
Automated Generation of Graphic Sketches by Example 

Michelle X. Zhou Min Chen 

IBM T. J. Watson Research Center 
19 Skyline Drive 

Hawthorne, NY 10532 
Phone: (914)784-7000 

{mzhou, minchen}@us.ibm.com 

Abstract 
Hand-crafting effective visual presentations is 

time-consuming and requires design skills. Here we 
present a case-based graphic sketch generation 
algorithm, which uses a database of existing 
graphic examples (cases) to automatically create a 
sketch of a presentation for a new user request. As 
the first case-based learning approach to graphics 
generation, our work offers three unique contribu
tions. First, we augment a similarity metric with a 
set of adequacy evaluation criteria to retrieve a case 
that is most similar to the request and is also usable 
in sketch synthesis. To facilitate the retrieval of case 
fragments, we develop a systematic approach to 
case/request decomposition when a usable case 
cannot be found. Second, we improve case retrieval 
speed by organizing cases into hierarchical clusters 
based on their similarity distances and by using 
dynamically selected cluster representatives. Third, 
we develop a general case composition method to 
synthesize a new sketch from multiple retrieved 
cases. Furthermore, we have implemented our case-
based sketch generation algorithm in a user-system 
cooperative graphics design system called IMPRO
VISE-!-, which helps users to generate creative and 
tailored presentations. 

1 Introduction 
Automated graphics generation systems promise to aid 

users in creating effective visual presentations (e.g., charts 
and diagrams) [Mackinlay, 1986; Zhou, 1999]. Upon a user 
request (e.g., displaying sales data), these systems directly 
provide users with the final presentation (e.g., a barchart). To 
better tailor a presentation to user preferences, we are build
ing a user-system cooperative graphics generation system, 
called IMPROVISE*, IMPROVISE* generates a presentation in 
two steps: sketch generation and sketch refinement. Here a 
sketch is an outline of a presentation without all visual 
details (Figure 1). A generated sketch is first presented to 
users for their feedback. Depending on the feedback, IMPRO

VISE* may redesign the sketch or refine it to create a final 
illustration (e.g., setting the exact layout of Figure 1). By 
allowing users to critique a sketch first, IMPROVISE* can 
save the cost of fine-tuning an undesirable design. 

Our focus here is on a case-based learning approach to 
sketch generation. Given a user request, from a database of 
existing graphic examples (cases) our approach uses a simi
larity metric to retrieve the case that is most similar to the 
request. The retrieved case is then directly reused for or 
adapted to the new situation (e.g., new data). Instead of using 
a rule-based approach as most graphics generation systems 
do [Mackinlay, 1986; Zhou, 1999], our decision of using 
case-based learning is two-fold. First, it is difficult to hand-
extract a complete and consistent set of graphics design 
rules, while existing graphic examples are abundant [Zhou 
et al., 2002a]. Second, case-based learning is efficient for 
sketch generation, where we focus on learning overall visual 
structures instead of precise visual arrangements (e.g., exact 
positions and scales) '. 

Although case-based learning has been applied to vari
ous design problems [Borner, 2001], it has never been 
applied to graphics design. As the first case-based learning 

ART AND CREATIVITY 65 



approach to graphics design, our work offers three unique 
contributions. 1) In case retrieval, we apply a set of adequacy 
evaluation criteria in addition to a similarity metric to ensure 
that the retrieved case is usable in sketch synthesis. To han
dle situations where a usable case may not be found, we 
decompose cases/requests into sub-cases/sub-rcquests to 
facilitate the retrieval of case fragments. 2) We improve case 
retrieval speed by organizing cases into hierarchical clusters 
based on their similarity distances and by using dynamically 
selected cluster representatives. 3) We synthesize a new 
sketch from multiple retrieved cases through case generali
zation and visual decoration inference (e.g., inferring deco
rations such as coordinate axes and legends). 

Starting with a brief discussion of related work, we then 
present our case-based learning algorithm, highlighting the 
three unique features mentioned above. Finally we use a 
concrete example to demonstrate how a new sketch is cre
ated. 

2 Related Work 
Unlike rule-based graphics systems [Mackinlay, 1986; 

Andre and Rist, 1993; Chuah ctal., 1997; Zhou, 1999], our 
work is the first to apply a general case-based learning tech
nique to graphics design. Although one system, SAGE, has an 
example-based generation component, it only reuses exam
ples created by its own rule engine [Chuah et al., 1997]. 
Compared to SAGE, IMPROVISE+ uses a much more fine-
grained representation to capture the semantic and syntactic-
features of each graphic example [Zhou et al., 2002b]. As a 
result, without using any rules IMPROVISE-*- can create new 
graphic sketches by directly learning from a wide variety of 
graphic examples. 

Differing from a programming by demonstration system 
[Myers et al., 1994], where users must supply the desired 
examples, our approach uses the graphic examples stored in 
a database. 

There are many case-based systems developed for other 
domains, e.g., engineering design [Sycara et al., 1992]. The 
closest to ours are known as case-based structure generation 
systems [Borner, 2001]. However we have gone beyond 
existing approaches to address specific challenges in graph
ics design. In particular, we support a systematic, multi-level 
case/request decomposition to achieve a more accurate case-
request matching. In contrast, existing systems either ignore 
case/request decomposition [Borner, 2001] or simplify it 
(e.g., only leaf-level decomposition [Michelena and 
Sycara, 1994]). We also develop a general case composition 

User request 

method to synthesize a new sketch from multiple cases, while 
existing systems only allow limited case composition (e.g., 
combining only highly similar cases [Borner, 2001]). 

3 Example-based Sketch Generation 
Figure 2 gives an overview of our case-based sketch 

generation algorithm. Our algorithm uses a database of exist
ing information graphics (cases) to suggest a visual design 
for a new user request. Here each stored case is described by 
its data content D and visual representation v. Each request is 
presented by specifying the data D' and its desired visualiza
tion v, which may be partially or not specified at all. Given 
such a request, our algorithm first uses a similarity metric to 
retrieve the top-matched case by computing the similarity 
distances between the request and existing cases. A top-
matched case is the case that has the shortest similarity dis
tance to the request. If the top-matched case fails our ade
quacy test, the current request is decomposed into a set of 
sub-requests. The whole process is recursively called to find 
the top-matched case for each sub-request. Depending on the 
retrieval result, a new sketch (a fully specified V) may be 
constructed from the visual encoding (V) of a single matched 
case or composed from multiple cases. Upon completion, the 
user is presented with a rendered graphic sketch (e.g., Figure 
1). We also involve users at different design stages (Figure 
2). For example, our studies have shown that users may 
express their preferences to retrieve more desired cases 
[Zhou et al., 2002b] or propose new visual compositions 
during sketch synthesis. 

Before discussing our algorithm, we first briefly 
describe the representations of our cases and user requests. 

3.1 Representation of Cases and User Requests 
We employ a labeled graph structure to represent our 

cases and requests. Since we have described in detail how to 
model and represent various semantic and syntactic features 
of an existing graphic example previously [Zhou 
et al., 2002b], we summarize the representation here. 

66 ART AND CREATIVITY 



Visual Database of Cases 
Our case base contains an assortment of graphic designs 

collected from a wide variety of sources [Zhou et al., 2002a]. 
Using a labeled graph structure [Zhou et al., 2002b], each 
case is described in XML as a graph (Figure 3a), which 
expresses a complex mapping between a data hierarchy (DO-
D5) and a visual hierarchy (V0-V8). Within each hierarchy, a 
data/visual node is described by a set of features (e.g., D3 and 
V7). There are two types of links in the graph: intra-hicrarchy 
links for data/visual node relationships (e.g., D3 is indexed 
by D2 and all undirected edges implying parent-child rela
tions), and inter-hierarchy links (red dotted lines) for data-
visual mappings (e.g., D5 to V7). To facilitate case retrieval, 
we also index each case using two graphs (Figure 3b): 
PDGraph organizes data-visual mapping pairs along the data 
hierarchy, while PVGraph arranges the mapping pairs by the 
visual hierarchy. Note that a data/visual node may be 
mapped to multiple visual/data nodes (e.g., D5 and V6) or 
none (denoted by " / " ) . Our bi-graph indexing not only pre
serves all the information captured in the original complex 
graph (Figure 3a), but also partitions one complex graph into 
two simpler sub-graphs (Figure 3b), which can greatly sim
plify the similarity measuring process. 

When loading all cases from the database to memory, 
IMPROVISE+ parses the XML document of each case and auto
matically builds all case indices (PDGraphs and PVGraphs). 

User Request 
A user request submitted in XML format is also described 

as a graph similar to the case representation. Figure 4 out
lines a request for presenting the information of a city. Spe
cifically, it asks to display the relevant county 
(CountyBoundary), basic information of the city (Name and 
Location), the city gazetteer (Population, Agelnfo for 6 age 
groups, and an arrow button indicating Morelnfo is available 
upon request), and 3 city amenities (Name, Location, and Type) 
such as community golf courses and swimming pools. Since 
users may not know every presentation aspect, the represen
tation of a user request is often a partially specified graph 
with the majority of the visual elements left unspecified. For 
example, Figure 4 does not specify a visual encoding for any 
data nodes except Morelnfo. 

Based on the characteristics of data relations, our algo
rithm automatically assigns matching priorities to different 
data relations in a user request to indicate that matching cer
tain data relations well (e.g., index in Figure 5) is more 
important than matching others (e.g., has-a). As described 
below, matching priorities aid us in evaluating the usability 
of a retrieved case and in selecting visual candidates. Cur
rently, we assign priorities by relation type. For example, a 
higher priority is given to presentation relations like index 
than to semantic relations like has-a. 

3.2 Case Retrieval 
The success of an interactive case-based system like 

ours, depends largely on the quality and speed of the case 
retrieval process. To ensure retrieval quality, we augment 
similarity measuring with adequacy evaluation that tests 
whether a retrieved case is usable in sketch synthesis. If a 
usable case cannot be found, we decompose cases and 
requests into sub-cases and sub-requests to facilitate the 

Figure 4. A sample user request. 
retrieval of case fragments. In addition, we use a hierarchi 
cally structured case base to improve our retrieval speed. 

Adequacy-Guided Retrieval 
Using a quantitative similarity metric that we have 

developed [Zhou et al., 2002b], our algorithm first retrieves 
the top-matched case for a request. As a result, each data 
node and data relation in the request are associated with a 
computed similarity distance in the range of [0, 1]. Since our 
similarity model stresses the overall structural similarity 
between the request and the existing examples, a data node 
Dr in the request may or may not acquire a match (D, v) from 
the top-matched case. Here D is the data that matches Dr, and 
v(the visual mapping of D) is a potential visual candidate for 
encoding Dr in the new sketch. If no match is found for Dr, 
the recorded distance is 1.0. However, the top-matched case 
may be inadequate for creating an effective sketch for the 
following three reasons. Accordingly, we formulate three 
adequacy criteria to evaluate whether a retrieved case is 
usable in sketch synthesis. 

First, a top-matched case may produce a good overall 
match but poor or no matches for certain data nodes in the 
request. This implies that certain data or a sub-set of data 
expressed in the request may not be well visualized in the 
new sketch as they could be. To ensure a good match for 
every data node (i.e., a short similarity distance), our first 
criterion requires that the similarity distance for every data 
node of a request be below a threshold. After conducting a 
series of case retrieval experiments, we currently set the 
threshold to 0.3 on a [0, 1] scale, which proves to be a good 
indicator for creating a quality new sketch. 

Second, suppose that a top-matched case passes the 
above criterion. By the matching priorities set in the request, 
however the distances for more important data relations may 
be larger than those of less important ones. Since matching 
priorities are used to select visual candidates during case 
composition, using such a matching result may alter the orig
inal intention of the request and produce an undesired 

ART AND CREATIVITY 67 



sketch. Therefore our second criterion states that for every 
data relation in a request, the higher its matching priority is, 
the shorter its associated similarity distance must be. 

Third, even though a top-matched case passes the above 
two criteria, it may still not be adequate for synthesizing a 
new sketch. Our synthesis starts with the visual candidates of 
data leaf nodes in a request and composes the higher-level 
visual nodes from bottom up using the lower-level visual 
nodes. However our top-down graph matching is a partial 
matching, which may not guarantee that every data leaf node 
in a request acquire a visual candidate [Zhou et al., 2002b]. 
Our synthesis would then fail due to a lack of basic building 
blocks. Thus our third criterion requires that every data leaf 
node in a request obtain a visual candidate. It is not required 
to find visual candidates for intermediate data nodes from 
case retrieval, since theirs can be composed from those of 
their children. 

Case and Request Decomposition 
It is rare to find an exact match for a user request from 

the case base, but it is quite common that a fragment of the 
user request matches well with a fragment of a case 
[Mitchell, 1997]. To facilitate the retrieval of case fragments, 
we support case/request decomposition. 

Case decomposition. To avoid creating a large search 
space, our challenge is to determine the granularity of sub
cases. Based on the data and visual characteristics of a 
graphic example [Zhou et al., 2002b], we develop four heu
ristics to guide our case decomposition. 

1). We extract independent and meaningful visual struc-
tures, which are schematic illustrations for conveying con
cepts and processes [Winn, 1987]. For example, the table 
showing the city information (Figure 6a) is considered as a 
sub-case. Within a case, such a structure can be easily identi
fied by the value (VisualStructure) of its feature Category. 

2). We turn a case (e.g., Figure 6b) into a sub-case by 
trimming all its decorations (e.g., coordinate axes and leg
ends). These simplified sub-cases are good matching candi
dates for most user requests, which normally do not specify 
the data for creating visual decorations. 

3). We extract all visual leaf objects along with their data 
mappings from cases (e.g., V7 and D5 in Figure 3b) to form a 
visual dictionary [Zhou and Feiner, 1997]. The dictionary is 
used to find matches for user requests that contain a single 
node. 

4). We decompose a case by data relations. Figure 5 
shows two data relations (has-a and index) encoded in Figure 
6(b), which lead to two sub-cases (Figure 5a-b). In Figure 
5(b), a Dummy node is also added to preserve a rooted graph 

structure for a fast graph matching (see below). 
For the sake of performance, we automatically extract 

all sub-cases during the case loading stage. 
Request decomposition. Unlike case decomposition, 

which is done once during the case loading stage, request 
decomposition occurs whenever a retrieved top-matched 
case fails our adequacy evaluation. To ensure the retrieval 
quality without incurring the expense of rematching, we 
extract only the failed fragments as sub-requests, while 
retaining the results for succeeded ones. Here a failed frag
ment is the biggest possible rooted sub-graph that contains 
failed nodes excluding the root of the current request. Sup
pose that every node in fragment A (Figure 4) passes our 
evaluation, but a node (e.g., AName) in fragment B fails. We 
then create a sub-request containing the whole fragment B 
with City as the root, while keeping the matching results of 
fragment A. Depending on the matching results, the decom
position may be repeated until sub-requests contain a single 
node. The matched cases for these single-node requests can 
be found from our visual dictionary. 

Since sub-requests break up the original structure of a 
request, it is always desirable not to produce too many sub-
requests. Request decomposition however enables us to find 
desired case fragments from a set of heterogeneous cases as 
we have, where finding a maximal common subgraph may 
fail [Borner, 2001]. Unlike a static request decomposition 
used by other researchers [Michelena and Sycara, 1994], our 
decomposition is dynamically performed based on our ade
quacy evaluation results. 

Improve Retrieval Speed 
As the number of cases grows, the cost of searching for a 

desired case increases. Moreover, finding a graphic example 
that matches a user request best is a computationally inten
sive graph-matching process itself. Specifically, we need to 
match two pairs of PDGraphs and PVGraphs between a case 
and a user request. By exploiting the rooted hierarchical 
structure of PD/PVGraph, we perform an ordered, top-town 
graph matching [Zhou et al., 2002b] to accelerate otherwise 
an arbitrary graph matching process (e.g., matching two 
complex graphs similar to Figure 3a). To further improve 
case retrieval speed, we reduce the search space by using a 
hierarchically structured case base. 

Instead of searching the case base linearly, we exploit 
the organization of the cases. We use a hierarchical cluster
ing algorithm [Duda and Hart, 1973] to arrange all cases by 
their pair-wise distances computed using a similarity metric 
[Zhou et al., 2002b]. Figure 7 shows such a cluster hierarchy. 
Starting with the two outmost clusters in the hierarchy (e.g., 
clusters 1-2 in Figure 7), at each level we search only one 

68 ART AND CREATIVITY 



cluster that is most likely to contain the top-matched case. 
To find a cluster to follow, we first select a representa

tive for each cluster using a quick approximation. A repre-
sentative is a case closest to the request by three meta 
properties of its PDGraph: the total number of nodes, the 
average number of levels, and the average number of nodes 
at each level. We then select the cluster whose representative 
produces the shortest similarity distance to the request by our 
similarity metric. The rationale here is that the top-matched 
case for a request is likely to be in the same cluster of cases 
that match the request well by both meta properties and our 
similarity metric. 

Following the selected cluster (e.g., cluster 2 in Figure 
7) down the hierarchy (e.g., clusters 3-4), our algorithm 
repeats the above process until it explores a leaf cluster. In 
our experiments, this cluster-guided search improves the per
formance over a linear search by a factor of 3. Due to the 
approximation used, our method however is not guaranteed 
to find the top-matched case. Unlike other structured case 
search, where cluster representatives are pre-selected in 
advance [Borner, 2001], we dynamically compute represen
tatives for each request to achieve a more accurate retrieval. 

3.3 Case Composition: Sketch Synthesis 
As the result of a successful retrieval, each data leaf 

node of the request acquires at least one visual candidate. 
Starting with the visual candidates of the leaves, our algo
rithm synthesizes a sketch from bottom up by creating visual 
candidates for higher-level data nodes and finally for the 
root. In this section, we address three challenges arising in 
sketch synthesis. First, we resolve visual candidate conflicts 
when a data node in the request acquires multiple candidates. 
Second, to compose multiple retrieved cases, we use deci
sion-tree learning to generalize existing visual compositions 
and to verify new compositions. Third, we automatically 
infer visual decorations from existing cases, such as the 
coordinate axes and legends, to complete a visual sketch 
design. 

Conflict Resolution of Visual Candidates 
Within a user request, a data node may acquire multiple 

visual candidates from different case matching. For example, 
data nodes Name and Price appear in two sub-requests (Figure 
5a-b). It is most likely for both items to obtain multiple 
visual candidates as the two sub-requests are matched to dif
ferent cases. To select a proper visual candidate, we cur
rently use both the matching priority set in the user request 
and the distance calculated during similarity measuring. Spe
cifically, we first retain candidates that are acquired through 
matching the data relations with a higher priority. In the 
above example, we will keep the candidates for Name and 
Price acquired through matching the sub-request in Figure 
5(b), since the priority for matching relation index precedes 
that of relation has-a (Figure 5a). If there are multiple candi
dates by the same matching priority, we then select candi
dates that have produced the shortest distance during the 
match. Should there still be multiple candidates left, our 
algorithm would choose a candidate randomly. 

Generalizing and Verifying Visual Composition 
Our sketch synthesis uses visual candidates acquired for 

the lower-level data nodes to create visual candidates for the 

higher-level nodes in the request. Since visual candidates 
may be retrieved from different cases, their compositions 
may never exist before and new compositions are needed to 
piece them together. Here we denote a visual composition 
(=>) of N visual elements as: 

Ej , ..., EN=>rC, 
where E, is the zth element, r is the composition relation, and 
C is the composed visual object. Below is an example of a 
cartogram (a map-based presentation) composition: 

Position, Map =s> overlay Cartogram. 
It composes a Cartogram by overlaying a Position element on 
top of a Map element. In our approach, a new composition for 
an intended data node (e.g., Amenity in Figure 4) is proposed 
using the composition information recorded in its children 
(e.g., AName) during the case retrieval. Specifically, in each 
data node that acquires a visual candidate v from the 
retrieved case (e.g., V7 from Figure 3a), we record the com
position relation and category specified in vs parent (e.g., 
V4). As a result, for each retrieved visual candidate our algo
rithm records the possible compositions that the visual can
didate has participated in. 

However a proposed composition may not always be 
valid. Here validity means that a visual composition must 
produce an effective visual design [Mackinlay, 1986]. For 
example, the above cartogram composition is a valid compo
sition, but composing a visual object by juxtaposing two hor
izontal position elements is not. Without hand-crafting rules 
or pre-defining connectors [Michelena and Sycara, 1994], 
we use a decision-tree learning technique to automatically 
induce a set of classification rules from 200 visual composi
tion samples extracted from our cases. By our visual compo
sition definition, we describe each sample using N input 
features specifying N visual element categories (e.g., Position 
and Map) and one target specifying a combined composition 
relation and category (e.g., overiay_Cartogram). Currently N is 
set to 3 since most of our samples contain 3 elements. If a 
sample contains fewer than 3 elements, the remaining fea
tures are set to null. We train C4.5 [Quinlan, 1993], a deci
sion-tree learning algorithm, on the 200 samples using 5-fold 
cross-validation, a standard procedure when the amount of 
data is limited. We obtain 14 generalized composition rules 
with an overall classification error of 22%. We then use these 
rules to verify a new composition. 

To compensate for the situation where there is a lack of 
visual composition samples, we introduce negative samples 
that are known invalid compositions to help identify invalid 
new compositions. Similar to the above process, we use clas
sification rules induced from the negative samples to verify 
invalid new compositions to be eliminated. After both posi
tive and negative verifications, if there are still multiple pro
posed compositions we use the confidence factors generated 
in the decision-tree learning to select the most probably valid 
composition. Without a sufficient number of composition 
samples, our approach may not always verify a composition 
correctly. That is why we involve users in the design process 
to help IMPROVISE-*- in its decision-making (Figure 2). 

Inferring Visual Decoration 
A sketch is incomplete without the necessary visual dec-

orations, such as coordinate axes and legends, which can 
guide users to comprehend the information encoded in the 

ART AND CREATIVITY 69 



graphic [Wilkinson, 1999]. However in a request a user 
rarely specifies the data for creating such decorations, which 
our algorithm must infer. 

Currently our inference is based on an assumption that 
visual decorations can be created using only data leaves in a 
request. According to visual psychology studies, a person 
tends to first perceive the global structure of a graphic (e.g., 
a spatial map) then examine the details (a particular color or 
a position) [Goldsmith, 1984]. Only when a person attempts 
to interpret the meanings of visual primitives (e.g., the color 
code in Figure 6b), visual decorations are needed (e.g., the 
legend in Figure 6b). Hence visual decorations normally 
encode leaf data or their transformations. 

Specifically, for each leaf L and its match (D, V) from a 
retrieved case C, we trace the visual mappings of the 
matched data node D in C. Within case C, if data D is used to 
create visual decorations, our algorithm would create a 
visual decoration for L. in the user request. More precisely, if 
there exists a data-visual mapping pair (D', V) in case c, 
where D' is D or a transformation of D, and V is a visual dec
oration; v becomes a visual decoration candidate for the new 
sketch. However, L may need to be transformed for creating 
r, since D' is often a transformation of D. Suppose that a 
user asks to present the depth of different lakes (LakeDepth), 
which happens to acquire a match (Price, VertLength) from a 
retrieved case as in Figure 6(b). Here Price (a domain) has 
been transformed into a range [minPrice, maxPrice] in creating 
the Y axis. Similarly, in the new sketch a Y axis will be cre
ated for encoding the range of LakeDepth converted from the 
LakeDepth domain. 

4 An Example 
Here we demonstrate how a specific user request (Figure 

4) is fulfilled. For this request, our algorithm first retrieves 
the top-matched case, which fails our adequacy test, as the 
similarity distance (0.5803) for node Gazetteer in fragment B 
is above the required threshold (0.3). While keeping the 
matches for fragment A, we extract the whole fragment B as a 
sub-request with node City as its root, since we always 
attempt to find an overall good match for the bigger sub
graph (e.g., the sub-graph covering B instead of B2). Next, 
the top-matched case for fragment B is retrieved, where 

nodes in B1 pass the evaluation, but those in B2-B3 do not. 
Subsequently, our algorithm treats fragments B2-B3 as two 
new sub-requests and finds matches for them. Except nodes 
under fragments B21 and B31, all other data nodes have now 
acquired acceptable matches. Eventually desired matches are 
found for the last two sub-requests generated for fragments 
B21 and B31. Since B31 contains only one node, its match is 
retrieved from our visual dictionary. 

Using the retrieved results, our algorithm synthesizes a 
new sketch from bottom up (Figure 8a). It proposes new 
compositions to create visual candidates for shaded data 
nodes, while reusing retrieved candidates for others. Specifi
cally, a new composition is proposed for Gazetteer, since the 
visual candidates for its children Population, Agelnfo, and Mor-
elnfo, are retrieved from different cases. In this case, a top-to-
bottom_Table composition is recorded for Population during the 
retrieval. According to C4.5, this is a valid composition, thus 
it is used to create a Table for conveying Gazetteer with 3 
items arranged from top to bottom: a text, a pie chart, and an 
arrow button. Similarly, visual candidates are created for 
Amenity, then for City, at last for the root. As a result, a new 
sketch is created for this request with an inferred legend for 
interpreting the type of amenities (Figure 8b). 

If the user chooses to use a different set of cases, an 
alternative can be created for the same request (Figure 1). 
Once a new sketch is created, it can be directly stored back 
in our case base as a new addition, since the generated sketch 
has a representation similar to other existing cases. 

5 System Implementation and Performance 
IMPROVISE+ is implemented using Java and C++. We 

use Java to implement all design components, including our 
case-based sketch generation algorithm. Wc have imple
mented two rendering components, one in Java2D for 2D 
graphics and the other in C++/Open Inventor/OpenGL for 
3D graphics. IMPROVISR+ currently runs on Win32/Linux/ 
SGI. On a PC with a 1.13 GHz Pentium 111 processor, it takes 
about 5 seconds to create the sketch shown in Figure 8(b) 
from about 100 cases, each of which contains about 30 data 
nodes and 30 visual nodes on average. 

We have also conducted several experiments to test the 
effectiveness of our approach. According to our user feed-

70 ART AND CREATIVITY 



back, our case-based approach can provide more versatile 
and "creative" design suggestions (e.g., Figure 1) than a 
rule-based approach can [Zhou, 1999]. Moreover, involving 
users in proper design stages helps create a more tailored 
visual presentation. For example, by specifying different 
retrieval preferences [Zhou et al., 2002b], users can choose 
among different design alternatives (Figure 1 vs. Figure 8b). 

6 Conclusions and Future Work 
In this paper, we have presented a case-based graphic 

sketch generation algorithm with an emphasis on its three 
unique features and how they facilitate an efficient and 
effective sketch generation. First, we present an adequacy-
guided case retrieval method, which augments a similarity 
metric with a set of adequacy evaluation criteria to retrieve a 
top-matched case that is also usable in sketch synthesis. To 
facilitate the retrieval of case fragments, we also describe 
how to systematically decompose a case/request when a 
usable case cannot be found. Second, we explain how to 
enhance case retrieval speed by organizing cases into hierar
chical clusters based on their similarity distances and by 
using dynamically selected cluster representatives. Third, we 
show how to construct a new sketch through case composi
tion, including case generalization and visual decoration 
inference (e.g., inferring coordinate axes and legends). 

Currently, we arc working in two areas to improve 
IMPROVISE+. First, we are creating a GUI that allows users to 
easily specify a request by "drawing" a graph similar to Fig
ure 4 without writing an XML document. Second, we are 
developing more sophisticated interaction support, where 
IMPROVISE+ can automatically engage users in interaction 
based on context. For example, if IMPROVISE+ cannot find a 
valid visual composition using decision-tree learning, it may 
decide to solicit user inputs. 

Acknowledgments 
We would like to thank Keith Houck and Alison Lee for 

proofreading the earlier version of this paper. We would also 
like to thank Shimei Pan for useful discussions on case-
based learning. 

References 
Andre, E. and Rist, T. (1993). The design of illustrated docu

ments as a planning task. In Maybury, M., editor, Intelligent 
Multimedia Interfaces, chapter 4, pages 94-116. AAA1 
Press/The MIT Press, Menlo Park, CA. 

Borner, K. (2001). Efficient case-based structure generation 
for design support. Al Review, 16(2):87-l 18. 

Chuah, M., Roth, S., and Kerpedjiev, S. (1997). Sketching, 
searching, and customizing visualizations: A content-based 
approach to design retrieval. In Maybury, M., editor, Intel-
ligent Multimedia Information Retrieval, pages 83 111. 
AAA1 Press/The MIT Press. 

Duda, R. and Hart, P. (1973). Pattern Classification and 
Scene Analysis. Wiley. 

Goldsmith, E. (1984). Research into Illustration: An Ap
proach and a Review. Cambridge University Press, Cam
bridge, England. 

Mackinlay, J. (1986). Automating the design of graphical 
presentations of relational information. ACM Trans, on 
Graphics, 5(2): 110-141. 

Michelena, N. and Sycara, K. (1994). Physical synthesis in 
case-based design. In Proc. of ASME DTM '94, pages 273-
284. 

Mitchell, T. (1997). Machine Learning. McGraw-Hill. 
Myers, B., Goldstein, J., and Goldberg, M. (1994). Creating 

charts by demonstration. In CHI '94, pages 106-111. 
Quinlan, J. (1993). C4.5: Programs for Machine Learning. 

Morgan Kaufman. 
Sycara, K., Guttal, R., Koning, J., Narasimhan, S., and Chan

dra, D. (1992). Cadet: A case-based synthesis tool for engi
neering design. Intl. J. of Expert Systems, 4:157-188. 

Wilkinson, L. (1999). The Grammar of Graphics. Springer. 
Winn, W. (1987). Charts, graphs, and diagrams in education

al materials. In Willows, D, and Houghton, H., editors, The 
Psychology of Illustration: Basic Research, volume 1, 
chapter 5, pages 152-198. Springer-Verlag. 

Zhou, M. (1999). Visual planning: A practical approach to 
automated visual presentation. In Proc. IJCAl '99, pages 
634-641. 

Zhou, M., Chen, M., and Feng, Y. (2002a). Building a visual 
database for example-based graphics generation. In Proc. 
IEEE InfoVis '02, pages 23-30. 

Zhou, M. and Feiner, S. (1997). The representation and use of 
a visual lexicon for automated graphics generation. In Proc. 
UCAl '97, pages 1056-1062, Nagoya, Japan. 

Zhou, M., Ma, S., and Feng, Y. (2002b). Applying machine 
learning to automated information graphics generation. 
IBM Sys J.,41(3):504-523. 

ART AND CREATIVITY 71 


