Advantages of a Transformational Grammar
for Question Answering

Fred J. Damerau
IBM Corporation
Thomas J. Watson Research Center
Yorktown Heights, New York

A number of researchers in artificial intelligence, for
example, Woods(1975, p.88 ff. ), have asserted that trans-
formational grammars are not a satisfactory basis on which to
construct natural language understanding systems, primarily
because of efficiency considerations. The evidence for such
a claim is by no means strong, Petrick(1976), and it can be
argued that transfer of new theoretical insights into a lan-
guage understanding system based on transformational gram-
mar is facilitated, Plath(1973). This note shows that a trans-
formational parser can also simplify problems of relating
canonical representations of queries to data base representa-
tions.

Consider a data base consisting of a set of company
names each with an associated list of employees. A natural
question for such a data base is M How many people does
company Y employ?" Our grammar produces an underlying
tree structure whose bracketted terminal string is something
like (1), from which a Knuth-style semantic interpreter prod-
uces a LISP form like (2).

(1) (EMPLOY (company Y) ((how many) person XlI)).
(2) (SIZEOF(SETX 'XI 'Y(TESTFCT XI (EMPLOY Y
1977))))

TESTFCT would trigger extraction of names from the data
base, SETX would create a set of these names, and SIZEOF
would determine the cardinality of that set. So far, this is
simple enough and no difficulty arises. The first query sys-
tem we constructed had a small data base of business statis-
tics of large corporations, Plath(1973), Petrick(1973). Con-
sider in this context a question like "What were GE's 1970

earnings?". The underlying structure was something like (3),
where the semantic interpreter produced a LISP form of
roughly (4).

(3) (EQUAL (the X5 (GROSS GE X5 1970)) (some
amount X1) ).

(4) (SETX 'XI '(FORATLEAST 1 'X7 (SETX X5
(TESTFCT X5 (GROSS GE 1970)) (EQUAL X7 Xl))))
FORATLEAST implements the default quantifier, and
TESTFCT finds GE's gross income. This data base also

contained the total, number of employees for each company.
If we were to ask

(5) How many employees does GE have?

the system would produce an underlying structure related to
(1), leading to a retrieval program like (2). Unfortunately,
we need a retrieval program like (4), with "EMPLOYEE"
substituted for "GROSS". We could of course modify the
SIZEOF function to be sensitive to the data field it dominates
and return the set rather than the cardinality of the set in
appropriate cases, but this is aesthetically unattractive
(although this is in fact what we did in our very first system).
We could also modify our translation equations and semantic
interpreter so as to be sensitive to this situation. While this
might be satisfactory in one or two cases, the number of
special cases can become very large.

In our present application, which is an English query
system for the planning files of a small city near our labora-

Natural

Language-10:
192.

tory, there are many more situations of this kind. One can

ask

(6) In what zone/planning area/ census tract/ etc., is parcel
5 located?

For each of these questions, the underlying structure has a
top level verb of "LOCATED", where the translator would
prefer "ZONE" or "PLANNING AREA" etc. Again, one
could make the LOCATED function sensitive to its argu-
ments, or insert the appropriate equations into the translator,
but the complexity of either solution is much greater than
before.

Transformational grammars customarily have two sets of
rules, cyclic rules, which apply successively to each level of
embedding, and postcyclic rules, which apply globally to the
entire sentence. Our grammar has an additional set of rules,
called string transformations, Plath (1974), which apply to
strings of lexical trees. The transformational parsing pro-
gram calls each of these sets of rules separately. Since the
parser is basically a tree processor, it can be applied, via an
additional set of rules, to underlying structures like those for
(5) and (6), and modify the structures in such a way that the
semantic interpreter can produce correct code without data
base specific modifications. In the case of (5), the output of
the new processing phase, called the precycle, is a structure
like (3) instead of a structure like (1), with a data identifica-
tion of "EMPLOYEE" rather than "GROSS". At the cost of
an additional call to the transformational parser, we have
insulated both the semantic interpreter and the data base
functions from the organization of the data base, confining
the necessary modifications to a single table of rules. We
have not yet found a class of structural changes we wished to
make because of the data base which required more than one
rule. Therefore, the cost of writing new rules has been much
less than the cost of generating new programs for these spe-
cial cases would have been.

While | am sure other system developers are able to
solve this general problem, as they must in order to proceed
in their work, we have nonetheless been pleased to note that
our decision to use a transformational approach on linguistic
grounds has had additional benefits on practical grounds.

References:
Petrick, Stanley R. 1973. Semantic Interpretation in the
REQUEST System. IBM Research Report RC 4457, IBM

Corp., Yorktown His., NY.

Petrick, Stanley R. 1976. On Natural Language Based Com-
puter Systems. |IBM Journal of Research and Development,

vol. 20, No. 4, pp. 314-325. July, 1976.
Plath, Warren J. 1973. Transformational Grammar and
Transformational Parsing in the REQUEST System. IBM

Research Report RC 4396, IBM Corp., Yorktown Hts., NY.

Plath, Warren J. 1974. String Transformations in the RE-
QUEST System. American Journal of Computational Lin-
guistics, Microfiche 8, 1974.

Woods, William A. 1975. Comment on a paper by Petrick, in
Directions in Artificial Intelligence, R. Grishman, ed., New
York University, New York, 1975.

Damerau



