
A Computational Model
of Analogical Problem Solving

Jaime G. Carbonell

Carnegie-Mellon University
Pittsburgh, PA 15213

Abstract
This paper outlines a theory of analogical reasoning based on a
process-model of problem solving by analogy and the hypothesis
that problem solving and learning are inalienable, concurrent
processes in the human cognitive system. The analogical problem
solver exploits prior experience in solving similar problems, and, in
the process, augments a hierarchically-structured epsiodic long
term memory. An analogical transformation process is developed
based on a modified version of Means-Ends Analysis in order to
map past solutions from similar problems into solutions satisfying
the requirements of the new problem.1

1. Introduction
Analogical reasoning has been a sparsely-investigated

phenomenon in Artificial Intelligence (7,12,8, 20]. Nonetheless,
analogy promises to be a central inference method in human
cognition as well as a powerful computational mechanism. In this
paper, I discuss a computational model of problem solving by
analogy based on an extension of means-ends analysis (MEA). My
central hypothesis (based in part on Schanks theory of memory
organization [18,17]) is the following: When encountering a new
problem situation, a person is reminded of past situations that
bear strong similarities (at different levels of abstraction) to the
present situation. This type of reminding experience serves to
retrieve behaviors that were appropriate in earlier situations,
whereupon past behavior is adapted to meet the demands of the
current situation.

Commonalities among previous and current situations, as well
as successful applications of modified plans can serve as the
basis for generalization. Similarly, performing an inappropriate
behavior in a new situation can lead to discrimination (among the
ways in which situations are organized in memory and/or the
mechanisms that adapted an existing plan to the new situation).
However, a reactive environment that informs the problem solver
of success, failure, or partial success is an absolute requirement
for any generalization or discrimination process to apply. I
consider problem solving by analogy and experiential learning to
be inalienable components of a unified cognitive model.
Analogical problem solving exploits knowledge of plans indexed
under situations similar to the current one, generating new
purposive behavior potentially relevant to future problem solving.
And, the learning component creates the memory structures to
encode experiential knowledge (generalizing where appropriate)

This research was sponsored in pan by the Office of Naval Research (ONR)
under grant number N00014 79 C 0661 The author would like to thank Allen
Newell, David Kishi and Monica Lam for their useful suggestions in various
discussions.

that enable the problem solver to retrieve and compare relevant
situations and plans from memory. The bulk of this paper focuses
on developing a computationally-effective mechanism for problem
solving by analogy. A detailed discussion of experiential learning
processes is beyond the scope of this presentation (but see [3]).

2. Problem Solving by Analogy
Traditional Al models of problem solving (e.g., GPS [13],

STRIPS 16], and NOAH [15]) approach every problem almost
without benefit of prior experience in solving other problems in the
same or similar problem spaces. Hence, GPS will perform the
same Means-Ends Analysis (MEA) process to solve the monkey-
and bananas problem (where a monkey needs to place a box
underneath some bananas suspended from the ceiling in order to
climb on the box, reach the bananas and eat them) and to solve
the experimenter-andbananas problem (where the experimenter
must move the same box enabling him to reach the hook in the
ceiling where he will hang the bananas • then he must move the
box away to create a problem for the monkey). However, an
intelligent monkey observing the experimenter hang the bananas,
may directly conclude which parts of the experimenter's behavior
he should replicate in order to reach the bananas. Similarly, an
experimenter who becomes hungry after watching an
unenlightened monkey repeatedly fail in his attempts to reach the
bananas, should know how to reach the bananas himself without
planning from ground zero.

Clearly, the bulk of human problem solving takes place in
problem spaces that are either well known or vary only slightly
from familiar situations. It is rare for a person to encounter a
problem that does not remind him of potentially applicable
solutions to similar problems solved or observed in past
experience. New puzzles (such as Rubik's magic cube) are such
exceptional problems, where initially the only tractable solution
procedure is the application of weak methods [13] without benefit
of (nonexistent) past experience. Therefore, my investigations
center on simplified versions of real-world problems, rather than
more abstract mathematical puzzles.

Now, let us turn to problem solving in familiar problem spaces.
What makes a problem space "familiar"? Clearly, knowledge of
solved problems in that space is a major aspect. This knowledge
must have been acquired, and must be brought to bear in the
problem solving process. There is no other way to account for the
tact that humans solve problems in familiar situations much faster,
and with more self-assurance. A computer model should exploit
the same skill acquisition process; i.e., it should learn to adapt its
problem-solving behavior to known problem spaces • falling back
on the application of weak methods when more direct recall-end-
modification of existing solutions fails to provide an answer. How
might a problem solver be augmented to exhibit such adaptive

147

behavior? Below, I illustrate a tractable mechanism for problem
solving by analogy.

2 . 1 . The Plan-Transformation Problem Space
First, consider a traditional Means-Ends Analysis (MEA)

problem space [13], populated by:

• A set of possible problem states.
• One state designated as the Initial State
• One or more state(s) designated as goal states •• for simplicity,

assume there is only one goal state.
• A set of operators with known preconditions that transform

one state into another state in the space.
• A difference function that computes differences between two

states (typically applied to compute the difference between the
current state and the goal state).

• A method for indexing operators as a function of the
difference(s) they reduce (e.g., the table of differences in
GPS).

• A set of global path constraints that must be satisfied in order
for a solution to be viable. (E.g., a path constraint may
disallow particular subsequences of operators, or prevent an
operator that consumes K amount of a resource from applying
more than N times, if there is only NxK amount of the resource
available to the problem solver.)2

Problem solving in this space consists of standard MEA:
Compare the current state to the goal state; choose an operator
that reduces the difference; apply the operator if possible •• if not
recurse on the subgoal(s) of establishing the unsatisfied
precondition(s) of that operator.

How can we exploit Knowledge of solutions to previous
problems in this problem space? First, consider the simplest case;
knowledge consists only of solutions to previous problems. Each
solution consists of a sequence of operators and intermediate
states, including the initial and final states, together with the path
constraints that the solution was designed to satisfy. One rather
simple idea is to create "macro operators" from sequences and
sub-sequences of atomic operators that have proven useful as
solutions to earlier problems. For instance, STRIPS with
MACROPS exploited this idea [6] using its "triangle table" to store
all partial sequences of operators encountered in a solution to a
previous problem. However, the simple creation of macro-
operators suffers two serious shortcomings. First, the
combinatorics involved in storing and searching all possible
subsequences of all solutions ever encountered becomes rapidly
unmanageable. Searching for applicable macro-operators can
become a more costly process than applying MEA to the original
problem. Second, path constraints are ignored in this process. If
the new problem must satisfy a different set of path constraints,
most previous macro-operators may prove invalid. Therefore, let
us think not in terms of creating more and more powerful
operators that apply to fewer and fewer situations, but rather think
in terms of gradually transforming an existing solution into one
that satisfies the requirements of the new problem.

Consider a reminding process (a search for solutions to
problems similar to the one at hand) that compares differences
among the following:

2The Introduction of path constraints in this manner constitutes a slight
modmcaton of the standard MEA problem apace.

1. The initial state of the new problem and the initial state of
previously-solved problems

2. The final state of the new problem and the final state of
previously-solved problems

3. The path constraints under which the new problem must be
solved and path constraints present when previous similar
problems were solved.

4. The differential applicability of the retrieved operator
sequence in the old and the new problem situations.

The difference function used in comparing initial and final
states may be the very same function used for difference
reduction in standard MEA. Here, I advocate using the difference
function as a similarity metric to retrieve the solution of a
previously-solved problem closely resembling the present
problem. The difference function applied to path constraints is a
generalization of the problem state difference function, as it must
address operator-sequence differences in addition to state
information. Hence, reminding in our problem-solving context
consists of recalling a previously solved problem whose solution
may transfer to the new problem under consideration. A more
sophisticated method of computing similarities among episodic
memory structures is based on a relativeinvariance hierarchy
among different components of recalled problem solutions, as
discussed in [4).

Reminding is only the first phase in analogical problem solving.
The second phase consists of transforming the old solution
sequence into one satisfying the criteria for the new problem. How
does this transformation process proceed? I submit that it is
equivalent to problem solving in the space of solutions.3

Here I apply my previous definition of a solution to be a sequence of operators
and intermediate states together with the set of path constraints that sequence is
known to satisfy Thus. I advocate applying MEA to the space of potential solution
sequences rather than the original problem space. However, the reminding
process should generate an initial solution sequence close to the goal solution
sequence, where closeness is determined by the difletenco metric above

148

Finding an appropriate analogical transformation is itself a
problem solving process, but in a different problem space. The
states of the transform problem space are solutions to problems in
the original problem space, where the initial state is the retrieved
solution to a similar problem, and the goal state is a solution
satisfying the criteria for the new problem. The operators in the
transform problem space are the atomic components of all
solution transformations (e.g., substitute an operator in the
solution sequence for another operator that reduces the same
difference, but requires a different set of preconditions or entails
different side effects, etc. •• see below). The differences that the
problem solver attempts to reduce in the new problem space are
precisely those computed by the similarity metric in the reminding
process. In other words, progress towards a goal is determined by
transitions in the solution space towards "solution sequences"
corresponding to problems increasingly similar to the original
problem. Intermediate states in the transform space need not
correspond to viable solutions in the original (object) space, in
that intermediate solution sequences may not be executable due
to unsatisfied operator preconditions. The diagram in figure 2-1
gives an intuitive flavor of this problem-solving process. More
precisely, the analogy transform problem space (T-space) is
defined as follows:

estates in the transform space are potential solutions to
problems in the original problem space (i.e., sequences of
states and operators including the initial and final states, plus
the path constraints under which those solutions were
computed.)

• The initial state in the transform space is the solution to a
similar problem retrieved by the reminding process.

• A goal state in the transform space is the specification of a
solution that solves the new problem, satisfying its path
constraints.

• An operator in the transform space (labeled a "Toperator" to
avoid confusion) maps one solution sequence into another
potential solution sequence in the untransformed problem
space. The following is a partial list of useful T operators:

o General Insertion. Insert a new operator into the solution
sequence.

o General deletion. Delete an operator from the solution
sequence.

o Subsequence Splicing. Splice a solution to a new
subproblem into the larger established solution sequence.
This Toperator is useful in the following situation: If an
operator in the original problem sequence cannot be
applied under the new problem specification because one
of its preconditions is not satisfied, problem solve in the
original (object) space to find a means of satisfying this
precondition. If successful, splice the precondition-
fulfilling subsequence into the original solution sequence.

o Subgoal-preserving substitution. Substitute an
operator in the original solution sequence by another
operator (or sequence of operators) that reduces the same
difference. This Toperator is particularly useful if either a
precondition of an operator in the original sequence
cannot be satisfied, or if the presence of a particular
operator in the solution sequence violates a path
constraint.4

o Final-segment concatenation. Treat the solution
sequence as a macro-operator in the original problem
space and apply MEA to reduce the difference between the
old final state and the new final state. If successful,
concatenate the solution to this subproblem at the end of
the original solution sequence.

o Initial-segment concatenation. Apply the process
above to find a path in the original problem space from the
new initial state to the old initial state. If successful,
concatenate at the beginning of the original solution.
[Note that in this case we start with the initial state for the
new problem and seek a path to the initial state for the
retrieved solution, whereas in the final segment-
concatenation operator the inverse process applies.]

o Sequence meshing. If two solutions to previous
problems were retrieved in the reminding process, each
solution differing from the new problem specification in
non-identical aspects, merge their operator sequences.
The resultant solution sequence should differ from a
solution to the new problem by the intersection of the
differences between each retrieved solution and the new
problem specification.5 If the differences between the two
retrieved solutions and the new problem specification form
disjoint sets, sequence meshing yields a complete solution.

o Operator reordering. Often a path constraint in the new
problem specification can be met by simple reordering of
operators (when allowed by their preconditions) in the
retrieved solution.

o Parameter substitution. The objects to which operators
were applied in the retrieved solution may be substituted
for objects in the new problem (that do not violate the
preconditions of the operators).

o Solution-sequence truncation. If the final state of an
operator subsequence of the retrieved solution exhibits a
smaller difference with the new problem specification, use
this subsequence as the new basis for mapping into the
desired solution sequence.

e The difference function in the transform space (D,) is a
combination of the difference measures between initial states
(of the retrieved and desired solution sequences), final states,
path constraints, and degree of applicability of the retrieved
solution in the new problem scenario. Hence, the values of DT
are 4- vectors, with the interpretation that all four component
differences must be reduced (independently or jointly) in the
transform space (T-space) problem solving process.

D T =<D 0 (S1,S 1 , 2) . D0(SF,1,SF,2).
Dp(PC1,PC2), D^SOL^SOLj))

D0 is the difference function between states in the original
space. Dp computes differences between path constraints
(PC's). DA measures the applicability of the old solution in the
new scenario by determining the fraction of operators in the
initial solution sequence (SOL,) whose preconditions are not
satisfied under the new problem specification. S1 denotes an
initial state, and SF denotes a final state. The subscript 1
indexes the retrieved solution, and 2 indexes the specifications
on the desired solution to the new problem. DT is reduced
when any of its four components is independently reduced.

Note that a aubgoal-preserving substitution is much more restrictive than a
general delete Toperator followed by a general insert Toperator. Therefore, thia
T-operator is more apt to yield useful transformations, a fact reflected in the
ordering of operators under each appropriate entry in the difference table.

*Merging two partial operator sequences is an interesting and potentially
complex problem in itself Procedural networks, developed in the NOAH system
(15). facilitate computations of operator interactions when meshing two plans. It it
not always the case that two partial solution sequences can be merged effectively
(e g , each subsequence may violate necessary preconditions for the other
subsequence) Nonalgorrthmic T-operatora,such aa sequence meshing.define
their own internal problem apace.

149

The problem-solving process in Tspace succeeds when
DT = <NIL, NIL, NIL, NIL>. Interesting search problems occur
when, in order to reduce one component in the difference
vector, one or both of the other components must be
increased. For example, the insertion of new operators into
the solution sequence may have the unfortunate side-effect of
violating an established precondition of an operator in the
original sequence. In this case reducing DO(I) or DQ(F) results
in increasing DA. Our first-pass solution is to define a (linear)
combination of the four components and choose the operator
that maximally reduces this value, backtracking when
necessary. Fortunately, it is often the case that differences in
the 4-vector can be reduced in a componentwise independent
manner. Moreover, a modified version of the A MIN method [2]
may apply, focusing the backtracking process when
backtracking proves necessary.

• A difference table for indexing the T-operators is needed.
Entries in the difference table take the form "To reduce
<DIFFERENCE>. apply a mesiber of <T-0PERAT0R-
SET>". The operators in the applicable set are usually ordered
as a function of the heuristic measure of their utility in
reducing the given difference. A sample difference table entry
would be:

o If the preconditions to an operator in SOL1 are not satisfied
(i.e. DA is non-null), try (first) subgoahproservlng
substitution on the inapplicable operator, or try
solution-sequence splicing to satisfy the violated
preconditions.

• There are no path constraints in the transform space. Since we
are mapping from one solution sequence to another, the
intermediate states and Toperators do not necessarily
correspond to actual operations performed on an external
world, and therefore are not subject to its restrictions. This
simplification is offset by the more complex difference metric
in Tspace.

2.2. An example
Reconsider the monkey and bananas and experimenter and*

bananas problem, in light of the analogical problem-solving
model.

A monkey watches a behavioral psychologist (i.e., the
experimenter) pick up a wooden box and place it under a hook
in the ceiling. Next, the experimenter climbs on the box, places
some bananas on the hook, climbs off the box, and returns the
box to its original location. Then, the experimenter releases the
(hungry) monkey and leaves the room. How does the monkey
plan to reach the bananas? Can he benefit from having
observed the experimenter?

As we mentioned earlier, a "smart monkey" ought to learn from
his observations of the experimenter. Let us see how analogical
problem solving applies here. For simplicity, assume the monkey
does not have prior experience solving similar problems beyond
his recent observation of the experimenter. The monkey's problem
is: initial state - monkey on the floor, bananas on the ceiling,
box in the room; final state - monkey in possession of the
bananas; path constraints = physical abilities of the monkey.
However, the solution to the experimenter's problem cannot be
applied directly. (His problem was initial state ■ possession of
the bananas, box in the room, experimenter on the floor; final
state » Bananas on the ceiling, box nor under the bananas; path
constraints = physical abilities of the experimenter.)

Assuming the path constraints match, the differences between
the initial states (and the differences between the final states) are
so large as to preclude any reasonable attempt at direct

analogical transformation. Therefore, the monkey must resort to
standard ME A (in the object problem space). He selects the
operator GET OBJECT (applied to bananas). This operator suffers
an unsatisfied precondition: The monkey cannot reach the
bananas. Therefore, the active subgoal becomes: Reach the
ceiling where the bananas are located. How may the monkey
proceed at this juncture?

The entire problem can, of course, be solved by standard MEA.
However, there is a more direct solution method. If the monkey
recalls his observation of the experimenter, he may realize that the
problem of reaching the ceiling has already been solved (by the
experimenter, as a subgoal to placing the bananas there •
although the monkey need not understand the experimenter's
higher-level goals). The monkey can apply the parameter-
substitution T-operator (substituting "monkey" for
"experimenter'), and optionally the solution-sequence
truncation T-operator (eliminating the need to return the box to
its original location after having used it). This problem-solving
process in T-space results in a plan that the monkey can apply
directly to reach the bananas, and thus achieve his original goal of
having (and presumably eating) the bananas.

The significant aspect of the experimenter monkey-and-
bananas example is that standard MEA and Tspace MEA were
combined into a uniform problem-solving process where standard
MEA calls on analogical problem solving to solve a subproblem
more directly. The converse process is also possible, and
potentially significant. Hence, Analogical reasoning adds a
powerful dimension to standard problem solving when prior
experience can be brought to bear, but remains largely
unobstrusive when no relevant prior knowledge suggests Itself.

Additionally, it would be useful for the problem solver to
remember his observations and problem solving experiences to
use as a basis for future analogical reasoning. These could be
remembered directly or abstracted into episodic traces, much like
Schank and Abelson's scripts [16,5], and hierarchically organized
as a function of the goals they fulfill.

3. Evaluating the Analogical Reasoning
Process

In an informal experiment, not meant to withstand statistical
significance tests, I gave the following problem to -five
undergraduate historyandart students:

Prove that the product of two even numbers is even.

Somewhat to my surprise, none of the five was able to solve this
simple algebraic problem, although all five made serious attempts.
Later I explained the solution carefully enough to insure that all
five understood it:

First, recall the definition of an even number: a number that is
divisible by 2.
Second, write down an expression that represents an even
number: You may write "2N" where N is any integer, to
represent a number divisible by 2.
Next, multiply two even numbers, writing: 2N x 2M, where M is
also any integer. Multiplying we get 4NM.
Now, recall the representation of an even number:
2 x any integer. Therefore you can write 4NM ■ 2 x 2NM, which
by closure of integers under multiplication matches the
representation of an even number. Hence, the product of two
even numbers is even.

150

At this point, all five students claimed they understood the
proof, and moreover expressed some feeling of embarrassment
for not having derived such an "obvious" proof themselves. Then,
I suggested they try the following problem:

Prove that the product of two odd numbers is odd.

With a grim determination to redeem their previous poor
performance all five attempted the problem and three of them
succeeded. Briefly:

Odd numbers can be represented as "even + 1" = 2N + 1 for
any integer N.
The product, therefore: (2N + 1) x (2M + 1) =
4NM + 2N + 2M + 1 - 2(2NM + N + M) + 1, which is the

representation of an odd number.6

This informal experiement strongly indicates that the second
problem was solved by analogy from the solution of the first
problem. The scratch papers collected from the students suggest
direct attempts at transfering and modifying steps of the first
solution. The insertion of an extra algebraic step7 illustrates an
application of the subsequence splicing T-operator. Moreover,
the mere fact that three of five students were able to solve a
problem more complex that the one where all five failed
previously, argues very convincingly for an analogical process
exploiting the previous solution (or some abstraction thereof).
However, It should be noted that this type of experiment does not
in itself demonstrate dominance of analogical reasoning in human
problem solving, but rather it provides strong evidence for the
existence of analogical processes in cognitive activities.
Demonstrating the conjecture that analogy is the central inference
mechanism for human problem solving would require a much
more thorough (and perhaps more controlled) set of psychological
observations.

As a test of the computational feasibility of the analogical
problem solving process, a simple version of MEA was
programmed to operate on the transform space, and given a
subset of the T-operators with a corresponding difference table. It
solved the product of-two-odds problem starting from the solution
for two even numbers.8 The initial program is not too interesting -
it demonstrates that the analogical problem solving process
"actually works", but does little else. The truly interesting issues
will arise when:

• a much fuller implementation is available allowing
comparisons among different problem solving methods over a
representative corpus of problems,

• issues of learning from experience are further investigated,
• and the analogical problem solver is integrated with a

dynamically-changing long term memory.

Interestingly, one student chose to represent odd numbers as 2N ♦ 3, which is
correct but requires a bit of Additional algebraic manipulation Of the two students
who did not present an adequate proof, one erred in an algebraic manipulation
step, the other was unable to represent odd numbers correctly.

I.e.. distributing the product of the two odd numbers is required to fulfill a
precondition of the factormg-a constant operator that factors 2 from three of the
four terms in; 4NM + 2N + 2M + 1.

It used N 1 to represent an odd number, since the SU81 operator was
inadvertently listed before AD01 in the object space difference table, and
therefore had to splice in an additional algebraic step in the solution.

4. Learning as Part of the Problem Solving
Process

Let us examine briefly the learning processes inherent In
analogical problem solving. My central hypothesis is that human
learning occurs as an integral, inalienable aspect of problem
solving and comprehension. This does not imply that
disembodied concept acquisition and pure grammatical inference
are ineffective processes. Such processes are computationally
valid but psychologically implausible. Since I am primarily
interested in cognitive modeling, I find the creation of a
computational model that incorporates both learning and
performance as inseparable processes to be an intellectually
appealing endeavor. Analogical reasoning provides the basis for
such an integrated model. The fact that humans learn in real-
world tasks (by practice, observation, trial and error, etc.) with
little or no discernible cognitive effort lends credence to my
integration-oflearningandperformance hypothesis. Moreover,
there is evidence that for cognitive as well as. physical motor-
coordination tasks humans cannot help but learn in the process of
repeated practice [14]. This clearly suggests that at least some
forms of human learning cannot be separated from cognitive-
performance or motor-coordination systems.

Learning can occur in both phases of analogical problem
solving: 1) the reminding process that organizes and searches
past experience, and 2) the analogical transformation process
itself. The first phase is discussed briefly below, and at greater
length by Schank and Lebowitz [9]. The second phase is analyzed
in [3]. Environmental feedback (such as success or failure of the
planned solution) can trigger solution analysis, where solutions to
several similar problems can be considered exemplars for the task
of synthesizing a general plan to deal with future problems of the
same general type. Simon and others [1,19] discuss this form of
reducing a learningbydoing problem to a learning-from-
examples task.

4 . 1 . Episodic Memory Organization
Memory of solutions to previous problems, whether observed or

directly experienced, must be organized by similarities in goal
states, initial states, and means available (or path constraints
present). Otherwise, there can be no reasonable reminding
process when solving future problems of a similar nature. Hence,
a hierarchical indexing structure on an episodic memory must be
dynamically constructed and extended as the system gradually
accumulates new experience. Thus, continuously expanding and
structuring episodic memory is a relatively simple, but absolutely
essential, aspect of learning that proceeds concurrent with
analogical reasoning.

5. Concluding Remark
The objective of this paper has been to lay a uniform framework

for analogical problem solving capable of incorporating skill
refinement and acquisition processes. Most work in machine
learning does not attempt to integrate learning and problem
solving into a unified process. (However, Mitchell [11] and Lenat
[10] are partial counterexamples.) Past and present
investigations of analogical reasoning have focused on disjoint
aspects of the problem. No past investigation has resulted in a
unified analogical problem solving method. For instance Winston
[20], investigated analogy as powerful mechanism for classifying
and structuring episodic descriptions. Kling [7] studied analogy as
a means of reducing the set of axioms and formulae that a
theorem prover must consider when deriving new proofs to

151

theorems similar to those encountered previously. In his own
words, his system "...derives the analogical relationship between
two [given] problems and outputs the kind of information that can
be usefully employed by a problem solving system to expedite its
search." However, analogy takes no direct part in the problem-
solving process itself. Hence, the extension of means-ends
analysis to an analogy transform space is, in itself, a new,
potentially-significant problem-solving method, independent of the
learning mechanisms that it can support.

References

1. Anzai, Y. and Simon, H. A., T h e Theory of Learning by
Doing," Psychological Review, Vol. 86,1979, pp. 124-140.

2. Carbonell, J.G., "AMIN: A Search-Control Method for
Information-Gathering Problems," Proceedings of the First
AAAI Conference, August 1980.

3. Carbonell, J. G., "Learning by Analogy: Skill Acquisition in
Reactive Environments," in Machine Learning, R.
S. Michaiski, J. G. Carbonell and T. M. Mitchell, eds., Palo
Alto, CA: Tioga Pub. Co., 1981.

4. Carbonell, J. G., "Metaphor Comprehension," in
Knowledge Representation for Language Processing
Systems, W. Lehnert and M, Ringle, eds., New Jersey:
Erlbaum, 1981.

5. Cullingford, R., Script Application: Computer
Understanding of Newspaper Stories, PhD dissertation,
Yale University, Sept. 1977.

6. Pikes, R. E. and Nilsson, N. J., "STRIPS: A New Approach
to the Application of Theorem Proving to Problem
Solving," Artificial Intelligence, Vol. 2, 1971 , pp. 189-208.

7. Kling, R. E., "A Paradigm for Reasoning by Analogy,"
Artificial Intelligence, Vol. 2,1971 , pp. 147-178.

8. Korf, R. E., "Toward a Model of Representation Changes,"
Artificial Intelligence, Vol. 14, No. 1,1980. pp. 41 -78.

9. Lebowitz, M., Generalization and Memory in an Integrated
Understanding System, PhD dissertation, Yale University,
Oct. 1980.

10. Lenat, D., AM: Discovery in Mathematics as Heuristic
Search, PhD dissertation, Stanford University, 1977.

11. Mitchell, T. M., Utgoff, P. E. and Banerji, R. B., "Learning
Problem-Solving Heuristics by Experimentation," in
Machine Learning, R. S. Michaiski, J. G. Carbonell and
T. M. Mitchell, eds., Palo Alto, CA: Tioga Pub. Co., 1961.

12. Moore, J. and Newell, A., "How can MERLIN
Understand?," in Knowledge and Cognition, L. Gregg, ed.,
Hillsdale, NJ: Erlbaum Assoc., 1974, pp. 253-285.

13. Newell, A. and Simon, H. A., Human Problem Solving, New
Jersey: Prentice-Hall, 1972.

14. Newell, A. and Roeenbloom, P., "Mechanisms of Skill
Acquisition and the Law of Practice," in Cognitive Skills
and Their Acquisition, J. R. Anderson, ed., Hillsdale, NJ:
Erlbaum Assoc., 1961.

132

15. Sacerdoti, E. D., A Structure tor Plans and Behavior,
Amsterdam: North Holland, 1977.

16. Schank, R. C. and Abelson, R. P., Scripts, Goals, Plans and
Understanding, Hillside, NJ: Lawrence Erlbaum, 1977.

17. Schank, R. C, "Reminding and Memory Organization: An
Introduction to MOPS," Tech. report 170, Yale University
Comp. Sci. Dept., 1979.

18. Schank, R. C., "Language and Memory," Cognitive
Science, Vol. 4, No. 3,1980, pp. 243-284.

19. Simon, H. A., Carbonell, J. and Reddy, R., "Research in
Automated Knowledge Acquisition," 1979. Research
Proposal to the Office of Naval Research from the
Carnegie Mellon Computer Science Department.

20. Winston, P. H, "Learning and Reasoning by Analogy,"
CACM, Vol. 23, No. 12, 1979 , pp. 689-703.

