
Real-Time Problem-Solving with Contract Algorithms 

Shlomo Zilberstein Francois Charpillet Philippe Chassaing 
Computer Science Department INRIA-LORIA Institut Elie Cartan-INRIA 

University of Massachusetts B.P. 239 B.P. 239 
Amherst, MA 01003 54506 Vandoeuvre-les-Nancy 54506 Vandoeuvre-lfes-Nancy 

zilberstein@cs.umass.edu charpillet@loria.fr chassaing@iecn.u-nancy.fr 

Abstract 
This paper addresses the problem of building 
an interruptible real-time system using contract 
algorithms. Contract algorithms offer a trade­
off between computation time and quality of 
results, but their run-time must be determined 
when they are activated. Many AI techniques 
provide useful contract algorithms that are not 
interruptible. We show how to optimally se­
quence contract algorithms to create the best 
interruptible system with or without stochastic 
information about the deadline. These results 
extend the foundation of real-time problem-
solving and provide useful guidance for embed­
ding contract algorithms in applications. 

1 Introduction 
Since the mid 1980's, the AI community has produced 
a large body of work on anytime algorithms for solving 
such problems as real-time search, constraint satisfac­
tion, planning and scheduling, and diagnosis (see, for 
example, the collection of papers in [Horvitz and Zil­
berstein, 1996]). Much of this work has focused on the 
meta-level control problem posed by anytime algorithms, 
that is, the problem of deciding when to stop delibera­
tion and act on the best available solution. The result­
ing techniques have proved useful in addressing the high 
computational complexity of AI problems and the in­
herent uncertainty associated with AI problem-solving 
techniques. 

Contract algorithms are a special type of anytime al­
gorithms that require the amount of run-time to be de­
termined prior to their activation. In other words, con­
tract algorithms offer a tradeoff between computation 
time and quality of results, but they are not interrupt­
ible. Once activated with a particular contract time, a 
contract algorithm may not produce any useful result 
before the end of the contract. 

Contract algorithms are easier to construct because 
they do not have to continually generate solutions of 
increasing quality. In fact, many existing AI problem-
solving techniques produce contract rather than inter­
ruptible anytime algorithms. Examples include depth-

bounded search or cost-bounded search techniques, 
design-to-time [Gravey and Lesser, 1993], approximate 
evaluation of relational database emeries, and schedul­
ing [Gallone and Charpillet, 1997J. What is common 
to these algorithms is that for any given contract time 
they select a set of parameters that limit the amount 
of search or computation so as to guarantee returning a 
solution within the available time. Another important 
class of systems that yields contract rather than inter­
ruptible algorithms includes systems composed of several 
interruptible or contract algorithms. Composition, even 
simple sequencing, destroys interruptibility; the result­
ing system is therefore a contract algorithm. Zilberstein 
[1995] shows how to divide the contract time among the 
components so as to maximize the overall quality of the 
solution for a given contract. 

This paper addresses the problem of building an inter­
ruptible real-time system using contract algorithms. The 
key question is how to use prior knowledge about the per­
formance of the algorithm and the deadline in order to 
produce an optimal sequence of solutions with a contract 
algorithm. This is done by activating the contract algo­
rithm multiple times with different contracts. Section 
2 provides a formal definition of the contract sequenc­
ing problem. Section 3 describes an optimal solution 
to the problem when no information is available about 
the deadline. Section 4 shows how to handle quality un­
certainty and stochastic deadlines. Section 5 provides an 
optimal solution to the sequencing problem when a time-
dependent utility function is given instead of a strict 
deadline. We conclude with a summary of the contribu­
tion of this work. 

2 Using contract algorithms in 
interruptible domains 

Suppose that a contract algorithm, A, is used in an in­
terruptible domain in which the amount of time avail­
able for problem solving is unknown in advance. At a 
particular time, the system receives a deadline signal in­
dicating that the computation must be terminated and 
the best available result must be returned. Examples 
of interruptible domains include a diagnosis system in 
an intensive care unit; a data visualization program that 

1008 PLANNING AND SCHEDULING 

mailto:charpillet@loria.fr
mailto:chassaing@iecn.u-nancy.fr


may be interrupted by its user; and a scheduling program 
that may need to return a new schedule once processors 
are ready to accept new tasks. 

We use in this paper prior information about the per­
formance of the contract algorithm. We begin with a 
simple form of performance profile [Dean and Boddy, 
1988] and generalize it in Section 4. 
Definit ion 1 A performance profile, of 
contract algorithm A, denotes the output quality as 
function of contract time t. 

The performance profile is.assumed to be a monotone 
increasing and continuous function of time. 

Monotonicity is a standard property of anytime algo­
rithms that can be guaranteed if the best result rather 
than the most recently generated one is returned. Strict 
monotonicity and continuity are assumed in order to sim­
plify the analysis in Section 3. 

If the amount of time available for computation is 
known in advance, the best strategy to maximize the 
quality of the result is to run the contract algorithm 
once giving it all the available time. What happens when 
we have no information (or only stochastic information) 
about the deadline? The contract algorithm should be 
activated with some contract time . If the algorithm 
completes its execution before the deadline, it should be 
reactivated with a new contract and so on. Because 
of the monotonicity of , it is never beneficial to use a 
short contract following a longer one. Therefore, we get 
the following sequence of contracts: 

• * • 

Suppose that an interruptible anytime algorithm B is 
constructed using A with the sequence of contracts X = 

. Whenever B is interrupted, it should return 
the result obtained by the most recently completed con­
tract. No solution is available before the termination of 
the first contract (which is arbitrarily small). Therefore, 
the performance profile of the interruptible algorithm, 
B, is as follows. 

(1) 

What is the sequence of contracts that produces the 
best anytime algorithm? To answer this question we 
must first formalize the notion of "best". If the dead­
line, d, is known in advance, the best quality can 
be guaranteed. Suppose now that an interruptible algo­
rithm is created by a sequence of contracts. We want 
the interruptible algorithm to guarantee the .same qual­
ity as the contract algorithm, if it runs on a processor 
that is accelerated by a factor of r 1. This definition 
follows the notion of bounded optimality defined by Rus­
sell, Subramanian and Parr [1993]. In fact, the results 

presented in Section 3 can be interpreted as the construc­
tion of a bounded-optimal interruptible algorithm from 
the contract one. Moreover, we prove that the minimal 
acceleration needed by any interruptible algorithm that 
matches the quality of A is 4. The acceleration ratio is 
defined as follows. 
Definition 2 Let A be a contract algorithm and B an 
interruptible algorithm produced by the sequence of con-
tracts X = , then the acceleration ratio of 

, is the smallest constant c for which: 

(2) 

The acceleration ratio is the minimal acceleration that 
guarantees that the interruptible algorithm will always 
have a solution ready from the previous contract that 
is at least as good as the one produced by the contract 
algorithm without acceleration. The condition is 
needed because no solution is available before the termi­
nation of the first contract. Note that the acceleration 
ratio does not imply that the application must utilize a 
faster processor; it is only a performance measure of a 
sequence of contracts. 

3 Optimal sequencing of contracts 
Zilberstein and Russell [1996] show that a particular se­
quence of contracts requires an acceleration ratio of 4. 
The sequence of contracts is a geometric series with run­
time being doubled at each activation. They prove the 
following theorem. 
Theorem 1 For any contract algorithm A, an in­
terruptible algorithm B can be constructed such that 

i . 

In this section, we prove that the acceleration ratio of 
4 is the best possible over any sequence of contracts. We 
also generalize the result to the case of multiple problem 
instances. 

3.1 Solv ing a single p rob lem instance 
We first show that the construction proposed by Zilber­
stein and Russell is in fact optimal in the sense that it 
requires the minimal acceleration ratio. In general, the 
acceleration ratio must hold in the worst possible case: 
when the interruptible algorithm is stopped just before 
the end of the current contract and it must return 
the result produced by the previous run (with contract 
time ). This leads to the following property. 
Lemma 1 Equation (2) is equivalent to 

ZILBERSTEIN, CHARPILLET, AND CHASSAING 1009 



To summarize, in order to show that a particular se­
quence of contracts is optimal, it is sufficient to show 
that its acceleration ratio is the smallest required to sat­
isfy Equation (3). 
Theorem 2 The minimal acceleration ratio needed to 
construct an interruptible algorithm from a given con-
tract algorithm is r = 4. 

The difference between the last two equations gives: 

(4) 

The sequence (x1,x2,...) is an increasing sequence of 
positive numbers. Let p be defined as follows. 

3.2 Solving multiple problem instances 
We now generalize the above result to the case in which 
a contract (or interruptible) anytime algorithm with per­
formance profile QA is used to solve m independent prob­
lem instances. The goal is to maximize the minimal 
solution quality over all problem instances. When the 
deadline d is known in advance, the best strategy is to 
divide all the available time equally among the problem 
instances guaranteeing a minimal quality of The 
question is how to construct the best interruptible any­
time algorithm when the deadline is unknown. As with 
a single task, we want to find the minimal acceleration 
needed to match the performance of the contract algo­
rithm with a known deadline. 

There are many situations in which multiple instances 
of a problem must be solved in real-time. Examples 
include search problems with multiple possible start­
ing states; optimizing the code of several tasks to be 
executed on a parallel machine; and compression of a 
file divided into m blocks to be transmitted through m 
equivalent communication channels. In all these exam­
ples the objective is to maximize the minimal quality 
over all problem instances by the deadline. Another ap­
plication is the continual computation model developed 
by Horvitz [1997] in which an interactive system uses idle 
time in order to solve possible future problems. When 
the user interrupts the computation by making a spe­
cific choice, the system responds using the best available 
solution for that choice. 

For a given sequence of contracts X = ,, the 
performance profile of the interruptible algorithm solving 
m problem instances is as follows. 

1010 PLANNING AND SCHEDULING 



This is due to the fact that the first (and shortest) 
among the last m contracts defines the overall quality. 

We want to find the minimal acceleration ratio c such 
that delivers a result at least as good as the one 
returned by A when the deadline is known 

Lemma 2 For any c 1 the condition: 

holds if and only if: 

Proof: This is a straightforward generalization of 
Lemma 1. The complete proof is omitted. 
Theorem 3 The minimal acceleration ratio needed to 
construct an interruptible algorithm to solve m prob-
lem instances with a given contract algorithm is r = 

Proof: The proof is similar to the proof of Theo­
rem 2 and is given in Appendix A. Note that the ratio 

is obtained by a sequence of contracts defined 
by a geometric series with run-times being multiplied by 
a factor of . In other words: 

Therefore, the construction described in Zilberstein and 
Russell [1996] is the solution for the special case in which 
rn = 1. 

4 Handling quality uncertainty and 
stochastic deadlines 

In this section we generalize the problem of sequencing 
contract algorithms to situations in which some infor-
mation about the deadline is available. We assume that 
there is uncertainty about both the deadline and the 
quality produced by the contract algorithm. It is not 
surprising that there is no closed-form solution to the 
sequencing problem in this case. Instead, the optimal 
sequence of contracts is determined using dynamic pro­
gramming. To be able to apply dynamic programming, 
the problem is formalized using a discrete representa­
tion of time (as opposed to the continuous representation 
used in the previous sections). 
Definit ion 3 A stochastic deadline is a probability 
distribution, ,, of the deadline over time. 

A stochastic deadline is the prior probability that the 
deadline will occur at time t measured relative to the 
activation time of the contract algorithm. The represen­
tation of performance profiles is generalized as follows. 
Definit ion 4 A stochastic performance profile, 
PA(q\t) of a contract algorithm, A, denotes the proba­
bility of getting solution of quality q with contract time 
t. 

We assume that the quality of the result is observable. 
That is, once the contract algorithm completes its exe­
cution, the actual quality of the solution produced by 
the algorithm can be determined. The quality of a plan, 
for example, is observable if it is measured by the sum of 
the costs of the operators. However, when solution qual­
ity is defined as the approximation ratio with respect to 
the optimal solution it may not be observable. Hansen 
and Zilberstein [1996] have studied situations in which 
solution quality is partially observable. Their approach 
to the problem could be used to augment the framework 
presented in this paper. 

Definition 5 A ut i l i ty function, U(q), is the value of 
a solution of quality q produced by the contract algorithm. 

The contract sequencing problem in this case is defined 
as follows. Given a contract algorithm, its stochastic 
performance profile, a stochastic deadline and an arbi­
trary utility function, find an optimal policy to activate 
a sequence of contracts. An optimal policy is one that 
maximizes the expected utility of the available solution 
at the deadline. 

We approach the problem by defining a corresponding 
Markov decision process (MDP) and finding an optimal 
policy by solving it. The states of the MDP are (g, t) in­
dicating the availability of solution of quality q at time 
t. In addition, there is a terminal state associated with 
each solution quality q, indicating reaching the deadline 
with that quality. The action or decision taken at each 
non-terminal state is to activate the contract algorithm 
with a new contract time T. The outcomes of these ac­
tions depend on the stochastic performance profile and 
the likelihood of reaching the deadline, both of which 
satisfy the Markov assumption (they are independent of 
previous states, given the current state of the computa­
tion). 

Definit ion 6 Let be the probability distribu­
tion of the deadline occurring at time m (m > n) given 
that it has not occurred so far and the current time is n. 

Note that can be easily computed from the 
prior probability as follows. 

(5) 

This can be easily obtained by observing that n stands 
for the proposition that the deadline did not occur at 
time points { l , . . . ,n} and by applying Bayes1 rule. 

Definit ion 7 The completion probability of a con-
tract T starting in state (q,t.) is 

The completion probability is the probability that the 
contract algorithm will terminate before the deadline oc­
curs. 

ZILBERSTEIN, CHARPILLET, AND CHASSAING 1011 



We now define the following value function over states: 

(6) 
The value of a contract r at state (q, t) depends on 

whether the deadline occurs during the contract or not. 
If the contract algorithm completes its execution (with 
probability c(t,r)), then the value depends on the new 
quality and time. Note that if the new quality is lower 
than the current solution quality, the better solution is 
used rather than the most recent one. If the deadline 
occurs, a final state is reached with a reward that de­
pends on the quality of the existing solution. The value 
function is defined based on the best action r in each 

Theorem 4 The contracts that maximize the value 
function defined in Equation (6) provide an optimal so­
lution to the contract sequencing problem for a given 
stochastic deadline. 
Proof: Because of the one-to-one correspondence be­
tween the sequencing problem and the MDP and because 
the stochastic performance profile and the deadline sat­
isfy the Markov assumption, it is obvious that an optimal 
policy for the MDP provides an optimal solution to the 
sequencing problem. 

Many existing algorithms can be used to solve Equa­
tion (6). Because this is a finite-horizon MDP with no 
cycles (time always moves forward), dynamic program­
ming can be used to determine the best action for each 
state in one sweep of the state space. The policy can 
be constructed off-line once for a given deadline distri­
bution, offering efficient reactive meta-level control. The 
selection of a time unit affects the size and complexity of 
the policy. We are confident that a coarse time unit and 
a compact policy are sufficient in practice for making 
good mcta-level decisions. 

5 Optimal sequencing with no strict 
deadline 

In this section we consider the case in which there is 
no strict deadline. Instead, the value of the solution de­
creases over time as specified by a time-dependent utility 
function [Dean and Boddy, 1988]. 
Definition 8 A time-dependent ut i l i ty function, 
U(q,t), is the value of a solution of quality q produced 
by the contract algorithm and returned at time t. 

The contract sequencing problem in this case is defined 
as follows. Given a contract algorithm, its stochastic per­
formance profile and an arbitrary time-dependent utility 
function, find the best policy to activate a sequence of 
contracts. As in the previous section, an optimal policy 
maximizes the expected utility of the returned solution. 
Note that in this case the meta-level control problem 
is not only to determining the next contract, but also 
when to stop the computation and return the current-
best result. 

Similar to the previous section, we approach the prob­
lem by defining a corresponding MDP with states repre­
senting the current quality and time. The action taken 
at each state, however, is either to terminate the com­
putation and return the current solution of quality q or 
activate the algorithm with a particular contract r. We 
define the following value function over states. 

(7) 
When a new contract is activated, the value is defined 

by the distribution of output quality and the contract 
time. If the computation is terminated, the value is the 
utility of returning a result of quality q at time t. 
Theorem 5 The policy that maximizes the value func­
tion defined in Equation (7) provides an optimal solu­
tion to the contract sequencing problem for a given time-
dependent utility function. 
Proof: Again, this is an immediate result of the one-
to-one correspondence between the optimal sequencing 
problem and the above MDP and because the stochastic 
performance profile satisfies the Markov assumption. D 

Using dynamic programming, the optimal policy can 
be constructed off-line once for a given time-dependent 
utility function, offering an efficient, reactive meta-level 
control. 

6 Conclusion 
We have analyzed the problem of optimal sequencing 
of contract algorithms. The problem arises when there 
is uncertainty about the amount of time available for 
problem-solving with contract algorithms. When no 
prior information is available about the deadline, the 
best sequence can match the performance of the contract 
algorithm when it runs on a processor that is 4 times 
faster. No slower acceleration can guarantee that per­
formance. This result is generalized to the case in which 
an interruptible system must solve multiple problem in­
stances. When stochastic information is available about 
the deadline and about the performance of the contract 
algorithm, the optimal sequence of contracts can be con­
structed using dynamic programming. Finally, we solve 
the case in which no deadline is specified but the utility 
function is time-dependent. 

Section 3 was inspired by the work of Baeza-Yates 
et al. [1993] on searching in the plane. The analogy 
between the two problems is not obvious, but once for­
malized, they present similar mathematical questions. 
In particular, Lemmas 1 and 2 in this paper provide a 
foundation to solving the problem of searching in the 
plane. Furthermore, the analytical work reported here 
offers a dramatic simplification of the proofs presented 
in [Baeza-Yates et al., 1993]. 

1012 PLANNING AND SCHEDULING 



Sections 4 and 5 build on a large body of work on 
meta-level control of computation by Dean and Boddy 
[1988], Horvitz [1988], Russell and Wefald [1991] and 
others. By and large, existing meta-level control mech-
anisms are myopic; the computation is terminated once 
no single computational step has positive value. One 
exception is the technique developed by Russell, Sub-
ramanian, and Parr [1993] for sequencing a set of rules 
given a stochastic deadline. Similar to their dynamic 
programming approach, our solution provides a globally 
optimal policy, taking into account future computations. 

To summarize, we show how to optimally sequence 
contract algorithms so as to maximize their utility in in-
terruptible domains. These results provide useful guid­
ance for embedding contract algorithms in a wide range 
of practical applications. 

Acknowledgments 
This work was supported in part by the National Sci­
ence Foundation under grants No. IRI-9621992 and 
IR1-9G34938, by an NSF/INR1A Cooperative Research 
grant, and by the LIRE Cooperative Program at 1NR1A. 

References 
[Baeza-Yates et al., 1993] Ricardo Baeza-Yates, Joseph Cul­

berson, and Gregory Rawlins. Searching in the plane. In­
formation and Computation, 106:234 252, 1993. 

[Dean and Boddy, 1988] Thomas Dean and Mark Boddy. An 
analysis of time-dependent planning. Seventh National 
Conference on Artificial Intelligence, 49-54, 1988. 

[Gallone and Charpillet, 1997) Jean-Michel Gal-
lone and Francois Charpillet. Real-time scheduling with 
Neurosched. 13th International Conference on Tools with 
Artificial Intelligence, 478-479, 1997. 

[Gravey and Lesser, 1993] Alan Garvey and Victor Lesser. 
Design-to-time real-time scheduling. IEEE Transactions 
on Systems, Man, and Cybernetics, 23(6):14911502, 1993. 

[Hansen and Zilberstein, 1996] Eric A. Hansen and Shlomo 
Zilberstein. Monitoring the progress of anytime problem-
solving. Thirteenth National Conference on Artificial In­
telligence, 1229 1234, 1996. 

[Horvitz, 1988] Eric Horvitz. Reasoning under varying and 
uncertain resource constraints. Seventh National Confer­
ence on Artificial Intelligence, 111 116, 1988. 

[Horvitz, 1997] Eric Horvitz. Models of continual computa­
tion. Fourteenth National Conference on Artificial Intelli­
gence, 286 293, 1997. 

[Horvitz and Zilberstein, 1996] Eric Horvitz and Shlomo Zil­
berstein, eds. Fall Symposium on Flexible Computation in 
Intelligent Systems* Technical Report FS-96-06, AAAI: 
Menlo Park, CA, 1996. 

[Russell et a/., 1993] Stuart J. Russell, Devika Subramanian 
and Ron Parr. Provably bounded optimal agents. Thir­
teenth International Joint Conference on Artificial Intelli­
gence, 338 344, 1993. 

[Russell and Wefald, 1991] Stuart J. Russell and Eric H. We­
fald. Principles of metareasoning. Artificial Intelligence, 
49:361 395, 1991. 

[Zilberstein, 1995] Shlomo Zilberstein. Optimizing decision 
quality with contract algorithms. Fourteenth Interna­
tional Joint Conference on Artificial Intelligence, 1576 
1582, 1995, 

[Zilberstein and Russell, 1996] Shlomo Zilberstein and Stu­
art J. Russell. Optimal composition of real-time systems. 
Artificial Intelligence 82(1-2):181 213, 1996. 

ZILBERSTEIN, CHARPILLET, AND CHASSAING 1013 


