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Abs t rac t 
In this paper, we concentrate on the expressive 
power of hierarchical structures in neural net­
works. Recently, the so-called SplitNet model 
was introduced. It develops a dynamic network 
structure based on growing and spl i t t ing Koho-
nen chains and it belongs to the class of topol­
ogy preserving networks. We briefly introduce 
the basics of this model and explain the dif­
ferent sources of information bui l t up during 
the training phase, namely the neuron distr i­
but ion, the final topology of the network, and 
the emerging hierarchical structure. In contrast 
to most other neural models in which the struc­
ture is only a means to get desired results, in 
SplitNet the structure itself is part of the aim. 
Our focus then lies on the interpretation of the 
hierarchy produced by the training algorithm 
and we relate our findings to a common data 
analysis method, the hierarchical cluster anal­
ysis. We il lustrate the results of network appli­
cation to a real medical diagnosis and monitor­
ing task in the domain of nerve lesions of the 
human hand. 

1 I n t r o d u c t i o n 
Existing approaches to hierarchical clustering and clas­
sification neglect the spatial relations of clusters or par­
t ia l solution spaces. A particular class of neural network 
models has the potential to overcome this problem. Re­
garding the mapping f rom the input space onto the space 
spanned by the neighborhood relations of the neurons in 
the network, the property of certain neural network mod­
els to keep track of neighborhood relationships of clus­
ters of data even in cases of reduction of dimensionality 
is called topology preservation. The degree of topology 
preservation can be determined by the observation, how 
well neighborhood relationships in one space are pre­
served by the mapping onto the other space. Thus, one 
question is: for two input vectors that are close in input 
space, are their best matching units close1 in the network 

1 As different input vectors may be mapped onto the same 
neuron, in this informal explanation, the closeness of neurons 

topology? The other question is: for two neurons that 
are neighbors in the network topology, are their associ­
ated weight vectors close in the input space? These ques­
tions led to the development of the topographic function 
[Vi l lmann et al., 1996], that effectively quantifies the 
topology preservation in topographic maps. We call lo­
cations, where those maps are not continuous topological 
defects. Topology preserving models are, among others, 
the Self-Organizing Map (SOM) [Kohonen, 1990], the 
Growing Cell Structures (GCS) [Fritzke, 1993] and the 
Topology Representing Network (TRN) [Martinetz and 
Schulten, 1994] as well as several descandants of these 
examples. But all those models lack the abil i ty of h i ­
erarchically structuring the training set. Depending on 
the reduction of dimensionality performed by the mod­
els, there is a principal difference in degree of topology 
preservation each model can achieve. If the dimension of 
the network structure is l imi ted, as it is the case for the 
SOM and the GCS, the real dimensionality of the data 
space may necessarily invoke topological defects. 

The SplitNet model for the first t ime succeeded in de­
veloping a hierarchical structure over the training set. It 
is an unsupervised learning method and in some sense 
comparable to the hierarchical cluster analysis (see e.g. 
[Duda and Hart, 1973]). For static models, like e.g. 
the Self-Organizing Map, the task of the network ap­
plication determines the desired interpretabil i ty of the 
network and thus controls such parameters of network 
design as number and connectivity of neurons. In dy­
namically growing networks, the approach is necessarily 
different. The incremental construction of the network 
up to its final size and topology is in general controlled 
by specific performance criteria. The training result is 
a network, where not only the weights contain relevant 
information. Addit ional ly, the size of the network, the 
distr ibution of neurons and the emerged connectivity in­
side the network impl ic i t ly encode information on the 
trained sample set. Compared to the above-mentioned 
topology preserving models, the tree-structured organi­
zation of topologically connected parts of the SplitNet 
network adds a completely new dimension to the inter­
pretabil i ty of the network model. The hierarchy offers 

includes also the identity of those neurons. 
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structured knowledge on various levels of abstraction and 
generalization as well as optimized access to samples of 
the training population. 

The rest of the paper is organized as follows. In the 
next section, we wi l l outline the basic methods related 
to the neural model used in our approach. Section 3 
wi l l present the principle of the SplitNet model and in 
Sec. 4 the role of the emerging hierarchical structure is 
explained. We then present results of the application 
of the SplitNet model in the medical domain of finger 
movement pattern analysis. A summary and final re­
marks wi l l conclude the paper. 

2 Rela ted W o r k 
The hierarchical cluster analysis, either the divisive or 
the agglomerative approaches, are methods that pro­
gressively split or l ink clusters of data. The result of 
the analysis can be visualized as a dendrogram (see Fig. 
1), which is a two-dimensional tree structure that shows 
the order of linkage (for the agglomerative case) and the 
distance or similar i ty at which this linkage of clusters 
was performed. Thus, this method is able to display the 
clustering of data, whereby the result depends on the 
distance measure that determines the closeness of clus­
ters and/or samples. Specific variants of agglomerative 
versions of the hierarchical cluster analysis are e.g. the 
single linkage and complete linkage methods, which min­
imize the min imum or maximum distance of cluster ele­
ments, respectively, during each merger of two clusters. 
For the comparison intended in this paper (cf. Sec. 5), we 
wi l l use the centroid method, which selects those clusters 
wi th the min imum distance between their means. 
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Figure 1: Example of a dendrogram and the distance 
information available for each linkage level 

Because of the explicit distance information contained 
in the dendrogram for each linkage of clusters, hierarchi­
cal clustering is a flexible way of detecting the resulting 

number of clusters given a certain threshold value. How­
ever, it is not possible to reason f rom the real spatial 
relationship of the observed pattern. There is no simi­
larity information other than the one for linked clusters. 
Similar statements are true of course for divisive meth­
ods. So the hierarchical clustering methods are useful 
tools for a preliminary analysis of the data, but they do 
not provide additional ways for explanation of the clus­
tering results and do not enable reasoning on alternative 
solutions based on neighborhood observations. 

Such inspection of neighboring clusters and samples 
can be performed by topology preserving networks. As 
indicated above, several models like the GCS or the T R N 
already exist for topology preserving representation of a 
training set. The Growing Cell Structures (GCS) are 
a dynamic vector quantization model. Different crite­
ria, e.g. the quantization error, determine the insertion 
position of a new neuron. Removal strategies yield an 
adaptive quantizer that is superior to the original SOM, 
but the GCS model also uses an a prior i specified di­
mensionality (through the choice of simplices) and thus 
is prone to the appearance of topological defects for high 
dimensional data spaces. The T R N algori thm also ap-
proximates the distribution of input data and constructs 
topology preserving connections between its neurons. In 
the l imi t , it is able to find the Delaunay tr iangulat ion of 
a data set, thus it generates, by virtue of not being fixed 
to a given dimensionality, a nearly perfectly topology 
preserving map. But both neural models only provide 
data analysis on a flat level. They cannot provide views 
on the data at different granularities, and thus lack the 
advantages of methods like the hierarchical cluster anal­
ysis. 

3 The Sp l i tNet M o d e l 
SplitNet is a topology preserving, dynamically growing 
model for unsupervised learning and hierarchical struc­
turing of data [Rahmel, 1996b]. Starting w i th a single, 
small Kohonen chain [Kohonen, 1990], localized inser­
tion and deletion criteria enable an efficient quantiza­
tion of the data space. The hierarchy in the architecture 
grows, if one of the following spl i t t ing criteria is satisfied: 

• detection of topological defects 

• deletion of neurons by an aging mechanism 

• significant local variances in quantization errors or 

• significant local variances in edge lengths. 

Those criteria are checked several times during progress 
of training. If a criterion is satisfied, the affected chain is 
split into two or more subchains which are added to the 
network at one level lower in the hierarchy. The node 
in the hierarchy that formerly represented the unsplit 
chain now serves as a generalized description and access 
structure for the new son nodes. Figure 2 illustrates this 
basic mechanism. If a topological defect is found (e.g. 
between neurons 1 and 7, which are close in input space 
but distant in the chain of neurons), the chain is split and 
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Figure 2: Example of spl i t t ing a chain because of a topo­
logical defect-
nodes representing the fragments are added as descen­
dants to the tree. Path decisions in the so constructed 
hierarchy wi l l be made according to the mean of the 
weight vectors of the neurons in the chain, therefore the 
mean is also indicated in the figure. The topology pre­
serving construction of the network structure provides 
local neighborhood information that is necessary for in­
cremental retrieval of nearest neighbor to a given input 
vector. The dashed lines in Fig. 2 indicate this type 
of knowledge. The neighborhood relations are kept as 
lateral connections defining the topology of the network 
space. They are responsible for the high degree of topol­
ogy preservation in SplitNet and enable a fast and in­
cremental search for a set of nearest neighbors. A more 
rigorous and exhaustive treatment of these aspects and 
retrieval results can be found in [Rahmel and Vi l lmann, 
1996]. The purpose of such a set of nearest neighbors is 
e.g. to serve as the basis for the k-nearest-neighbor rule 
in decision making processes (cf. Sec. 5). 

Since unsupervised learning methods provide no direct 
classification, the training result has to be interpreted in 
the context given by the training data. For the SplitNet 
model, we observe three containers of knowledge that 
can be used for the tasks in applications like the one 
described in this paper: 
N e u r o n d i s t r i b u t i o n : The insertion criterion deter­

mines the error function to be minimized. Quan­
tization of the data set allows local estimation of 
sample density. 

T o p o l o g y : The connections between neighboring neu­
rons provide information on where to find simi­
lar cases. Measuring topological defects yields the 
search depth for incremental retrieval of nearest 
neighbors to a given query. 

H i e r a r c h y : The hierarchical structure of the network 
contains different levels of generalization and ab­
straction. It allows a fast tree search for best 
matches and insightful visualization of the data 
structure for the domain expert. 

The ut i l i ty of the neuron distr ibution is comparable 
to reference vector placement in quantization algorithms 
[Gray, 1984]. The neuron positions thus minimize the 
average reconstruction error for all elements of the data 
set. Interpretation of the network topology is described 
e.g. in [Rahmel, 1996a]. It can be shown that Split-
Net produces networks wi th only small topological de­
fects, indicated by low values of the topographic function 
[Vil lmann et ai, 1996]. This specific property l imits the 
search effort for procedures like the probing algorithm 
[Lampinnen and Oja, 1989], which conquers local neigh­
borhoods of neurons in order to find a better match to a 
given input. In the following, we il lustrate the semantics 
of the hierarchical structure developed by methods like 
SplitNet. 

4 In te rp re ta t ion of H ierarchy 
Hierarchical organizations offer additional properties to 
make use of in data analysis and structure ut i l izat ion. 
One rather general aspect is the fact that a hierarchical 
structure - like any search tree - provides fast access to 
the terminal nodes. For neural networks like SplitNet, 
this results in accelerated training runs since the search 
for the best matching unit is supported by the hierar­
chical network structure. This determination of the best 
match can be summarized as follows: 

• tree search for a candidate unit using the means of 
chain vectors for descending the hierarchy, and then 

• local search through topological connections for a 
possibly better match. 

The local search costs additional t ime, but since it 
is strictly local and depending on the degree of topol­
ogy preservation in the network, it could demonstrated 
that the improved topology preservation of the SplitNet 
model considerably increased the speed of best match­
ing unit access [Rahmel, 1997]. In addit ion, the larger 
the network, the less the influence of the additional local 
search procedure in comparison to the savings due to the 
hierarchical arrangement. 

The hierarchies produced by classification or decision 
trees [Breiman et a/., 1984] [Quinlan, 1993] yield sim­
ple, crisp, and explicit tests as path decisions in nodes 
at the expense of flexibility of the decision regions. The 
orientation of hyperplanes generated by those tests is 
l imited to the dimensionality of the respective test. Un­
fortunately, higher dimensionality of the test yields both 
higher flexibility and massively growing computational 
effort for determination of opt imal tests. Therefore, in 
practical applications, tests are often one- or two- di­
mensional and the corresponding hyperplanes separat­
ing subspaces of the sample space are orthogonal to the 
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coordinate axes or depending on only two of the possi­
ble vector components. In contrast to this, the SplitNet 
structure offers impl ic i t tests that cover the whole infor­
mation contained in the description of a sample. The 
decision regions of SplitNet approximate the Voronoi re­
gions given by the sample population and thus minimize 
quantization errors imposed by generalization inside the 
regions. 

Classification or decision trees select the tests for path 
decisions according to the gain criterion for classification 
of samples. In an unsupervised setting where class in­
formation is not available, efficient sample localization 
plays the most important role. In order to minimize the 
search effort, we need a test that maximizes the infor­
mation about the location of the nearest sample. The 
Kohonen model provides a solution for this task. As 
demonstrated in [Ritter et a/., 1992], the weight adapta­
tion of the algorithm leads to a discrete approximation 
of principal curves by Kohonen chains. If we divide the 
sample population according to the placement of neurons 
and recursively repeat this subset construction, we get a 
hierarchic structure that on every level optimizes the in­
formation on sample locations. Thus, for an average test 
sample, we have an efficient access to the best match of 
the training population. In this respect, the tree is inter-
pretable as a decision tree, regarding the optimization of 
spatial information, but st i l l trainable and adpatable to 
slight changes in the training data set. It thus combines 
interpretabil i ty and flexibil ity of symbolic and connec-
tionist machine learning methods, respectively. 

The interpretation of a hierarchical structure like the 
one generated by SplitNet combines the knowledge on 
the above-mentioned property of the Kohonen algorithm 
wi th the spl i t t ing reasons of the SplitNet model, which 
deviate from this principle. Path decisions in the Split-
Net tree have definite semantics to be used when de­
scending the tree and relating accessed clusters wi th oth­
ers that are reachable through the topology of the net­
work. 

5 Diagnosis and M o n i t o r i n g of Ulnar is 
lesions 

We now briefly present an application of the SplitNet 
model in the domain of nerve lesions of the human hand. 
We wi l l outline the general problem and describe the 
results obtained by using the hierarchical neural model. 

The human hand is provided with the radial, median 
and ulnar nerve. The ulnar nerve provides sensory func­
tion for the small and ring finger and innervates the in­
trinsic muscles of the hand. These muscles are crucial in 
balancing and coordinating the flexor and extensor mus­
cles, rendering possible fine movement such as grip and 
pinch. Whi le assessing sensory function is feasible, ob­
jective analysis of motor function is quite difficult. Clin­
ical investigation includes grip force measurement and 
recording of active and passive range of motion. Besides 
these factors, ulnar nerve dysfunction causes changes in 
coordination of the movement which cannot be measured 

by instruments. 
In contrast to a normal, physiological movement pat­

tern (Fig. 3(a)), the dynamic disorder ' rol l ing' describes 
the pathological flexion of the finger. This movement re­
sembles the rolling of a carpet (Fig. 3(b)). As an effect, 
patients are not able to grasp an object because their 
fingers push it out of the palm. The dynamic disorder 
'clawing' describes the hyperextension of the MP jo int 
with flexion of the PIP and DIP jo in t 2 while the fin­
ger is in resting position (Fig. 3(c)). These descriptions 
are based on the experience of the examiner. Changes 
in quality and especially improvement of fine motor ac­
tivities after nerve repair are difficult to detect and to 
quantify. If nerve repair fails, there are different opera­
tions to rebuild the movement pattern. In these cases, 
the outcome of surgery also cannot be quantified. Unt i l 
now, there was no convenient measurement system to 
distinguish finger movement patterns. 

Figure 3: Different forms of finger movement pattern: 
(a) normal, physiological movement, (b) rol l ing, and (c) 
clawing (see text). Each picture shows nine steps of f in­
ger movement during one cycle of closing (black lines) 
and opening (gray lines) the fist. 

Based on kinematic research we established a mea­
surement system to get real-time data of human finger 
movement. Attempts to analyze these data wi th clas­
sical mathematical methods like discriminant analysis 
failed to distinguish between normal and pathological 
movement. Statistical clustering provides a good first 
insight into the structuring of the data but is not able 
to support the specific needs in this application like, for 
example, retrieval of samples and their comparison to a 
group of similar data, as it is required for diagnostic ap­
plications. For demonstration purposes, figure 4 shows 
an example of a tree structure generated wi th a small 
fraction of the available data. Despite the fact that our 
preprocessing generates high-dimensional training vec­
tors, we used no further dimension reduction method. 
The reason is the necessity to display the hierarchy with 
the neuron weights retranslated into finger positions. By 
this, physicians can evaluate the position of a newly en­
countered data vector in the tree. In Fig. 4, the upper 
part of the tree contains roughly the patterns for 'claw­
ing' , while the bottom part corresponds to physiological 

2The MP, PIP and DIP joints are the three finger joints 
ordered from the base joint between hand and finger to the 
tip. 
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Figure 4: Hierarchical representations generated by SplitNet. The retranslation of neuron weights allows the display 
of interpretable finger movements in the learned hierarchical arrangement. 

movement and 'rol l ing'. 
Since we use unsupervised learning and therefore pro­

vide no class information for the training pattern, the re­
sulting tree is obviously not a classification tree. The ful l 
information is here contained in the hierarchical struc­
ture a n d the topological connections of the nodes (which 
are not shown in the figure). Pattern # 4, the only 
'clawing'-data in the lower subtree, is an example of the 
case that the division of the data space by the path de­
cisions of the tree is suboptimal wi th respect to path 
decisions alone. Presentation of an input vector that 
closely matches the vector corresponding to pattern # 4 
would cause the tree search (based on the vector means) 
to descend into the upper half of the tree in Fig. 4. Fur­
ther path decisions would then yield pattern #14 as best 
match candidate. But the topological information that 
is accessible for the interpretation component of the net­
work wi l l show that this pattern is connected to pattern 
#4 in the lower subtree and local, topological search wi l l 
identify the correct best match. 

Similarly, further analysis of branches and subtrees 
reveals the ful l organization of the hierarchy. The se­
quence of generalizing non-terminal nodes supports the 
physician in understanding relative positions of different 
patient vectors. At each non-terminal node, the rea­
son for branching - outlier spl i t t ing, topological defect, 
etc. - is accessible, so a reasonable interpretation of the 
emerging hierarchy, supported by the local topological 
connections (not shown in the figure), is rendered feasi­
ble. 

We currently have more than 600 pattern of 55 pa­
tients wi th different forms of lesions and at various stages 
of motion recovery. Healing progress as well as success of 

surgery can be monitored in our network that is trained 
wi th all available data. A sequence of pattern repre­
senting the recovery process of a patient can be mapped 
onto the ful ly trained network. The interpretation com­
ponent provides the physician wi th comparable cases for 
each pattern and so, by relating current data to previ­
ous cases, an evaluation of the actual healing process is 
possible. 

A comparison of the results obtained by SplitNet 
with those of a hierarchical cluster analysis clarifies the 
strength of the neural model. We performed a run of the 
clustering process and examined a subgraph of the den­
drogram with about as many terminal nodes as the Split-
Net tree described above. The result was not surprising. 
The clustering produced nearly the same groups of data 
represented by leaf nodes, thus supporting the clustering 
abilities of the SplitNet model. However, despite the fact 
that distance information is available for the merging 
level of two clusters, interpretation of the dendrogram 
from a medical point of view was possible only in a very 
l imited way. Whereas the neuron chains representing 
the terminal nodes in SplitNet arrange themselves in a 
direction that best reflects the largest variation in the 
associated movement pattern (the intrinsic property of 
the underlying Kohonen model), such information is not 
available in the cluster analysis. Moreover, the dendro-
gram provides information on the order of the cluster 
linkages, yet it does not contain explicit or impl ic i t in­
formation on the spatial relationships of clusters. This 
is a crucial property for a reliable diagnosis of new cases 
which are not contained in the center of existing clus­
ters. In order to compare those wi th nearest neighbors, 
reliable information on cluster connectivity is necessary. 
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The lateral connections between neurons in the SplitNet 
model facil itate reasoning for class assignment based on 
neighborhood considerations. We can use the retrieval 
properties of the topology preserving network structure 
for the enumeration of the nearest neighbors and appli­
cation of the k-nearest-neighbor rule [Duda and Hart, 
1973] yields a major i ty vote, if training samples can be 
associated wi th classification information. 

6 Summary and Out look 
We briefly presented a recent neural network model 
which differs from existing models in the hierarchical 
structure that it creates by the training algorithm. The 
resulting network provides different sources of knowledge 
for network interpretation and we focused our discussion 
on the use of the hierarchy. We illustrated properties 
and advantages of the flexible tree structure. The ap­
plicabil i ty of the network model to real world tasks is 
shown with the example of a diagnosis system for ulnar 
nerve lesions. Our approach for the first t ime applies 
pattern recognition by a neural net approach to human 
finger movement. Besides simple clustering abilities, the 
applied SplitNet model provides support for the inter­
pretation of both the learning processes which have oc­
curred and the emerged hierarchical structure. Thus, in 
our case, interpretation of the images, which are retrans-
lations of neuron weights into the semantics of training 
vectors, enhances our knowledge of the finger movement 
pattern. 

So far, from the medical point of view, we do not know 
if we portray the whole spectrum of ulnar nerve dys­
function. More data have to be recorded and our aim is 
to bui ld up a neural net containing all types of normal 
and pathological movement. Then we are able to repre­
sent all ulnar nerve lesions by recording finger movement 
and classify the new movement pattern by observing the 
mapping performed by the neural net onto a certain lo­
cation in the tree, for which clinical diagnosis is already 
accessible. 
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