
A Maximal Tractable Class of Soft Constraints

David Cohen Martin Cooper Peter Jeavons Andrei Krokhin
Computer Science Department IRIT OUCL Computer Science Department

RHUL, UK University of Toulouse III, France University of Oxford, UK University of Warwick, UK

d.cohen@rhul.ac.uk cooper@irit.fr p.jeavons@comlab.ox.ac.uk ak@dcs.warwick.ac.uk

Abstract
Many optimization problems can be expressed us
ing some form of soft constraints, where different
measures of desirability arc associated with differ
ent combinations of domain values for specified
subsets of variables. In this paper we identify a
class of soft binary constraints for which the prob
lem of finding the optimal solution is tractable. In
other words, we show that for any given set of
such constraints, there exists a polynomial time al
gorithm to determine the assignment having the
best overall combined measure of desirability. This
tractable class includes many commonly-occurring
soft constraints, such as "as near as possible" or "as
soon as possible after", as well as crisp constraints
such as "greater than'1.

1 Introduction
The constraint satisfaction framework is widely acknowl
edged as a convenient and efficient way to model and solve a
wide variety of problems arising in Artificial Intelligence, in
cluding planning and scheduling, image processing and natu
ral language understanding.

In the standard framework a constraint is usually taken to
be a predicate, or relation, specifying the allowed combina
tions of values for some fixed collection of variables: we will
refer to such constraints here as crisp constraints. A num
ber of authors have suggested that the usefulness of the con
straint satisfaction framework could be greatly enhanced by
extending the definition of a constraint to include also soft
constraints, which allow different measures of desirability to
be associated with different combinations of values [Bistarelli
et al., 1999]. In this extended framework a constraint can
be seen as a function, mapping each possible combination of
values to a measure of desirability or undesirability. Finding
a solution to a set of constraints then means finding an as
signment of values to all of the variables which has the best
overall combined desirability measure.

Example 1,1 For example, consider an optimization prob
lem where we have 2n variables, v1,v2,. .-,V2n, and we
wish to assign each variable an integer value in the range
1,2, . . . , n, subject to the following restrictions:

• Each variable v1 should be assigned a value that is as
close as possible to i/2.

• Each pair of variables v1 v2, should be assigned a pair
of values that are as similar as possible.

To model this situation we might impose the following soft
constraints:

• A unary constraint on each v1 specified by a function
where

• A binary constraint on each pair v1,v2i specified by a
function

We would then seek an assignment to all of the variables
which minimizes the sum of these constraint functions,

LJ

The cost of allowing additional flexibility in the specification
of constraints, in order to model requirements of this kind, is
generally an increase in computational difficulty. In the case
of crisp constraints there has been considerable progress in
identifying classes of constraints which are tractable, in the
sense that there exists a polynomial time algorithm to deter
mine whether or not any collection of constraints from such a
class can be simultaneously satisfied [Feder and Vardi, 1998;
Jeavons et ail 1997]. In the case of soft constraints there
has been a detailed investigation of the tractable cases for
Boolean problems (where each variable has just 2 possible
values) [Creignou et al, 2001], but very little investigation of
the tractable cases over larger domains1, even though there
are many significant results in the literature on combina
torial optimization which are clearly relevant to this ques
tion [Nemhauser and Wolsey, 1988].

In this paper we make use of the idea of a submodular func
tion [Nemhauser and Wolsey, 1988; Topkis, 1978] to iden
tify a general class of soft constraints for which there exists
a polynomial time solution algorithm. Submodular functions
are usually defined as real-valued functions on Boolean tu
ples (=sets) [Nemhauser and Wolsey, 1988], but we consider

'The only previous work we have been able to find on non-
Boolean tractable soft constraints is [Khatib et ai, 2001], which
describes a family of tractable soft temporal constraints.

CONSTRAINTS 209

the more general case of functions on tuples over an arbitrary
finite domain. We also allow our functions to take infinite
values. By establishing a new decomposition result for this
general class of binary submodular functions (Theorem 4.4),
we obtain a cubic time algorithm to find the optimal assign
ment for any set of soft constraints defined by such functions.

We give a number of examples to illustrate the many dif
ferent forms of soft constraint that can be defined using bi
nary submodular functions, and we also show that this class is
maximal, in the sense that no other form of binary constraint
can be added without sacrificing tractability.

2 Definitions
To identify a tractable class of soft constraints we will need to
restrict the set of functions that are used to specify constraints.
Such a restricted set of possible functions will be called a soft
constraint language.

Definition 2.1 Let D and E be fixed sets. A soft constraint
language over D with evaluations in E is defined to be a set
of functions, T, such that each is a function from Dk

to E, for some where k is called the arity of

For any given choice of soft constraint language, T we define
an associated soft constraint satisfaction problem, which we
will call sCSP(r), as follows.

Definition 2.2 Let T be a soft constraint language over D
with evaluations in E. An instance V of sCSP(r) is a triple
(V,D,C), where:

• V is a finite set of variables, which must be assigned
values from the set D.

• C is a set of soft constraints. Each is a pair (a, d>)
where: is a list of variables, called the scope of c and

is an element of T of arity , called the evaluation
function of c.

Note that, for any constraint the arity of the con
straint is given by the length of the constraint scope. The
evaluation function will be used to specify some measure
of desirability or undesirability associated with each possible
tuple of values over

To complete the definition of a soft constraint satisfac
tion problem we need to define how the evaluations obtained
from each evaluation function are combined and compared,
in order to define what constitutes an optimal overall solu
tion. Several alternative mathematical approaches to this is
sue have been suggested in the literature:

• In the semiring based approach [Bistarelli et al, 1999],
the set of possible evaluations, E, is assumed to be an
algebraic structure equipped with two binary operations,
satisfying the axioms of a semiring.

• In the valued CSP approach [Bistarelli et al, 1999], the
set of possible evaluations E is assumed to be a totally
ordered algebraic structure with a top and bottom ele
ment and a single monotonic binary operation known as
aggregation.

For our purposes in this paper we require the same proper
ties as the valued CSP approach, with the additional require
ment that the aggregation operator has a partial inverse (so
that any evaluation can be "subtracted" from any larger eval
uation). For concreteness, we shall simply assume through
out this paper that the set of evaluations E is either the set of
non-negative integers together with infinity, or else the set of
non-negative real numbers together with infinity. Hence, for
any two evaluations the aggregation of p1 and p2

is given by we also have
(Note that we set

The elements of the set E wil l be used to represent dif
ferent measure of undesirability, or penalties, associated with
different combinations of values. This allows us to complete
the definition of a soft constraint satisfaction problem with
the following simple definition of a solution to an instance.

Definition 2.3 For any soft constraint satisfaction problem
instance V — (V, D, C), an assignment for V is a mapping
t from V to D. The evaluation of an assignment t, denoted

is given by the sum (i.e., aggregation) of the evalua
tions for the restrictions of t onto each constraint scope, that
is,

A solution to V is an assignment with the smallest possible
evaluation, and the question is to find a solution.

Example 2.4 For any standard constraint satisfaction prob
lem instance V with crisp constraints, we can define a cor
responding soft constraint satisfaction problem instance V in
which the range of the evaluation functions of all the con
straints is the set . For each crisp constraint c of P, we
define a corresponding soft constraint cofV with the same
scope; the evaluation function of c maps each tuple allowed
by c to 0, and each tuple disallowed by c to oo.

In this case the evaluation of an assignment t for equals
the minimal possible evaluation, 0, if and only ift , satisfies all
of the crisp constraints in V. D

Note that the problem of finding a solution to a soft con
straint satisfaction problem is an NP optimization problem,
that is, it lies in the complexity class NPO (see [Creignou
et al, 2001] for a formal definition of this class). If there
exists a polynomial-time algorithm which finds a solution to
all instances of sCSP(T), then we shall say that sCSP(T) is
tractable. On the other hand, if there is a polynomial-time re
duction from some NP-complete problem to sCSP(T), then
we shall say that sCSP(r) is NP-hard.

Example 2.5 Let Y be a soft constraint language over D,
where = 2. In this case sCSP(r) is a class of Boolean
soft constraint satisfaction problems.

If we restrict T even further, by only allowing functions
with range as in Example 2.4, then sCSP(r) corre
sponds precisely to a standard Boolean crisp constraint sat
isfaction problem. Such problems are sometimes known as

210 CONSTRAINTS

GENERAL IZED SATISFIABIL ITY problems [Schaefer, 1978].
The complexity of sCSP(F) for such restricted sets T has
been completely characterised, and the six tractable cases
have been identified [Schaefer, 1978; Creignou et al, 2001].

Alternatively, if we restrict Y by only allowing functions
with range {0,1) , then sCSP(r) corresponds precisely to a
standard Boolean maximum satisfiability problem, in which
the aim is to satisfy the maximum number of crisp constraints.
Such problems are sometimes known as M A X - S A T prob
lems [Creignou et al, 2001]. The complexity of sCSP(r)
for such restricted sets F has been completely characterised,
and the three tractable cases have been identified (sec Theo
rem 7.6 of [Creignou et al., 2001]).

We note, in particular, that when T contains just the single
binary function defined by

then sCSP(r) corresponds to the M A X - S A T problem for the
exclusive-or predicate, which is known to be NP-hard (see
Lemma 7.4 of LCreignou et al., 2001]). □

Example 2.6 Let T be a soft constraint language over D,
where and assume that T contains just the set of
all unary functions, together with the single binary function

defined by

Even in this very simple case it can be shown that sCSP(T)
is NP-hard [Cohen et al, 2002], by reduction from the
M I N I M U M M U L T I T H R M I N A L C U T problem [Dahlhausc/a/.,
1994]. u

The examples above indicate that generalizing the constraint
satisfaction framework to include soft constraints docs indeed
increase the computational complexity, in general. For exam
ple, the standard 2 -SAT ISF IAB IL ITY problem is tractable, but
the soft constraint satisfaction problem involving only the sin
gle binary Boolean function, defined at the end of Ex
ample 2.5, is NP-hard. Similarly, the standard constraint sat
isfaction problem involving only crisp unary constraints and
equality constraints is clearly trivial, but the soft constraint
satisfaction problem involving only soft unary constraints and
a soft version of the equality constraint, specified by the func
tion ΦEQ defined at the end of Example 2.6, is NP-hard.

However, in the next two sections we wil l show that it
is possible to identify a large class of functions for which
the corresponding soft constraint satisfaction problem is
tractable.

3 Generalized interval functions
We begin with a rather restricted class of binary functions,
with a very special structure.

Definition 3.1 Let D be a totally ordered set. A binary func
tion, Φ : D2 —> E wil l be called a generalized interval func
tion on D if it has the following form:

We can explain the choice of name for these functions by con
sidering the unary function . This function returns
the value p if and only if its argument lies in the interval [a, b];
outside of this interval it returns the value 0.

We shall write TGI to denote the set of all generalized in
terval functions on D, where D = { 1 , 2 , . . . , M} with the
usual ordering.

The main result of this section is Corollary 3.6, which
states that S C S P (T G I) is tractable. To establish this result we
first define a weighted directed graph2 associated with each
instance of sCSP(Ff;/).

Definition 3.2 Let V = (V, { 1 , . . . , M } , C) be an instance
of sCSP(Tgi). We define the weighted directed graph G-p
as follows.

• The vertices of G-p are as follows:

• The edges of Gp are defined as follows:
- For each there is an edge from S to with

weight
- For each , there is an edge from with

weight

there is an edge from vci to Vd+\ with weight
- For each constraint there is an

edge from with weight p. These edges
are called "constraint edges".

Example3.3 Let V = ({x ,y , z}, {1 ,2 ,3 ,4} ,C) be an in
stance of sCSP(TGI) with the following four constraints:

The corresponding weighted directed graph Gp, is shown in
Figure 1. U

Figure 1: The graph Gp associated with the instance V de
fined in Example 3.3.

2This construction was inspired by a similar construction for cer
tain Boolean constraints described in [Khanna et al., 2000].

CONSTRAINTS 211

Any set of edges C in the graph Gp whose removal leaves
the vertices S and T disconnected will be called a cut. If
every edge in C is a constraint edge, then C will be called a
proper cut. The weight of a cut C is defined to be the sum of
the weights of all the edges in C.

Example 3.4 Consider the graph Gp shown in Figure 1.
The set {(y3,20)} is a proper cut in Gp with weight
7, which is minimal with respect to inclusion. The set
{ (x 4 ,y 2) , (z3 ,y3)} is a proper cut in Gp with weight 5,
which is again minimal with respect to inclusion. D

Proposition 3.5 Let V be any instance of sCSP{Tgi)> and
let Gp be the corresponding weighted directed graph.

1. For each minimal proper cut in Gp with weight there
is an assignment for V with evaluation

2. For each assignment t for V with evaluation , there is
a proper cut in Gp with weight

Proof:
1. Let C be any minimal proper cut of the graph Gp, and

let Cs be the component of Gp \ C connected to S.
Define the assignment tc as follows:

(Note that tc is well-defined because Cs always con
tains vM, and never contains V0, by construction.)
By the construction of Gp, it follows that:

Now consider any constraint of P,
and its associated edge e in Gp. By the definition
of generalized interval constraint and the choice of tc,

if and only if and
I - J

and hence if and only if e joins a vertex in Cs
to a vertex not in Cs- Since C is minimal, this happens
if and only if Hence, the total weight of the cut
C is equal to the evaluation of tc-

2. Conversely, let t be an assignment to P, and let A' be the
set of constraints in V with a non-zero evaluation on t.
Now consider any path from S to T in Gp. If we ex
amine, in order, the constraint edges of tnis path, and
assume that each of the corresponding constraints eval
uates to 0, then we obtain a sequence of assertions of the
following form:

Since the second disjunct of each assertion contradicts
the first disjunct of the next, these assertions cannot all
hold simultaneously, so one of the corresponding con
straints must in fact give a non-zero evaluation on t.
Hence, every path from S to T includes at least one edge

corresponding to a constraint from K and so the edges
corresponding to the set K form a cut in Gp. Further
more, by the choice of K the weight of this cut is equal
to the evaluation of/ .

D
Hence, by using a standard efficient algorithm for the MIN-
IMUM W E I G H T E D C U T problem [Goldberg and Tarjan,
1988], we can find an optimal assignment in cubic time.

Corollary 3.6 The time complexity of sCSP(TGI) is
, where n is the number of variables.

4 Submodular functions
In this section we wil l consider a rather more general class of
functions, as described in [Topkis, 1978].

It is easy to check that all unary functions and all generalized
interval functions are submodular. For binary functions, the
definition of submodularity can be simplified, as follows.

It follows from Definition 4.1 that the sum of any two sub-
modular functions is submodular. This suggests that in some
cases it may be possible to express a submodular function as
a sum of simpler submodular functions. For example, for any
unary function : D —► E we have

The main result of this section is Theorem 4.4, which states
that any binary submodular function can also be expressed as
a sum of generalized interval functions.

Theorem 4.4 Let D be a totally ordered finite set. A binary
function, : D2 —► E is submodular if and only if it can be
expressed as a sum of generalized interval functions on D.

212 CONSTRAINTS

Proof: The proof is by reduction from
to w h e r e i s the binary function
defined in Example 2.5. It was pointed out in Example 2.5
that corresponds to the M A X - S A T problem
for the exclusive-or predicate, which is known to be NP-
hard [Creignou et al., 2001]. Hence is also
NP-hard. Details of the reduction are given in [Cohen et al.,
2002]. D

5 Applications
In this section we give a number of examples to illustrate
the wide range of soft constraints which can be shown to be
tractable using the results obtained in the previous sections.

Definition 5.1 For any k-ary relation R on a set D, we define
an associated function, as follows:

By Corollary 4.6, any collection of crisp constraints, where
each constraint is specified by a relation It for which ΦR
is unary or binary submodular, can be solved in polynomial
time, even when combined with other soft constraints that are
also unary or binary submodular.

Example 5.2 The constraint programming language CHIP
incorporates a number of constraint solving techniques for
arithmetic and other constraints. In particular, it provides a
constraint solver for a restricted class of crisp constraints over
natural numbers, referred to as basic constraints [van Henten-
ryck et al, 1992]. These basic constraints are of two kinds,
which are referred to as "domain constraints" and "arithmetic
constraints". The domain constraints described in [van Hen-
tenryck et al, 1992] are unary constraints which restrict the
value of a variable to some specified finite subset of the nat
ural numbers. The arithmetic constraints described in [van
Hentenryck et ai, 1992] have one of the following forms:

where variables are represented by upper-case letters, and
constants by lower case letters, all constants are non-negative
real numbers and a is non-zero.

For each of these crisp constraints the associated func
tion given by Definition 5.1 is unary or binary submodular,
hence, by Corollary 3.6, any problem involving constraints of
this form can be solved in cubic time. Moreover, any other
soft constraints with unary or binary submodular evaluation
functions can be added to such problems without sacrificing
tractability (including the examples below). D

Now assume, for simplicity, that D — { 1 , 2 , . . . , M}.

Example 5.3 Consider the binary linear function defined

This function is submodular and hence, by Corollary 3.6,
any collection of such binary linear soft constraints over the
discrete set D can be solved in polynomial time.

CONSTRAINTS 213

The next result shows that the tractable class identified in
Corollary 4.6 is maximal.

Combining Theorem 4.4 with Corollary 3.6, gives:

We remark that this decomposition is not unique - other de
compositions exist, including the symmetric decomposition

Proof: By the observations already made, any function
which is equal to a sum of generalized interval functions
clearly submodular.

Example 5,4 The Euclidean length function is
submodular, and can be used to express the constraint that
a 2-dimensional point (x , y) is "as close to the origin as pos
sible". G

One of the several possible cuts wi th this weight is indi
cated by the gray line across the graph, which corresponds to
the solution

□
Example 5.5 The fo l lowing functions are all submodular:

The function can be used to express the constraint
that: "The values assigned to the variables x and y
should be as similar as possible".

The function can be used to express the constraint
that: "The value of x is either less than or as near as
possible to y''

The function can be used to express the temporal
constraint that: "x occurs as soon as possible after y" .

D

Example 5.6 Reconsider the optimization problem defined
in Example 1.1. Since is unary, and is binary submod
ular (Example 5.5), this problem can be solved in cubic time,
using the methods developed in this paper.

Let V be the instance w i th n = 3 and r = 2. The values of
are given by the fo l lowing table:

Hence,

Using this decomposition for we can construct the graph
Gp corresponding to the instance P, as follows.

References
[Bistarelli et al., 1999] S. Bistarelli, U. Montanari, F. Rossi,

T. Schiex, G. Vcrfaillic, and H. Fargier. Semiring-based CSPs
and valued CSPs: Frameworks, properties, and comparison. Con-
straints,4:\99 240, 1999.

[Cohen et al, 2002] D. Cohen, M. Cooper, P. Jeavons, and
A. Krokhin. A tractable class of soft constraints. Technical
Report CSD-TR-02-14, Computer Science Department, Royal
Holloway, University of London, Egham, Surrey, UK, Decem
ber 2002.

|Crcignourt a/., 2001] N. Creignou, S. Khanna, and M. Sudan.
Complexity Classifications of boolean Constraint Satisfaction
Problems volume 7 of SI AM Monographs on Discrete Mathe
matics and Applications. 2001.

[Dahlhaus et al., 1994] E. Dahlhaus, D.S. Johnson, C.H. Papadim-
itriou, P.D. Seymour, and M. Yannakakis. The complexity of
multiterminal cuts. SI AM Journal on Computing, 23(4):864-894,
1994.

[Feder and Vardi, 1998] T. Feder and M.Y. Vardi. The computa
tional structure of monotone monadic SNP and constraint satis
faction: A study through Datalog and group theory. SI AM Jour
nal of Computing, 28:57-104, 1998.

[Goldberg and Tarjan, 1988] A. Goldberg and R.E. Tarjan. A new
approach to the maximum flow problem. Journal of the ACM,
35:921-940, 1988.

[Jeavons et al., 1997] P.G. Jeavons, D.A. Cohen, and M. Gyssens.
Closure properties of constraints. Journal of the ACM, 44:527
548, 1997.

[Khanna et al, 2000] S. Khanna, M. Sudan, L. Trevisan, and
D. Williamson. The approximability of constraint satisfaction
problems. SI AM Journal on Computing, 30(6): 1863 1920, 2000.

[Khatib et al, 2001] L. Khatib, P. Morris, R. Morris, and F. Rossi.
Temporal constraint reasoning with preferences. In Proceedings
of the 17th International Joint Conference on Artificial Intelli
gence (IJCAI-01), pages 322-327, Seattle, USA, 2001.

[Nemhauser and Wolsey, 1988] G.L. Nemhauser and L.A. Wolsey.
Integer and Combinatorial Optimization. John Wiley & Sons,
1988.

[Schaefer, 1978] T.J. Schaefer. The complexity of satisfiability
problems. In Proceedings 10th ACM Symposium on Theory of
Computing, STOC 78, pages 216 226, 1978.

[Topkis, 1978] D.M. Topkis. Minimizing a submodular function on
a lattice. Operations Research, 26:305-321, 1978.

[van Hentenryck et al, 1992] P. van Hentenryck, Y. Deville, and C-
M. Tcng. A generic arc-consistency algorithm and its specializa
tions. Artificial Intelligence, 57:291 321, 1992.

The min imum weight of any cut in this graph is 11/4, and
hence the optimal evaluation of any assignment for V is 11/4.

214 CONSTRAINTS

