
Keys, Nominate, and Concrete Domains

Carsten Lutz1 Carlos Areces2 Ian Horrocks3 Ulrike Sattler1

1 Inst, for Theoretical Computer Science 2 INRIA Lorraine 3Dept. of Computer Science
Technical University Dresden Nancy University of Manchester

Germany France UK
(lastname)@tcs.inf.tu-dresden.de Carlos.Areces@loria.fr horrocks@cs.man.ac.uk

Abstract

Many description logics (DLs) combine knowledge
representation on an abstract, logical level with an
interface to "concrete" domains such as numbers
and strings. We propose to extend such DLs with
key constraints that allow the expression of state
ments like "US citizens are uniquely identified by
their social security number". Based on this idea,
we introduce a number of natural description logics
and present (un)decidability results and tight NEx-
PTlME complexity bounds.

1 Introduction
Description Logics (DLs) are a family of popular knowledge
representation formalisms. Many expressive DLs combine
powerful logical languages with an interface to concrete do
mains (e.g., integers, reals, strings) and built-in predicates
(e.g., <, sub-string-of) [Lutz, 2002bl. These can be used to
form descriptions such as "employee working for the govern
ment and earning more than her boss" that combine "abstract"
logical components (e.g., working for the government) with
components using concrete domains and predicates (e.g., a
numerical comparison of earnings).

DLs with concrete domains have turned out to be useful for
reasoning about conceptual (database) models [Lutz, 2002c],
and as the basis for expressive ontology languages [Horrocks
et al.y 20021. So far, however, they have not been able to ex
press key constraints, i.e., constraints expressing the fact that
certain "concrete features" uniquely determine the identity of
the instances of a certain class. E.g., the concrete feature "so
cial security number (SSN)" might serve as a key for citizens
of the US, and the combination of identification number and
manufacturer might serve as a key for vehicles. Such con
straints are important both in databases and in realistic on
tology applications. In a DL context, key constraints have
so far only been considered on logical, "non-concrete" do
mains [Borgida and Weddell, 1997; Calvanese et a/., 2000;
Khizder et al, 2001; Toman and Weddell, 20021.

It is easy to see that concrete keys can express nominate,
i.e., concepts to be interpreted as singleton sets (closely re
lated to the "one-of" operator): e.g., if SSN is a key for Hu
man (SSN keyfor Human), then the concept "Human with SSN

has at most one instance.

In this paper, we extend the well-known DLs with concrete
domains ACC(V) and SHOQ(D) [Baader and Hanschke,
1991; Horrocks and Sattler, 2001] with key constraints and
analyse the complexity of reasoning with the resulting log
ics ALLOK(D) and SHOQK(D). We show that allowing
complex concepts to occur in key constraints dramatically
increases the complexity of ALL(D) (which is PSPACE-
complete): it becomes undecidable. Restricting key con
straints to atomic concepts (such as "Human" in the above
example) still yields a NEXPTlML-hard formalism, even for
rather simple (PTlME) concrete domains. We show several
variants of this result that depend on other characteristics of
key constraints, such as the number of concrete features and
the "path length". This effect is consistent with the observa
tion that the PSPACE upper bound for ACC(V) is not robust
[Lutz, 20031.

Additionally, we prove the N E X P T I M E bounds to be
tight by presenting tableau algorithms for ALLOK{V) and
SHOQK{V) with key admissible concrete domains that are
in NP, where key admissibility is a simple and natural prop
erty. We have chosen to devise tableau algorithms since they
have the potential to be implemented in efficient reasoners
and have been shown to behave well in practise [Horrocks
et al, 2000]. Due to space restrictions, we can only sketch
proofs and refer to [Lutz et al, 2002] for more details.

2 Preliminaries
First, we formally introduce the description logic
ALLOK(D).

Definition 1. A concrete domain V is a pair
where is a set and a set of predicate names. Each
predicate name is associated with an arity n and an
n-ary predicate

be pairwise disjoint and countably in
finite sets of concept names, nominate, role names, and con
crete features. We assume that NR has a countably infinite
subset NaF of abstract features. A path u is a composition

of n abstract features and a
concrete feature g. Let V be a concrete domain. The set of
ALLOK(D)-concepts is the smallest set such that (i) every
concept name and every nominal is a concept, and (ii) if C
and D are concepts, R is a role name, g is a concrete feature,
u 1 , . . . , un are paths, and is a predicate of arity n.

DESCRIPTION LOGICS 349

then the following expressions are also concepts:

" A key definiton is an expression (u 1 , . . . , Uk keyfor C) for
paths and C a concept. A finite set of key

definitions is called a key box.
As usual, we use T to denote an arbitrary propositional tau
tology. Throughout this paper, we will consider several frag
ments of the logic ALLOK{V)\ A£CO{V) is obtained from
ALLOK(D) by admitting only empty key boxes; by disal
lowing the use of nominals, we obtain the fragment ACC(V)
of ALCO{D) and ALCK(D) of ALLOK{D).

The description logic ALCOK(D) is equipped with a
Tarski-style set-theoretic semantics. Along with the seman
tics, we introduce the standard inference problems: concept
satisfiability and concept subsumption.
Definition 2. An interpretation X is a p a i r , where

is a non-empty set, called the domain, and is the in
terpretation function. The interpretation function maps each
concept name C to a subset CI of , each nominal N to
a singleton subset N1 of , each role name R to a subset

each abstract feature / to a partial function
, and each concrete feature g to a partial

function q1 from
I f i s a path and d i s de

fined as The interpretation function
is extended to arbitrary concepts as follows:

An interpretation I is a model of a concept C iff
Moreover, X satisfies a key definition (u1,..., un keyfor C)
if, for any (b) f o r n implies
a — b. 2 is a model of a key box K. iff X satisfies all key
definitions in K. A concept C is satisfiable w.r.t. a key box
K iff C and K have a common model. C is subsumed by a
concept D w.r.t. K, (written C for all
models I of K
It is well-known that, in DLs providing for negation, sub-
sumption can be reduced to (un)satisfiability and vice versa:
C D itf C -D is unsatisfiable w.r.t. K and C is sat
isfiable w.r.t. KZ iff C - iT . Thus we can concentrate
on concept satisfiability when investigating the complexity
of reasoning: the above reduction implies the corresponding
bounds for subsumption and the complementary complexity
class (usually C O - N E X P T I M E in this paper).

When devising decision procedures for DLs which are not
tied to a particular concrete domain, admissibility of the con
crete domain usually serves as a well-defined interface be
tween the decision procedure and concrete domain reasoners
[Baader and Hanschke, 1991; Lutz, 2002b]:

Definition 3. Let V be a concrete domain. A D-conjunction
is a (finite) predicate conjunction of the form

where Pi is an n,-ary predicate for and the are
variables. A 'P-conjunction c is satisfiable iff there exists a
function 6 mapping the variables in c to elements of such
that for each We say
that the concrete domain V is admissible iff (i) contains a
name TD for ; (ii) D is closed under negation, and (iii)
satisfiability of P-conjunctions is decidable. We refer to the
satisfiability of D-conjunctions as D-satisfiability.
As we shall see, it sometimes makes a considerable differ
ence w.r.t. complexity and decidability to restrict key boxes
in various ways. Because of this, it is convenient to introduce
the following notions:
Definition 4. A key box K is called Boolean if all concepts
appearing in (key definitions in) K. are Boolean combinations
of concept names; path-free if all key definitions in K are of
the form (g1,..., gn keyfor C) with ; sim
ple if it is both path-free and Boolean; and a unary key box if
all key definitions in K are of the form (u keyfor C). A con
cept C is called path-free if, in all its subconccpts of the form

~ are concrete features.
To emphasize that a key box must not necessarily be Boolean
or path-free, we sometimes call such a key box general. Sim
ilarly, to emphasize that a key box is not necessarily a unary
key box, we sometimes call such a key box n-ary key box.

3 Lower Complexity Bounds
In this section, we present lower complexity bounds for DLs
with concrete domains, key boxes and nominals. We start by
showing that satisfiability of ALLK (V)-concepts w.r.t. gen
eral key boxes is undecidable for many interesting concrete
domains. This discouraging result is relativized by the fact
that, as shown in Section 4, the restriction to Boolean key
boxes recovers decidability. Next, we prove that satisfiabil
ity of path-free ALLK(D)-concepts w.r.t. simple key boxes
is NExpT3lME-hard for many concrete domains and that this
holds even if we restrict ourselves to unary key boxes. Fi
nally, we identify a concrete domain such that ALLO(D)-
concept satisfiability (without key boxes) is already NEXP-
TlME-hard.

Undecidability of ALLK.(D)-concept satisfiability w.r.t.
general key boxes is proved by reduction of the undecidable
Post Correspondence Problem (PCP) [Post, 1946].
Definition 5. An instance P of the PCP is given by a finite,
non-empty list of pairs of words over
some alphabet . A sequence of i n t e g e r s w i t h
m 1, is called a solution for P iff
The problem is to decide whether a given instance P has a
solution.
The reduction uses the admissible concrete domain W intro
duced in [Lutz, 2003], whose domain is the set of words over
£ and whose predicates express concatenation of words. For
each PCP instance we define a

350 DESCRIPTION LOGICS

concept Cp and unary key box Kp such that P has no solu
tion iff Cp is satisfiable w.r.t. Kp. Intuitively, Cp and Kp

enforce an infinite, A;-ary tree, where each node represents a
sequences of integers, i.e. a potential solution. The role of
the key box is to guarantee that the tree is of infinite depth;
concrete features are used to store the left and right concate
nations corresponding to the potential solutions; and concate
nation predicates from the concrete domain W are used to
compute them. Finally, an inequality predicate also provided
by W is used to guarantee that none of the potential solutions
is indeed a solution. Since it is known that W-satisfiability is
in PTlME [Lutz, 2003J, we obtain the following theorem.
Theorem 6. There exists a concrete domain V such that
D-satisfiability is in PTlME and satisfiability of ALLK(D)-
concepts w.r.t. (general) unary key boxes is undecidable.
As shown in [Lutz, 2003; Lutz et a/., 2002], the reduction can
easily be adapted to more natural concrete domains such as
numerical ones based on the integers and providing predicates
for equality to zero and one, binary equality, addition, and
multiplication.

We now establish lower bounds for ALLK{V) with
Boolean key boxes and for ALLO('D). These results are
obtained using a NExpTlME-completc variant of the well-
known, undecidable domino problem [Knuth, 1968].
Definition 7. A domino system D is a triple (T, H, V), where
T N is a finite set of tile types and repre
sent the horizontal and vertical matching conditions. For D a
domino system and an initial condi
tion, a mapping r : is
a solution for 2) and , the following
h o l d s : , then

/', then
This variant of the domino problem is N E X P T I M E -

complete [Lutz, 2003]. The three N E X P T I M E lower bounds
are obtained by using suitable and admissible concrete do
mains D1, D2, and D3 to reduce the above domino prob
lem. More precisely, the simplest concrete domain D1 is used
in the reduction to ALLK(Di)-concept satisfiability w.r.t.
Boolean (n-ary) key boxes, the slightly more complex D2

is used in the reduction to ACCK.(D2)-concept satisfiabil
ity w.r.t. Boolean unary key boxes, and the most powerful
concrete domain D3 is used in the reduction to ALLO(D3)-
concept satisfiability without key boxes.

The idea underlying all three reductions is to use concept
n a m e s t o represent positions i n the

torus: if a is a domain element representing
the position expresses that the l-th bit in
the binary coding of i is 1, and expresses that the I'-lh
bit of j is 1. We use standard methods to enforce that there
exists a domain element for every position in the torus. The
main difference between the three reductions is how it is en
sured that no position is represented by two different domain
elements—we call this uniqueness of positions.

The first reduction uses the very simple concrete do
main D1, which is based on the set {0,1} and only pro
vides unary predicates = 0 , =1 and their negations. Unique
ness of positions is ensured by translating the position (i , j)

of a domain element a into concrete domain values: for
, we enforce that and 0

otherwise (analogously for . Then the key def
inition obvi
ously ensures uniqueness of positions. Since the reduction
concept is path-free and D1-satisfiability is easily seen to be
in PTlME, we obtain the following:

Theorem 8. D1 -satisfiability is in PTlME and satisfiability
of path-free ALC/C(D1)-concepts w.r.t. simple key boxes is
NExrTlME-hard.
The (somewhat artificial) concrete domain D1 can be replaced
by many natural concrete domains V proposed in the litera
ture [Baader and Hanschke, 1992; Haarslev and Moller, 2002;
Lutz, 2002b; 2002dj: it suffices that V provides two unary
predicates denoting disjoint singleton sets.

The second reduction uses the more complex concrete do
main Do, which "stores" whole bit vectors rather than only
single bits. In D2, we can translate the position (i,j) of an
element a. from concepts Xl, YK into a single bit vector of
length 2(n + 1) that is then stored as a bv-successor of a,
where bv is a concrete feature. Since we replaced the 2(n +1)
concrete features used in the first reduction (one for each bit)
by the single feature bv, it now suffices to use the simple
unary key box (bv keyfor T) to ensure uniqueness of posi
tions. As in D1, the reduction concept is path-free. In [Lutz
et al., 2002], it is shown that Do-satisfiability is in PTlME.

Theorem 9. Do -satisfiability is in PTlME and satisfiability of
path-free ALCK(D2)-concepts w.r.t. simple unary key boxes
is NExpTIME-hard.

Again, the artificial concrete domain Do can be replaced by
more natural ones: we can simulate bit vectors using inte
gers and the necessary operations on bit vectors by unary
predicates =„ for every interger n and a ternary addition
predicate—for more details sec [Lutz et al., 2002].

The last lower bound is concerned with the DL ALCO(V).
In the absence of key boxes, we need a different reduction
strategy and the more complex concrete domain D3, which
extends D2 with so-called domino arrays that allow us to store
the tiling of the whole torus in a single concrete domain value.
We can then ensure uniqueness of positions using a single
nominal. Computationally, the concrete domain D3 is still
very simple, namely in PTlME. However, it no longer suffices
to use only path-free concepts.

Theorem 10. D3satisfiability is in PTlME and satisfiability
ofALCO(D3)-concepts is NExPTlME-hard.

4 Reasoning Procedures
We describe two tableau-based decision procedures for con
cept satisfiability in DLs with concrete domains, nomi-
nals, and keys. The first is for ASLCC'(9AJ(T))-concepts w.r.t.
Boolean key boxes. This algorithm yields a N E X P T I M E up
per complexity bound matching the lower bounds established
in Section 3. The second procedure is for S'HOOK(D) w.r.t.
path-free key boxes and also yields a tight N E X P T I M E up
per complexity bound. S'HOQK('D) is an extension of the
DL SHOQ{'D) introduced in [Horrocks and Sattler, 2001;

DESCRIPTION LOGICS 351

Pan and Horrocks, 2002], which provides a wealth of ex
pressive possibilities such as transitive roles, role hierar
chies, nominals, qualifying number restrictions, and general
TBoxes with a path-free concrete domain constructor and
path-free key boxes. Path-freeness of SHOQK(T>ys con
crete domain constructor is crucial for decidability. More
over, it allows us to admit general rather than only Boolean
key boxes.

Tableau algorithms decide the satisfiability of the input
concept (in our case w.r.t. the input key box) by attempting to
construct a model for it: starting with an initial data structure
induced by the input concept, the algorithm repeatedly ap
plies completion rules. Eventually, the algorithm either finds
an obvious contradiction or it encounters a contradiction-free
situation in which no more completion rules are applicable.
In the former case the input concept is unsatisfiable, while in
the latter case it is satisfiable.

Existing tableau algorithms for DLs with concrete do
mains use admissibility as an "interface" between the tab
leau algorithm and a concrete domain reasoner [Lutz, 2002b;
Baader and Hanschke, 1991]. In the presence of keys,
this is not enough: besides knowing whether a given V-
conjunction is satisfiable, the concrete domain reasoner has
to provide information on variables that must take the same
value in solutions. As an example, consider the concrete
d o m a i n a n d the N-conjunction

. Obviously, every solution
5 for c identifies two of the variables v1, V2,v3. This informa
tion has to be passed from the concrete domain reasoner to the
tableau algorithm since, in the presence of key boxes, it may
have an impact on the satisfiability of the input concept. E.g.,
this information transfer reveals the unsatisfiability of

To formalize this requirement, we strengthen the notion of ad
missibility into key-admissibility.

Definition 11. A concrete domain V is key-admissible iff (i)
contains a name is closed under

negation, and (iii) there exists an algorithm that takes as input
a D-conjunction c, returns clash if c is unsatisfiable, and oth
erwise non-deterministically outputs an equivalence relation
~ on the set of variables V used in c such that there exists a
solution 5 for c with the following property: for all v, v' V

Such an equivalence relation is
henceforth called a concrete equivalence. We say that ex-
tended V-satisfiability is in NP if there exists an algorithm as
above running in polynomial time.

It can easily be seen that any concrete domain that is ad
missible and provides for an equality predicate is also key-
admissible [Lutz et a/., 2002].

In the following, we assume that all concepts (the input
concept and those occuring in key boxes) are in negation nor
mal form (NNF), i.e., negation occurs only in front of concept
names and nominals; if the concrete domain V is admissi
ble, then every ALCCK(D)-concept can be converted into
an equivalent one in NNF [Lutz et al. , 2002]. We use C
to denote the result of converting the concept C into NNF,
sub(C) to denote the set of subconcepts of C, and sub(/C) to
denote the set of subconcepts of all concepts occurring in key

box K. Moreover, we use cl(C, K) as abbreviation for the set

Complexity of ALCOK:{V)
We start the presentation of the ALCOK(D) tableau algo
rithm by introducing the underlying data structure.

Definition 12. Let Oa and Oc be disjoint and countably in
finite sets of abstract and concrete nodes. A completion tree
for an ALCOK(D)-concept C and a key box K, is a finite,
labeled tree (Va,VC,E, C) with a set of nodes such
that Va Oa, Vc Oc, and all nodes from Vc are leaves.
Each node a Va of the tree is labeled with a subset C(a)
of cl(C, K); each edge (a, b) E with a, b Va is labeled
with a role name C(a, b) occurring in C or K; and each edge
(a, x) E with a Va and x Vc is labeled with a concrete
feature L(a, x) occurring in C or K,.

For T = (Va,VC,E,C) and a Va, we use levT(a) to
denote the depth at which a occurs in T (starting with the root
node at depth 0). A completion system for an ACCOK,(V)-
concept C and a key box K is a tuple where
T = ' is a completion tree for C and K, V is
a function mapping each with arity n appearing in
C to a subset of is a linear ordering of Va such that
levx(a) i m p l i e s i s a n equivalence
relation on Vc.

Let T = (Va, Vc, E, C) be a completion tree. A node b
Va is an R-successor of a node a Va if (a, b) E and
L(a, b) = R. Similarly, a node x Vc is a g-successor of
a if (a, x) E and L(a, x) = y. For paths u, the notion
u-successor is defined in the obvious way.

Intuitively, the relation ~ records equalities between concrete
nodes that have been found during the model construction
process. The relation ~ induces an equivalence relation
on abstract nodes which, in turn, yields the equivalence rela
tion on concrete nodes.

Definition 13. Let S = be a completion system
for a concept C and a key box K. with T =
and let be an equivalence relation on Va. For each R
NR, a node b Va is an of a node a Va

if there exists a node c Va such that a c and b is an
i?-successor of c. For paths u, the notion , -neighbor is
defined analogously.

352 DESCRIPTION LOGICS

Finally, s e t a n d define x o r
there are a such that x and y are
neighbors of a.

Intuitively, if we have then a and b describe the same
domain element of the constructed model (and similarly for
the relation on concrete nodes).

Let D be a key-admissible concrete domain. To de
cide the satisfiability of an ALCOK.{V)-concept Co w.r.t.
a Boolean key box K (both in NNF), the tableau algo
rithm is started with the initial completion system

where
and maps each occurring in Co to 0. We now
introduce an operation that is used by the completion rules to
add new nodes to completion trees.

Definition 14. Let be a completion system
with . A n element of Oa or 0C is called
fresh in T if it does not appear in T. We use the following
notions:
S + aRb : Let fresh in T, and R NR. We
write S + aRb to denote the completion system S' that can be
obtained from S by adding (a, b) to E and setting L(a, b) —
R and Moreover, b is inserted i n t o s u c h that

implies levT(b) < levT(c)'
S + agx: Let fresh in T and
We write S + agx to denote the completion system S' that
can be obtained from S by adding (a,x) to E and setting
L{a,x) = g.
When nesting +, we omit brackets writing, e.g.,
bR2c for be a path.
With is fresh in T, we
denote the completion system S' that can be obtained from 5
by taking fresh nodes and setting

The completion rules are given in Figure 1, where we assume
that newly introduced nodes are always fresh. The and
Rch rules are non-deterministic and the upper five rules are
well-known from existing tableau algorithms for ALC('D)-
concept satisfiability (c.f. for example fLutz, 2002dl). Only

deserves a comment: it considers -neighbors rather
than R-successors since relates nodes denoting the same
domain element.

The last two rules are necessary for dealing with key boxes.
The "choose rule" Rch (c.f. [Hollunder and Baader, 1991;
Horrocks et al., 2000]) guesses whether an abstract node a
satisfies C in case of C occurring in a key definition and
a having neighbors for all paths uL in this key definition.
The Rp rule deals with equalities between abstract nodes as
recorded by the relation: if. b, then a and b describe
the same element, and thus their node labels should be identi
cal. We choose one representative for each equivalence class
of (the node that is minimal w.r.t.) and make sure that
the representative's node label contains the labels of all the
nodes it represents.

Definition 15. Let S = be a completion system
for a concept C and a key box K with We

Figure 1: Completion rules for ACCOK{V).

say that the completion system S is concrete domain satisfi-
able iff the conjunction

is satisfiable. 5 contains a clash iff (i) there is a n a n d
a n s u c h t h a t (i i) there are
and such t h a t a n d x i s o f
a; or (iii) S is not concrete domain satisfiable. If S does not
contain a clash, then S is called clash-free. S is complete if
no completion rule is applicable to S.
We now give the tableau algorithm in pseudocode nota
tion, where check denotes the algorithm computing concrete
equivalences as described in Definition 11:

define procedure sat(S)
do

if S contains a clash then return unsatisfiable

compute and then
while
if S contains a clash then return unsatisfiable
if S is complete then return satisfiable
apply a completion rule to S yielding ,
return sat(S")

The algorithm realizes a tight coupling between the con
crete domain reasoner and the tableau algorithm: if the con
crete domain reasoner finds that two concrete nodes are equal,
the tableau algorithm may use this to deduce (via the com
putation of even more equalities between con
crete nodes. The concrete domain reasoner may then return
in check further "equalities" ~ and so forth.

A similar interplay takes place in the course of several re
cursion steps: equalities of concrete nodes provided by the

DESCRIPTION LOGICS 353

concrete domain reasoner may make new rules applicable (for
example Rp and then which changes V and thus also Cs.
This may subsequently lead to the detection of more equali
ties between concrete nodes by the concrete domain reasoner,
and so forth. Note that, in the absence of keys boxes, there is
much less interaction: it suffices to apply the concrete domain
satisfiability check only once after the completion rules have
been exhaustively applied [Baader and Hanschke, 1991 J.

In fLutz et ai, 2002], we prove that the algorithm runs
in non-deterministic exponential t ime: there are exponential
bounds on the number of abstract and concrete nodes in the
completion system, on the number of whi le loop iterations in
each recursion step, and on the size of Cs- This yields the
fo l lowing upper bound, which is tight by Theorem 9.

Theorem 16. For V a key-admissible concrete domain such
that extended D-satisfiability is in NP, ALCOK.('D)-concept
satisfiability w.r.t. Boolean key boxes is in NEXPTlME.

Complexi ty of SUOQK (D)
We have designed a tableau algorithm for SHOQK(D) as a
combination of the one for SHOQ{V) in [Horrocks and Sat-
tler, 2001] and the one for ALCOK(D) presented above. It is
restricted to path-free concepts and path-free key boxes, but
can handle complex concepts in key boxes. The most impor
tant difference from the ACCOK(D) algorithm is as fol lows:
in the presence of non-Boolean key boxes, the Rch rule may
add concepts of positive "role depth" to arbitrary nodes in the
completion tree. Thus the role depth does not automatically
decrease wi th the depth of nodes in the tree (as in the case
of AlCOK.{V)) and a naive tableau algorithm would con
struct infinite trees. However, even for SUOQ(V) without
key boxes, one has to enforce termination artif icially by us
ing a cycle detection mechanism called blocking—whereas
the ALCOK(V) algorithm terminates "natural ly". It can be
shown that blocking can be used in the presence of key boxes
without corrupting soundness or completeness. A detailed
description of this algorithm and a correctness proof is given
in iLutz et al, 2002]. As a by-product of the SHOQK(D)
tableau algorithm, we obtain a small model property: every
satisfiable S'HOQK(D)-concept has a model of size expo
nential in the concept length. Thus we obtain the fo l lowing
upper bound, which is tight by Theorem 9.

Theorem 17. For V a key-admissible concrete domain such
that V-satisfiability is in NP, SUOQK(D)-concept satisfia
bility w.r.t. path-free key boxes is in NEXPTIME.

5 Summary
We have identified key boxes as an interesting extension of
description logics wi th concrete domains, introduced a num
ber of natural description logics, and provided a comprehen
sive analysis of the decidabil i ty and complexity of reasoning.
Moreover, we have proposed tableau algorithms for two such
(NExPTlME-complete) logics.

The main result of our investigations is that key constraints
are rather powerful , since they dramatically increase the com
plexity of reasoning: PSPACE ACC{V) becomes undecidable
wi th unrestricted key boxes, and NExpTiME-complete wi th
Boolean key boxes—provided that the concrete domain V is
not too complex, i.e., extended D-satisfiability is in NP.

References
[Baader and Hanschke, 1991] F. Baader and P. Hanschke. A

scheme for integrating concrete domains into concept languages.
In Proc. oflJCAl-9l, Morgan-Kaufmann, 1991.

[Baader and Hanschke, 1992] F. Baader and P. Hanschke. Exten
sions of concept languages for a mechanical engineering appli
cation. In Proc. ofGWAI-92, vol. 671 of LNCS, Springer, 1992.

[Borgida and Weddcll, 1997] A. Borgida and G.E. Weddell.
Adding uniqueness constraints to description logics (preliminary
report). In Proc. of DOOD 97, volume 1341 of LNCS, pages
85-102. Springer, 1997.

iCalvanese et al, 2000] D. Calvanese, G. De Giacomo, and M.
Lenzerini. Keys for Free in Description Logics. In Proc. of
DL2000, number 33 in http://CEUR-WS.org/, 2000.

[Haarslev and Moller, 2002] V. Haarslcv and R. Moller. Practical
reasoning in racer with a concrete domain for linear inequations.
In Pmc. ofDL2002, number 53 in http://CEUR-WS.org/, 2002.

[Hollunder and Baader, 1991] B. Hollunderand F. Baader. Qualify
ing number restrictions in concept languages. In Proc. of KR'9],
Morgan- Kaufmann, 1991.

[Horrocks and Sattler, 2001] 1. Horrocks and U. Sattler. Ontology
reasoning in the SHOQ(D) description logic. In Proc. of IJCAJ-
01, Morgan-Kaufmann, 2001.

[Horrocks et ai, 2000] I. Horrocks, U. Sattler, and S. Tobies. Prac
tical reasoning for very expressive description logics. Logic Jour
nal of the 1GPL, 8(3):239-264, 2000.

[Horrocks et ai, 2002] I. Horrocks, P.F. Patel-Schncidcr, and F. van
Harmelen. Reviewing the design of DAML+OIL: An ontology
language for the semantic web. In Proc. of AAAI2(X)2, 2002.

[Khizder et ai, 2001] V. Khizder, D. Toman, and G. Weddell. On
Decidability and Complexity of Description Logics with Unique
ness Constraints. In Proc. of ICDT 2001, 2001.

[Knuth, 1968] D. Knuth. The Art of Computer Programming, vol
ume 1. Addison-Wesley, 1968.

[Lutz etal, 20021 C. Lutz, C. Areccs, I. Horrocks, and U. Sat-
tler. Keys, nominals, and concrete domains. LTCS-Report 02-
04, Technical University Dresden, 2002. S e e h t t p : / / l a t . i n f . t u -
drcsden.de/rescarch/reports.html.

[Lutz, 2002b] C. Lutz. Description logics with concrete domains—
a survey. In Proc. of AiML 2002, 2002.

[Lutz, 2002dl C. Lutz. PSPACE reasoning with the description
logic ACCT{V). Logic J. of the JGPL, 10(5):535-568, 2002.

[Lutz, 2002e] C. Lutz. Reasoning about entity relationship dia
grams with complex attribute dependencies. In Proc. ofDL2002,
number 53 in http://CEUR-WS.org/, 2002.

[Lutz, 20031 C. Lutz. NExpTime-complete description logics with
concrete domains. ACM Transactions on Computational Logic,
2003. To appear.

[Pan and Horrocks, 2002] J. Z. Pan and I. Horrocks. Reasoning in
the SHOQDn) description logic. In Proc. of DL2002, num
ber 53 in http://CEUR-WS.org/, 2002.

[Post, 19461 E. M. Post. A variant of a recursively unsolvable prob
lem. Bull. of the Amer. Math. Soc, 52:264-268, 1946.

[Toman and Weddell, 2002] D. Toman and G. Weddell. On reason
ing about structural equality in XML: A description logic ap
proach. In Proc. of ICDT2003, number 2572 in LNCS, pages
96-110, Springer, 2002.

354 DESCRIPTION LOGICS

http://CEUR-WS.org/
http://CEUR-WS.org/

