
A Tractability Result for Reasoning with Incomplete First-Order Knowledge Bases

Yongmei Liu and Hector J. Levesque
Department of Computer Science

University of Toronto
Toronto, ON, Canada M5S 3G4
{yliu, hector} @cs.toronto.edu

Abstract
In previous work, Levesque proposed an extension
to classical databases that would allow for a certain
form of incomplete first-order knowledge. Since
this extension was sufficient to make full logical de­
duction undecidable, he also proposed an alterna­
tive reasoning scheme with desirable logical prop­
erties. He also claimed (without proof) that this
reasoning could be implemented efficiently using
database techniques such as projections and joins.
In this paper, we substantiate this claim and show
how to adapt a bottom-up database query evalu­
ation algorithm for this purpose, thus obtaining a
tractability result comparable to those that exist for
databases.

1 Introduction
As argued in [Levesque, 1998], there is only one deductive
technique efficient enough to be feasible on knowledge bases
(KBs) of the size seemingly required for common-sense rea­
soning: the deduction underlying classical database query
evaluation. And yet, databases by themselves are too re­
stricted to serve as the representational scheme for common-
sense reasoning, since they require, among other things, com­
plete knowledge of the domain. Levesque proposed a gener­
alization of databases called proper knowledge bases, which
allow for a limited form of incomplete knowledge. Despite
the limitations, however, the deduction problem for proper
KBs is no longer even decidablc. Levesque proposed an al­
ternative reasoning procedure V for proper KBs that was logi­
cally sound and, when the query was in a certain normal form,
logically complete. Moreover, he argued that it should be
possible to implement V for very large KBs using database
techniques. However, no proof was given.

In this paper, we examine proper KBs and the V procedure
more closely, and we prove a tractability result for this type
of logical reasoning that are comparable to those that exist for
classical database query evaluation. In particular, we adapt a
bottom-up database retrieval algorithm to the case of proper
KBs. Thus, what we show here is that in some cases it is
indeed possible to reason efficiently with incomplete knowl­
edge in a logically sound and complete way, or at least as
efficiently as we can with a database.

The rest of the paper is organized as follows. In the next
section, we review proper KBs and V, prove a new property
of V, i.e. locality, and define answers to open queries. In
Section 3, we review the complexity of database query evalu­
ation, and present a polynomial time algorithm for evaluating
K-guarded formulas. In Section 4, we show how to use this al­
gorithm to evaluate queries wrt proper KBs and hence obtain
a tractability result. In Section 5, we illustrate this query eval­
uation method for proper KBs with some example queries.
Finally in Section 6, we describe some future work.

AUTOMATED REASONING 83

1We think of these as beliefs about some initial state of the world.
It should be possible to generalize the notion of proper KB to deal
with state change. See Section 6 for discussion.

To illustrate the idea of a proper KB, imagine a scenario in­
volving a robot security guard keeping track of the occupants
of the rooms of a building. The robot can find out that some­
one has entered or left a room, and by going into a room, find
out who the occupants are. We can express what the robot
might know using a proper KB:1

Note that this information cannot be expressed in a traditional
database where, e.g. we cannot leave open the occupants of
Room 2. On the other hand, facts requiring disjunction or ex­
istential quantification cannot be expressed as part of a proper
KB, e.g. every room having at most three occupants.

It is not hard to see that the problem of determining
whether a sentence is logically entailed by a proper KB is
undecidable, since when the KB is empty, this reduces to
classical validity.2 Levesque [1998] proposed the reasoning
procedure V instead. Given a proper KB and a query, V re­
turns one of three values 0 (known false), 1 (known true), or
1/2 (unknown) as follows:

84 AUTOMATED REASONING

2.2 Invariance under renaming
The first difficulty that arises when attempting to reason with
proper KBs is the fact that unlike with databases, we cannot
fix the domain in advance, or even put an upper bound on its

other than a behave the same. This wil l allow us to define
finite versions of answers to open queries, as shown below.
Notation Let a be a formula and S a set of formulas. Let *
be a bijection from C to C. We use a* to denote a with each

2The classical validity problem is undecidable even when there
are no function symbols.

2.4 Answers to open queries

Proof: Follows from the theorem by taking * as the bijection
that swaps c and d and leaves the rest constants unchanged. ■

2.3 Locality

3 The complexity of database queries

3.1 An overview
The complexity of query evaluation has been one of the main
pursuits of database theory. Traditionally, there are two com­
plexity measures: combined complexity and data complexity
[Vardi, 1982]. Combined complexity is measured in terms
of the combined size of the database and the query. Chan­
dra and Merlin [1977] proved that the combined complexity
of conjunctive queries (queries expressed by first-order for­
mulas that are of the form where a, are
atoms) is NP-complete; Vardi L1982] proved that the com­
bined complexity of first-order queries is PSPACE-complete.
However, the main factor responsible for this high complexity
is the size of the query and not the size of the database. This is
contrary to the situation in practice where we normally eval­
uate small queries against large databases. Data complexity
measures the complexity of query evaluation solely in terms
of the size of the database and treats the size of the query as a
constant. A folk result is that first-order queries can be evalu­
ated in time no(1) where n is the size of the database and / is
the size of the query. Thus the data complexity of first-order
queries is in PT1ME. However, such a complexity can hardly
qualify as tractable even if the exponent is small, say 5.

Yannakakis [19951 was the first to suggest that parameter­
ized complexity [Downey and Fellows, 1995] might be an
appropriate complexity measure for database query evalua­
tion. Query evaluation is fixed-parameter tractable if there is
a computable function / : N —► N and a constant c such that
the problem can be solved in time / (/) • nc, where / and n are
the size of the query and the database, respectively. However,
Papadimitriou and Yannakakis [1999] proved that the param­
eterized complexity of conjunctive queries is W[l]-complete
and thus most likely not fixed-parameter tractable. We re­
fer the reader to [Grohe, 2002] for a survey on parameterized
complexity in database theory.

Therefore database query evaluation in general is hard with
respect to both combined and parameterized complexity. And
yet, database queries do work quite well in practice, even
for very large databases. A careful examination of the hard­
ness results show that they often depend on queries that are
somewhat atypical in applications, e.g. databases represent­
ing graphs and queries asking for the existence of cliques.

AUTOMATED REASONING 85

Naturally, many research efforts have gone into finding
classes of queries that can be proven tractable, even in the
worst cases. The earliest result of this form, due to Yan­
nakakis [1981], showed that acyclic conjunctive queries can
be evaluated in polynomial time. This result has been ex­
tended in several ways. The first extension, due to Chekuri
and Rajaraman [1997], showed that conjunctive queries
with bounded tree width are tractable. Later, Gottlob et al.
[1999] introduced the notion of hypertree width and showed
that conjunctive queries with bounded hypertree width are
tractable; bounded hypertree width generalizes the notions
of acyclicity and bounded treewidth. Recently, Flum et al
[2001] generalized the notions of acyclicity and bounded
treewidth from conjunctive queries to nonrecursive stratified
Datalog (NRSD), which is known to have the same expres­
sive power as all of first-order logic, and showed that acyclic
and bounded treewidth NRSD are tractable. Inspired by their
work, Gottlob et al [2001] extended the notion of hypertree
width to NRSD, and obtained a nice logical characterization
of hypertree width: they showed that the K-guarded fragment
of first-order logic has the same expressive power as NRSD
of hypertree width at most k. Thus K-guardcd first-order logic
turns out to be the largest tractable class of queries so far.

3.2 An evaluation algorithm

Note that any /c-guarded sentence is strictly K-guarded.
The evaluation algorithm below will take a strictly K-

guarded formula as the query. It turns out that any formula

In this section, we introduce the K-guarded fragment of £,
and explicitly present a polynomial algorithm for evaluating
K-guarded formulas against databases and analyze its com­
plexity. We will use this algorithm to evaluate K-guarded for­
mulas with respect to proper KBs.

4 The complexity of V
In this section, we consider how hard it is to compute V. Not
surprisingly, V is no easier than database query evaluation.
What is more significant is that under reasonable assump­
tions, it is not much harder either.

4.1 In t ractab i l i ty results
Theorem 4.1 The combined complexity of V is NP-hard
for conjunctive queries, and PS PACE-hard for first-order
queries. The parameterized complexity of V is W [1]-hard for
conjunctive queries.
Proof: The proof is essentially the same as that for database
query evaluation. For conjunctive queries, the reduction is
from the clique problem. For first-order queries, the reduction
is from QBF (Quantified Boolean Formula). ■

86 AUTOMATED REASONING

relation that is a subset of R. Moreover, the R is obtained
from joins of at most A: guards, and so has size at most nk.
Assuming all relations start in sorted form, the results of all
operations can be kept in sorted form, and computed in time
0(nk). Thus, the time overall is 0(lnk). ■

The evaluation algorithm will have worst-case time com­
plexity that is exponential only in the k. For fixed k, the algo­
rithm is polynomial, but perhaps impractical when k is large.

Before presenting the evaluation algorithm, we first recall
some basic notions of relational database theory. A database
instance is simply a logical structure (or interpretation) with
a finite domain. Let A be such a structure with domain A.
Let X and Y be sets of variables. An X-relation R over A, is

Here is the algorithm for computing answers:

4.2 A t ractabi l i ty result

We present examples of this transformation in the next sec­
tion. Here we note the following correctness result:

3 A positive (resp. negative) occurrence of P in a is one within
the scope of an even (resp. odd) number of negations.

AUTOMATED REASONING 87

This theorem says that the (finite version of) answers to
open queries in C correspond exactly to the answers we get
for the database constructed as above. This is a consequence
of locality and the following lemma:

Now we get our main complexity result:

To obtain a tractability result for open queries over proper
KBs, we need only ensure that the database queries we con­
struct are k-guarded then use the Eval procedure.

Proof: Follows from previous corollary and the fact that V is
logically sound and complete for queries in NF. ■

Note that these bounds are identical to their database coun­
terparts modulo the w factor. In most cases of interest, the
w wil l be small since even in a large KB, we only expect to
see a large ep or e- p in database-like cases, where the e is
relational or co-relational. In the case where none of the e are
relational or co-relational, we get the following:

5 An example
To illustrate how query evaluation would work with proper
KBs, we return to the example robotic scenario mentioned
in the first section, involving the predicate ln (person, room).
We can see from the example that e/n is given in relational
form, while e-,In, is given in unrestricted form. To make
things interesting, we assume two more predicates: One is
Mgr (person1,person2) saying that the first person is a man­
ager and that the second is one of his or her employees; we
assume that Mgr is given as a closed database predicate. The
other is Cmp(person1,person2) saying that the two persons
are compatible. We assume that the robot knows that any two
people are compatible except 77/(> 2) pairs; among these m
pairs, the robot only knows that two pairs are not compatible.

Here are some example queries,with the guards underlined.

6 Conclusions
In this paper, we have shown how a bottom-up query evalua­
tion procedure for databases can be used to answer queries for
KBs with a certain form of incomplete knowledge. Although
this procedure can be impractical for k-guarded queries
where A: is large, they would be impractical for databases too.

A number of questions remain to be addressed. First of all,
Lakemeyer and Levesque [2002] have proposed an extension
to proper KBs that allow disjunctions in the KB. It would be
interesting to see how much of the database retrieval mech­
anism could be preserved in this case. We can also imagine
other extensions to proper KBs, such as relaxing the unique
name assumption over constants, or allowing a limited use
of function symbols. Also, as suggested in the first section,
we can imagine a dynamic scenario where at any given point
what a robot or agent knows about the current situation is ex­
pressible as a proper KB. It would then be useful to amalga­
mate regression-based techniques for reasoning about change
from [Reiter, 2001] with the database techniques considered
here. Among other things, this would require determining
those cases where the successor state axioms guarantee that
a proper KB remains proper after an action has been per­
formed, perhaps along the lines of [Petrick and Levesque,
2002]. It would also be interesting to investigate the relation­
ship between proper KBs and other subsets of logic to see if
the complexity results presented here can be further gener­
alized. Two immediate candidates are datalog programs and
stratified logic programs that include some form of classical
negation. Finally, we note that additional optimizations can
be made to our query evaluation procedure that do not change
the worst-case performance, but would improve its behaviour
in practice.

Acknowledgments
We would like to thank Leonid Libkin for pointing us to the
relevant database literature. Financial support was gratefully
received from the Natural Sciences and Engineering Research
Council of Canada.

References
[Andreka et a/., 1996] H. Andreka, I. Hodkinson, and 1.

Nemeti. Modal languages and bounded fragments of pred­
icate logic. ILLC Research Report ML-96-03, University
of Amsterdam, 1996.

[Chandra and Merlin, 1977] A.K. Chandra and P.M. Merlin.
Optimal implementation of conjunctive queries in rela­
tional data bases. In Conference record of the 9th annual
ACM Symp. on Theory of Computing, pages 77-90, 1977.

[Chekuri and Rajaraman, 1997] C. Chekuri and A. Rajara-
man. Conjunctive query containment revisited. In Proc.
6th Int. Conf. on Database Theory, pages 56-70, 1997.

[Downey and Fellows, 1995] R.G. Downey and M.R. Fel­
lows. Fixed-parameter tractability and completeness 1: Ba­
sic results. SIAM Journal on Computing, 24(4):873-921,
1995.

[Flum et al, 2001] J. Flum, M. Frick, and M. Grohe. Query
evaluation via tree-decompositions. In Proc. of the 8th Int.
Conf on Database Theory , pages 22-38, 2001.

[Gottlob et ai, 1999] G. Gottlob, N. Leone, and F. Scarcello.
Hypertree decompositions and tractable queries. In Proc.
/8th ACM Symp. on Principles of Database Systems, 1999.

[Gottlob et ai, 2001] G. Gottlob, N. Leone, and F. Scarcello.
Robbers, marshals, and guards: Game theoretic and logi­
cal characterizations of hypertree width. In Proc. of the
20th ACM Symp. on Principles of Database Systems, 2001.

[Grohe, 2002] M. Grohe. Parameterized complexity for the
database theorist. SIGMOD Record 31 (4), 2002.

[Lakemeyer and Levesque, 2002] G. Lakemeyer and H.J.
Levesque. Evaluation-based reasoning with disjunctive in­
formation in first-order knowledge bases. In Proc. of KR-
02, pages 73-81, 2002.

[Levesque, 1998] H.J. Levesque. A completeness result for
reasoning with incomplete first-order knowledge bases. In
Proc. ofKR-98, pages 14-23, 1998.

[Papadimitriou and Yannakakis, 1999] C.H. Papadimitriou
and M. Yannakakis. On the complexity of database
queries. Journal of Computer and System Sciences,
58(3):407-427,1999.

IPetrick and Levesque, 2002] R. Petrick and H.J. Levesque.
Knowledge equivalence in combined action theories. In
Proc. ofKR-02, pages 303-314,2002.

[Reiter, 2001] R. Reiter. Knowledge in Action: Logical
Foundations for Specifying and Implementing Dynamical
Systems. MIT Press, 2001'.

[Vardi, 1982] M.Y. Vardi. The complexity of relational query
languages. In Proc. of the 14th Annual ACM Symp. on
Theory of Computing, pages 137-146, 1982.

[Yannakakis, 1981] M. Yannakakis. Algorithms for acyclic
database schemes. In Proc. of the 7th Int. Conf. on Very
Large Data Bases, pages 82-94, 1981.

[Yannakakis, 1995] M. Yannakakis. Perspectives on
database theory. In Proc. of the 36th Annual Symp. on
Foundations of Computer Science, pages 224-246,1995.

88 AUTOMATED REASONING

Observe that in all cases, the queries are strictly 2-guarded
wrt the proper KB. Also, because no query contains a lit­
eral and a unifiable literal of opposite polarity, from results
in [Levesque, 1998], all the queries are in NF.

The corresponding database queries are as follows:

