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Abstract 
This paper outlines a theory of analogical reasoning based on a 
process-model of problem solving by analogy and the hypothesis 
that problem solving and learning are inalienable, concurrent 
processes in the human cognitive system. The analogical problem 
solver exploits prior experience in solving similar problems, and, in 
the process, augments a hierarchically-structured epsiodic long 
term memory. An analogical transformation process is developed 
based on a modified version of Means-Ends Analysis in order to 
map past solutions from similar problems into solutions satisfying 
the requirements of the new problem.1 

1. Introduction 
Analogical reasoning has been a sparsely-investigated 

phenomenon in Artificial Intelligence (7,12,8, 20]. Nonetheless, 
analogy promises to be a central inference method in human 
cognition as well as a powerful computational mechanism. In this 
paper, I discuss a computational model of problem solving by 
analogy based on an extension of means-ends analysis (MEA). My 
central hypothesis (based in part on Schanks theory of memory 
organization [18,17]) is the following: When encountering a new 
problem situation, a person is reminded of past situations that 
bear strong similarities (at different levels of abstraction) to the 
present situation. This type of reminding experience serves to 
retrieve behaviors that were appropriate in earlier situations, 
whereupon past behavior is adapted to meet the demands of the 
current situation. 

Commonalities among previous and current situations, as well 
as successful applications of modified plans can serve as the 
basis for generalization. Similarly, performing an inappropriate 
behavior in a new situation can lead to discrimination (among the 
ways in which situations are organized in memory and/or the 
mechanisms that adapted an existing plan to the new situation). 
However, a reactive environment that informs the problem solver 
of success, failure, or partial success is an absolute requirement 
for any generalization or discrimination process to apply. I 
consider problem solving by analogy and experiential learning to 
be inalienable components of a unified cognitive model. 
Analogical problem solving exploits knowledge of plans indexed 
under situations similar to the current one, generating new 
purposive behavior potentially relevant to future problem solving. 
And, the learning component creates the memory structures to 
encode experiential knowledge (generalizing where appropriate) 
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that enable the problem solver to retrieve and compare relevant 
situations and plans from memory. The bulk of this paper focuses 
on developing a computationally-effective mechanism for problem 
solving by analogy. A detailed discussion of experiential learning 
processes is beyond the scope of this presentation (but see [3]). 

2. Problem Solving by Analogy 
Traditional Al models of problem solving (e.g., GPS [13], 

STRIPS 16], and NOAH [15]) approach every problem almost 
without benefit of prior experience in solving other problems in the 
same or similar problem spaces. Hence, GPS will perform the 
same Means-Ends Analysis (MEA) process to solve the monkey-
and bananas problem (where a monkey needs to place a box 
underneath some bananas suspended from the ceiling in order to 
climb on the box, reach the bananas and eat them) and to solve 
the experimenter-andbananas problem (where the experimenter 
must move the same box enabling him to reach the hook in the 
ceiling where he will hang the bananas • then he must move the 
box away to create a problem for the monkey). However, an 
intelligent monkey observing the experimenter hang the bananas, 
may directly conclude which parts of the experimenter's behavior 
he should replicate in order to reach the bananas. Similarly, an 
experimenter who becomes hungry after watching an 
unenlightened monkey repeatedly fail in his attempts to reach the 
bananas, should know how to reach the bananas himself without 
planning from ground zero. 

Clearly, the bulk of human problem solving takes place in 
problem spaces that are either well known or vary only slightly 
from familiar situations. It is rare for a person to encounter a 
problem that does not remind him of potentially applicable 
solutions to similar problems solved or observed in past 
experience. New puzzles (such as Rubik's magic cube) are such 
exceptional problems, where initially the only tractable solution 
procedure is the application of weak methods [13] without benefit 
of (nonexistent) past experience. Therefore, my investigations 
center on simplified versions of real-world problems, rather than 
more abstract mathematical puzzles. 

Now, let us turn to problem solving in familiar problem spaces. 
What makes a problem space "familiar"? Clearly, knowledge of 
solved problems in that space is a major aspect. This knowledge 
must have been acquired, and must be brought to bear in the 
problem solving process. There is no other way to account for the 
tact that humans solve problems in familiar situations much faster, 
and with more self-assurance. A computer model should exploit 
the same skill acquisition process; i.e., it should learn to adapt its 
problem-solving behavior to known problem spaces • falling back 
on the application of weak methods when more direct recall-end-
modification of existing solutions fails to provide an answer. How 
might a problem solver be augmented to exhibit such adaptive 
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behavior? Below, I illustrate a tractable mechanism for problem 
solving by analogy. 

2 . 1 . The Plan-Transformation Problem Space 
First, consider a traditional Means-Ends Analysis (MEA) 

problem space [13], populated by: 

• A set of possible problem states. 
• One state designated as the Initial State 
• One or more state(s) designated as goal states •• for simplicity, 

assume there is only one goal state. 
• A set of operators with known preconditions that transform 

one state into another state in the space. 
• A difference function that computes differences between two 

states (typically applied to compute the difference between the 
current state and the goal state). 

• A method for indexing operators as a function of the 
difference(s) they reduce (e.g., the table of differences in 
GPS). 

• A set of global path constraints that must be satisfied in order 
for a solution to be viable. (E.g., a path constraint may 
disallow particular subsequences of operators, or prevent an 
operator that consumes K amount of a resource from applying 
more than N times, if there is only NxK amount of the resource 
available to the problem solver.)2 

Problem solving in this space consists of standard MEA: 
Compare the current state to the goal state; choose an operator 
that reduces the difference; apply the operator if possible •• if not 
recurse on the subgoal(s) of establishing the unsatisfied 
precondition(s) of that operator. 

How can we exploit Knowledge of solutions to previous 
problems in this problem space? First, consider the simplest case; 
knowledge consists only of solutions to previous problems. Each 
solution consists of a sequence of operators and intermediate 
states, including the initial and final states, together with the path 
constraints that the solution was designed to satisfy. One rather 
simple idea is to create "macro operators" from sequences and 
sub-sequences of atomic operators that have proven useful as 
solutions to earlier problems. For instance, STRIPS with 
MACROPS exploited this idea [6] using its "triangle table" to store 
all partial sequences of operators encountered in a solution to a 
previous problem. However, the simple creation of macro-
operators suffers two serious shortcomings. First, the 
combinatorics involved in storing and searching all possible 
subsequences of all solutions ever encountered becomes rapidly 
unmanageable. Searching for applicable macro-operators can 
become a more costly process than applying MEA to the original 
problem. Second, path constraints are ignored in this process. If 
the new problem must satisfy a different set of path constraints, 
most previous macro-operators may prove invalid. Therefore, let 
us think not in terms of creating more and more powerful 
operators that apply to fewer and fewer situations, but rather think 
in terms of gradually transforming an existing solution into one 
that satisfies the requirements of the new problem. 

Consider a reminding process (a search for solutions to 
problems similar to the one at hand) that compares differences 
among the following: 

2The Introduction of path constraints in this manner constitutes a slight 
modmcaton of the standard MEA problem apace. 

1. The initial state of the new problem and the initial state of 
previously-solved problems 

2. The final state of the new problem and the final state of 
previously-solved problems 

3. The path constraints under which the new problem must be 
solved and path constraints present when previous similar 
problems were solved. 

4. The differential applicability of the retrieved operator 
sequence in the old and the new problem situations. 

The difference function used in comparing initial and final 
states may be the very same function used for difference 
reduction in standard MEA. Here, I advocate using the difference 
function as a similarity metric to retrieve the solution of a 
previously-solved problem closely resembling the present 
problem. The difference function applied to path constraints is a 
generalization of the problem state difference function, as it must 
address operator-sequence differences in addition to state 
information. Hence, reminding in our problem-solving context 
consists of recalling a previously solved problem whose solution 
may transfer to the new problem under consideration. A more 
sophisticated method of computing similarities among episodic 
memory structures is based on a relativeinvariance hierarchy 
among different components of recalled problem solutions, as 
discussed in [4). 

Reminding is only the first phase in analogical problem solving. 
The second phase consists of transforming the old solution 
sequence into one satisfying the criteria for the new problem. How 
does this transformation process proceed? I submit that it is 
equivalent to problem solving in the space of solutions.3 

Here I apply my previous definition of a solution to be a sequence of operators 
and intermediate states together with the set of path constraints that sequence is 
known to satisfy Thus. I advocate applying MEA to the space of potential solution 
sequences rather than the original problem space. However, the reminding 
process should generate an initial solution sequence close to the goal solution 
sequence, where closeness is determined by the difletenco metric above 
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Finding an appropriate analogical transformation is itself a 
problem solving process, but in a different problem space. The 
states of the transform problem space are solutions to problems in 
the original problem space, where the initial state is the retrieved 
solution to a similar problem, and the goal state is a solution 
satisfying the criteria for the new problem. The operators in the 
transform problem space are the atomic components of all 
solution transformations (e.g., substitute an operator in the 
solution sequence for another operator that reduces the same 
difference, but requires a different set of preconditions or entails 
different side effects, etc. •• see below). The differences that the 
problem solver attempts to reduce in the new problem space are 
precisely those computed by the similarity metric in the reminding 
process. In other words, progress towards a goal is determined by 
transitions in the solution space towards "solution sequences" 
corresponding to problems increasingly similar to the original 
problem. Intermediate states in the transform space need not 
correspond to viable solutions in the original (object) space, in 
that intermediate solution sequences may not be executable due 
to unsatisfied operator preconditions. The diagram in figure 2-1 
gives an intuitive flavor of this problem-solving process. More 
precisely, the analogy transform problem space (T-space) is 
defined as follows: 

estates in the transform space are potential solutions to 
problems in the original problem space (i.e., sequences of 
states and operators including the initial and final states, plus 
the path constraints under which those solutions were 
computed.) 

• The initial state in the transform space is the solution to a 
similar problem retrieved by the reminding process. 

• A goal state in the transform space is the specification of a 
solution that solves the new problem, satisfying its path 
constraints. 

• An operator in the transform space (labeled a "Toperator" to 
avoid confusion) maps one solution sequence into another 
potential solution sequence in the untransformed problem 
space. The following is a partial list of useful T operators: 

o General Insertion. Insert a new operator into the solution 
sequence. 

o General deletion. Delete an operator from the solution 
sequence. 

o Subsequence Splicing. Splice a solution to a new 
subproblem into the larger established solution sequence. 
This Toperator is useful in the following situation: If an 
operator in the original problem sequence cannot be 
applied under the new problem specification because one 
of its preconditions is not satisfied, problem solve in the 
original (object) space to find a means of satisfying this 
precondition. If successful, splice the precondition-
fulfilling subsequence into the original solution sequence. 

o Subgoal-preserving substitution. Substitute an 
operator in the original solution sequence by another 
operator (or sequence of operators) that reduces the same 
difference. This Toperator is particularly useful if either a 
precondition of an operator in the original sequence 
cannot be satisfied, or if the presence of a particular 
operator in the solution sequence violates a path 
constraint.4 

o Final-segment concatenation. Treat the solution 
sequence as a macro-operator in the original problem 
space and apply MEA to reduce the difference between the 
old final state and the new final state. If successful, 
concatenate the solution to this subproblem at the end of 
the original solution sequence. 

o Initial-segment concatenation. Apply the process 
above to find a path in the original problem space from the 
new initial state to the old initial state. If successful, 
concatenate at the beginning of the original solution. 
[Note that in this case we start with the initial state for the 
new problem and seek a path to the initial state for the 
retrieved solution, whereas in the final segment-
concatenation operator the inverse process applies.] 

o Sequence meshing. If two solutions to previous 
problems were retrieved in the reminding process, each 
solution differing from the new problem specification in 
non-identical aspects, merge their operator sequences. 
The resultant solution sequence should differ from a 
solution to the new problem by the intersection of the 
differences between each retrieved solution and the new 
problem specification.5 If the differences between the two 
retrieved solutions and the new problem specification form 
disjoint sets, sequence meshing yields a complete solution. 

o Operator reordering. Often a path constraint in the new 
problem specification can be met by simple reordering of 
operators (when allowed by their preconditions) in the 
retrieved solution. 

o Parameter substitution. The objects to which operators 
were applied in the retrieved solution may be substituted 
for objects in the new problem (that do not violate the 
preconditions of the operators). 

o Solution-sequence truncation. If the final state of an 
operator subsequence of the retrieved solution exhibits a 
smaller difference with the new problem specification, use 
this subsequence as the new basis for mapping into the 
desired solution sequence. 

e The difference function in the transform space (D,) is a 
combination of the difference measures between initial states 
(of the retrieved and desired solution sequences), final states, 
path constraints, and degree of applicability of the retrieved 
solution in the new problem scenario. Hence, the values of DT 
are 4- vectors, with the interpretation that all four component 
differences must be reduced (independently or jointly) in the 
transform space (T-space) problem solving process. 

D T =<D 0 (S1,S 1 , 2 ) . D0(SF,1,SF,2). 
Dp(PC1,PC2), D^SOL^SOLj)) 

D0 is the difference function between states in the original 
space. Dp computes differences between path constraints 
(PC's). DA measures the applicability of the old solution in the 
new scenario by determining the fraction of operators in the 
initial solution sequence (SOL,) whose preconditions are not 
satisfied under the new problem specification. S1 denotes an 
initial state, and SF denotes a final state. The subscript 1 
indexes the retrieved solution, and 2 indexes the specifications 
on the desired solution to the new problem. DT is reduced 
when any of its four components is independently reduced. 

Note that a aubgoal-preserving substitution is much more restrictive than a 
general delete Toperator followed by a general insert Toperator. Therefore, thia 
T-operator is more apt to yield useful transformations, a fact reflected in the 
ordering of operators under each appropriate entry in the difference table. 

*Merging two partial operator sequences is an interesting and potentially 
complex problem in itself Procedural networks, developed in the NOAH system 
(15). facilitate computations of operator interactions when meshing two plans. It it 
not always the case that two partial solution sequences can be merged effectively 
( e g , each subsequence may violate necessary preconditions for the other 
subsequence) Nonalgorrthmic T-operatora,such aa sequence meshing.define 
their own internal problem apace. 
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The problem-solving process in Tspace succeeds when 
DT = <NIL, NIL, NIL, NIL>. Interesting search problems occur 
when, in order to reduce one component in the difference 
vector, one or both of the other components must be 
increased. For example, the insertion of new operators into 
the solution sequence may have the unfortunate side-effect of 
violating an established precondition of an operator in the 
original sequence. In this case reducing DO(I) or DQ(F) results 
in increasing DA. Our first-pass solution is to define a (linear) 
combination of the four components and choose the operator 
that maximally reduces this value, backtracking when 
necessary. Fortunately, it is often the case that differences in 
the 4-vector can be reduced in a componentwise independent 
manner. Moreover, a modified version of the A MIN method [2] 
may apply, focusing the backtracking process when 
backtracking proves necessary. 

• A difference table for indexing the T-operators is needed. 
Entries in the difference table take the form "To reduce 
<DIFFERENCE>. apply a mesiber of <T-0PERAT0R-
SET>". The operators in the applicable set are usually ordered 
as a function of the heuristic measure of their utility in 
reducing the given difference. A sample difference table entry 
would be: 

o If the preconditions to an operator in SOL1 are not satisfied 
(i.e. DA is non-null), try (first) subgoahproservlng 
substitution on the inapplicable operator, or try 
solution-sequence splicing to satisfy the violated 
preconditions. 

• There are no path constraints in the transform space. Since we 
are mapping from one solution sequence to another, the 
intermediate states and Toperators do not necessarily 
correspond to actual operations performed on an external 
world, and therefore are not subject to its restrictions. This 
simplification is offset by the more complex difference metric 
in Tspace. 

2.2. An example 
Reconsider the monkey and bananas and experimenter and* 

bananas problem, in light of the analogical problem-solving 
model. 

A monkey watches a behavioral psychologist (i.e., the 
experimenter) pick up a wooden box and place it under a hook 
in the ceiling. Next, the experimenter climbs on the box, places 
some bananas on the hook, climbs off the box, and returns the 
box to its original location. Then, the experimenter releases the 
(hungry) monkey and leaves the room. How does the monkey 
plan to reach the bananas? Can he benefit from having 
observed the experimenter? 

As we mentioned earlier, a "smart monkey" ought to learn from 
his observations of the experimenter. Let us see how analogical 
problem solving applies here. For simplicity, assume the monkey 
does not have prior experience solving similar problems beyond 
his recent observation of the experimenter. The monkey's problem 
is: initial state - monkey on the floor, bananas on the ceiling, 
box in the room; final state - monkey in possession of the 
bananas; path constraints = physical abilities of the monkey. 
However, the solution to the experimenter's problem cannot be 
applied directly. (His problem was initial state ■ possession of 
the bananas, box in the room, experimenter on the floor; final 
state » Bananas on the ceiling, box nor under the bananas; path 
constraints = physical abilities of the experimenter.) 

Assuming the path constraints match, the differences between 
the initial states (and the differences between the final states) are 
so large as to preclude any reasonable attempt at direct 

analogical transformation. Therefore, the monkey must resort to 
standard ME A (in the object problem space). He selects the 
operator GET OBJECT (applied to bananas). This operator suffers 
an unsatisfied precondition: The monkey cannot reach the 
bananas. Therefore, the active subgoal becomes: Reach the 
ceiling where the bananas are located. How may the monkey 
proceed at this juncture? 

The entire problem can, of course, be solved by standard MEA. 
However, there is a more direct solution method. If the monkey 
recalls his observation of the experimenter, he may realize that the 
problem of reaching the ceiling has already been solved (by the 
experimenter, as a subgoal to placing the bananas there • 
although the monkey need not understand the experimenter's 
higher-level goals). The monkey can apply the parameter-
substitution T-operator (substituting "monkey" for 
"experimenter'), and optionally the solution-sequence 
truncation T-operator (eliminating the need to return the box to 
its original location after having used it). This problem-solving 
process in T-space results in a plan that the monkey can apply 
directly to reach the bananas, and thus achieve his original goal of 
having (and presumably eating) the bananas. 

The significant aspect of the experimenter monkey-and-
bananas example is that standard MEA and Tspace MEA were 
combined into a uniform problem-solving process where standard 
MEA calls on analogical problem solving to solve a subproblem 
more directly. The converse process is also possible, and 
potentially significant. Hence, Analogical reasoning adds a 
powerful dimension to standard problem solving when prior 
experience can be brought to bear, but remains largely 
unobstrusive when no relevant prior knowledge suggests Itself. 

Additionally, it would be useful for the problem solver to 
remember his observations and problem solving experiences to 
use as a basis for future analogical reasoning. These could be 
remembered directly or abstracted into episodic traces, much like 
Schank and Abelson's scripts [16,5], and hierarchically organized 
as a function of the goals they fulfill. 

3. Evaluating the Analogical Reasoning 
Process 

In an informal experiment, not meant to withstand statistical 
significance tests, I gave the following problem to -five 
undergraduate historyandart students: 

Prove that the product of two even numbers is even. 

Somewhat to my surprise, none of the five was able to solve this 
simple algebraic problem, although all five made serious attempts. 
Later I explained the solution carefully enough to insure that all 
five understood it: 

First, recall the definition of an even number: a number that is 
divisible by 2. 
Second, write down an expression that represents an even 
number: You may write "2N" where N is any integer, to 
represent a number divisible by 2. 
Next, multiply two even numbers, writing: 2N x 2M, where M is 
also any integer. Multiplying we get 4NM. 
Now, recall the representation of an even number: 
2 x any integer. Therefore you can write 4NM ■ 2 x 2NM, which 
by closure of integers under multiplication matches the 
representation of an even number. Hence, the product of two 
even numbers is even. 
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At this point, all five students claimed they understood the 
proof, and moreover expressed some feeling of embarrassment 
for not having derived such an "obvious" proof themselves. Then, 
I suggested they try the following problem: 

Prove that the product of two odd numbers is odd. 

With a grim determination to redeem their previous poor 
performance all five attempted the problem and three of them 
succeeded. Briefly: 

Odd numbers can be represented as "even + 1" = 2N + 1 for 
any integer N. 
The product, therefore: (2N + 1) x (2M + 1) = 
4NM + 2N + 2M + 1 - 2(2NM + N + M) + 1, which is the 

representation of an odd number.6 

This informal experiement strongly indicates that the second 
problem was solved by analogy from the solution of the first 
problem. The scratch papers collected from the students suggest 
direct attempts at transfering and modifying steps of the first 
solution. The insertion of an extra algebraic step7 illustrates an 
application of the subsequence splicing T-operator. Moreover, 
the mere fact that three of five students were able to solve a 
problem more complex that the one where all five failed 
previously, argues very convincingly for an analogical process 
exploiting the previous solution (or some abstraction thereof). 
However, It should be noted that this type of experiment does not 
in itself demonstrate dominance of analogical reasoning in human 
problem solving, but rather it provides strong evidence for the 
existence of analogical processes in cognitive activities. 
Demonstrating the conjecture that analogy is the central inference 
mechanism for human problem solving would require a much 
more thorough (and perhaps more controlled) set of psychological 
observations. 

As a test of the computational feasibility of the analogical 
problem solving process, a simple version of MEA was 
programmed to operate on the transform space, and given a 
subset of the T-operators with a corresponding difference table. It 
solved the product of-two-odds problem starting from the solution 
for two even numbers.8 The initial program is not too interesting -
it demonstrates that the analogical problem solving process 
"actually works", but does little else. The truly interesting issues 
will arise when: 

• a much fuller implementation is available allowing 
comparisons among different problem solving methods over a 
representative corpus of problems, 

• issues of learning from experience are further investigated, 
• and the analogical problem solver is integrated with a 

dynamically-changing long term memory. 

Interestingly, one student chose to represent odd numbers as 2N ♦ 3, which is 
correct but requires a bit of Additional algebraic manipulation Of the two students 
who did not present an adequate proof, one erred in an algebraic manipulation 
step, the other was unable to represent odd numbers correctly. 

I.e.. distributing the product of the two odd numbers is required to fulfill a 
precondition of the factormg-a constant operator that factors 2 from three of the 
four terms in; 4NM + 2N + 2M + 1. 

It used N 1 to represent an odd number, since the SU81 operator was 
inadvertently listed before AD01 in the object space difference table, and 
therefore had to splice in an additional algebraic step in the solution. 

4. Learning as Part of the Problem Solving 
Process 

Let us examine briefly the learning processes inherent In 
analogical problem solving. My central hypothesis is that human 
learning occurs as an integral, inalienable aspect of problem 
solving and comprehension. This does not imply that 
disembodied concept acquisition and pure grammatical inference 
are ineffective processes. Such processes are computationally 
valid but psychologically implausible. Since I am primarily 
interested in cognitive modeling, I find the creation of a 
computational model that incorporates both learning and 
performance as inseparable processes to be an intellectually 
appealing endeavor. Analogical reasoning provides the basis for 
such an integrated model. The fact that humans learn in real-
world tasks (by practice, observation, trial and error, etc.) with 
little or no discernible cognitive effort lends credence to my 
integration-oflearningandperformance hypothesis. Moreover, 
there is evidence that for cognitive as well as. physical motor-
coordination tasks humans cannot help but learn in the process of 
repeated practice [14]. This clearly suggests that at least some 
forms of human learning cannot be separated from cognitive-
performance or motor-coordination systems. 

Learning can occur in both phases of analogical problem 
solving: 1) the reminding process that organizes and searches 
past experience, and 2) the analogical transformation process 
itself. The first phase is discussed briefly below, and at greater 
length by Schank and Lebowitz [9]. The second phase is analyzed 
in [3]. Environmental feedback (such as success or failure of the 
planned solution) can trigger solution analysis, where solutions to 
several similar problems can be considered exemplars for the task 
of synthesizing a general plan to deal with future problems of the 
same general type. Simon and others [1,19] discuss this form of 
reducing a learningbydoing problem to a learning-from-
examples task. 

4 . 1 . Episodic Memory Organization 
Memory of solutions to previous problems, whether observed or 

directly experienced, must be organized by similarities in goal 
states, initial states, and means available (or path constraints 
present). Otherwise, there can be no reasonable reminding 
process when solving future problems of a similar nature. Hence, 
a hierarchical indexing structure on an episodic memory must be 
dynamically constructed and extended as the system gradually 
accumulates new experience. Thus, continuously expanding and 
structuring episodic memory is a relatively simple, but absolutely 
essential, aspect of learning that proceeds concurrent with 
analogical reasoning. 

5. Concluding Remark 
The objective of this paper has been to lay a uniform framework 

for analogical problem solving capable of incorporating skill 
refinement and acquisition processes. Most work in machine 
learning does not attempt to integrate learning and problem 
solving into a unified process. (However, Mitchell [11] and Lenat 
[10] are partial counterexamples.) Past and present 
investigations of analogical reasoning have focused on disjoint 
aspects of the problem. No past investigation has resulted in a 
unified analogical problem solving method. For instance Winston 
[20], investigated analogy as powerful mechanism for classifying 
and structuring episodic descriptions. Kling [7] studied analogy as 
a means of reducing the set of axioms and formulae that a 
theorem prover must consider when deriving new proofs to 
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theorems similar to those encountered previously. In his own 
words, his system "...derives the analogical relationship between 
two [given] problems and outputs the kind of information that can 
be usefully employed by a problem solving system to expedite its 
search." However, analogy takes no direct part in the problem-
solving process itself. Hence, the extension of means-ends 
analysis to an analogy transform space is, in itself, a new, 
potentially-significant problem-solving method, independent of the 
learning mechanisms that it can support. 
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