions FixedPoint and Uphill to compute the 
values of the gradient of the global density estimate. Func
tion SeriesGradient can be easily derived from (5). Local 
sites perform a DE-cluster algorithm to compute the corre
sponding local data clusters. The details of the hill-climbing 
strategy are however different from Algorithm 1 because the 
sites are allowed access to local data objects only. Uphill ad

vances a fraction 5 of the gradient in its direction, if the gradi
ent's norm exceeds a threshold e. If a of the 
object returmed by Uphill contains an already clustered data 
object, the current cluster label Id is set from that object's la
bel. Otherwise, checking whether Uphill returned the same 
space object signals to FixedPoint that the proximity of the 
local maximum has been reached. The maximum is marked 
by adding the current space object x as a dummy object to the 
local data set; this ensures that subsequent paths converging 
to the same local maximum will use the same cluster label 
as the current path. Method D.Add{) returns the identifier 
of the added object, which is used as current cluster label. If 
neither case holds, the label Id is obtained by a recursive call. 
Finally, all objects in a small neighbourhood of the current 
object are labeled by Id. Note that adding dummy objects 
has eflect only on the range queries, and does not modify the 
density estimate. 

4.3 Complexi ty of the K D E C scheme 

In terms of the complexity in computation and communica
tion one crucial point of the KDEC scheme is how many sam
ples have to be computed and transferred among the sites. In 
most cases, to obtain good density estimates, h must not be 
less than a small multiple of the smallest object distance. As 
Ti ~ h/2, the number of samples should rarely exceed the 
number of objects, if only space regions where the density 
estimate is not negligible are sampled. Since the size of a 
sample is usually much smaller than the size of a data ob
ject, the overall communication costs of our DDC approach 
wil l be in most cases significantly lower than in a centralized 
approach. Of course, the precise number of samples depends 
on the bounding region that is being sampled by every site. In 
Algorithm 2 the site Lj determines autonomosly the rectangle 
that contains the computed samples. 

The computational costs of the KDEC scheme in terms of 
used CPU cycles and I/O do not exceed the one in the cen
tralized approach where clustering is performed on data col
lected in a single repository. The computational complexity is 
linear in the number of samples. The precise cost of compu
tation of any KDEC-based DDC algorithm as an instance of 
the proposed scheme largely depends also on the used kernel 
function and local clustering algorithm. The DE-cluster algo
rithm we developed for the KDEC scheme in Section 3.2 is 
of complexity 0(Nq(N)), where q(N) is the cost of a nearest 
neighbour query (which in practical cases is close to logjV). 
Algorithm 2 implements a slightly different approach in the 
hill-climbing function than Algorithm 1, since the function 
does not use data objects to direct the uphill path. How
ever, preliminary results of experiments conducted on a pro
totype implementation show good scalability of the approach, 
in terms of number of executed range queries. 

5 Conclusion 
Due to the explosion in the number of autonomous data 
sources there is a growing need for effective approaches to 
distributed knowledge discovery and data mining. In this pa
per we have presented KDEC, a novel scheme for distributed 
data clustering which computes the density estimation, to per-
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form the clustering, from sampled forms of local densities at 
each data source site. 

The approach exploits statistical density estimation and in
formation theoretic sampling to minimize communications 
between sites. Moreover, the privacy of data is preserved 
to a large extent by never transmitting data values but ker
nel based density estimation samples outside the site of ori
gin. The approach does not require CPU and I/O costs sig
nificantly higher than a similar centralized approach and its 
communication costs may be lower. Ongoing research fo
cuses in particular on implementations of a multiagent system 
for KDEC-based distributed data clustering in a peer-to-peer 
network, and investigation on methods to mitigate the risk of 
security and privacy violations in distributed data mining en
vironments. 
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