Equational Reasoning using AC Constraints

David A. Plaisted and Yunshan Zhu
Computer Science Department
University of North Carolina
Chapel Hill, NC 27599-3175
{plaisted,zhu}@cs.unc.edu
Fax: (919)962-1799

Abstract

Unfailing completion is a commonly used tech-
nique for equational reasoning. For equational
problems with associative and commutative
functions, unfailing completion often generates
a large number of rewrite rules. By compar-
ing it with a ground completion procedure,
we show that many of the rewrite rules gen-
erated are redundant. A set of consistency
constraints is formulated to detect redundant
rewrite rules. We propose a new completion
algorithm, consistent unfailing completion, in
which only consistent rewrite rules are used for
critical pair generation and rewriting. Our ap-
proach does not need to use flattened terms.
Thus it avoids the double exponential worst
case complexity of AC unification. It also al-
lows the use of more flexible termination order-
ings. We present some sufficient conditions for
detecting inconsistent rewrite rules. The pro-
posed algorithm is implemented in PROLOG.

1 Introduction

Knuth-Bendix completion [Knuth and Bendix, 1970] and
its extensions [Bachmair et a/., 1989] have been widely
used for equational reasoning. One of the main bot-
tlenecks of completion-based inference strategies is the
large number of critical pairs generated. This is particu-
larly evident when dealing with equational problems in-
volving associative and commutative functions, i.e. AC
equational problems. In this paper, we present a tech-
nique for reducing redundant equational inferences using
constraints.

AC equational problems represent an important class
of problems in theorem proving. Many mathematical
functions of interest are associative and commutative.
For example, the union and intersection operations in
set theory and the addition operations in ring structures
are all associative and commutative. Furthermore, addi-
tion and multiplication in arithmetic are both AC. Some
form of AC equational reasoning is necessary if a term
rewriting system is used to perform integer arithmetic.

108 AUTOMATED REASONING

AC equational reasoning is often difficult. One of the
most recognized recent successes of automated reason-
ing, perhaps of Al in general, is the solution of the Rob-
bins Problem. The Robbins Problem is in fact formu-
lated as an equational problem with AC functions [Mc-
Cune, 1996]. Most term rewriting systems do inferences
by generating rewrite rules using Knuth-Bendix comple-
tion or unfailing completion. Associativity axioms and
commutativity axioms often cause an explosion of new
rewrite rules in the completion process. When over-
lapped with the AC axioms, an existing rewrite rule
can generate an exponential nhumber of AC equivalent
rewrite rules. Since commutativity axioms cannot be
oriented in any termination ordering, many of these new
rewrite rules generated from the AC axioms cannot be
simplified.

Special completion procedures are developed to han-
dle AC equational problems [Lankford and Ballantyne,
1977; Peterson and Stickel, 1981]. Most of the ap-
proaches in the literature use flattened terms. For exam-
ple, +(a,+(6,c)) is represented as +(a,b,c), and terms
+(a,c, b)and +(a,b, c) are considered identical. A flat-
tened term represents all terms equivalent up to the
AC axioms. Since flattening breaks the original term
structure, special unification techniques are needed. AC
unification algorithms [Stickel, 1981; Domenjoud, 1991;
Boudet et a/., 1996] are developed to compute all possible
most general unifiers of two terms up to associativity and
commutativity axioms. Special AC termination order-
ings are also needed to show termination of AC rewriting
systems. Many commonly used orderings, such as recur-
sive path ordering and lexicographic path ordering, are
no longer well founded when flattened terms are used.
Several AC termination ordering have been devised
[Dershowitz et a/., 1983; Bachmair and Plaisted, 1985;
Kapur et a/., 1990].

We study the problem of AC equational reasoning with
a different approach. We propose a procedure called
consistent unfailing completion in which only consistent
rules and equations are used for critical pair generation
and rewriting. A consistent unfailing completion proce-
dure can be regarded as the lifted version of a ground
completion procedure. In a standard unfailing comple-
tion procedure, some rewrite rules do not correspond to

any rewrite rules in the ground procedure. We call such
rules inconsistent. In consistent unfailing completion,
inconsistent rules are replaced by its consistent permu-
tations. For example, 2 « y # 2 — z is inconsistent with
respect to the lexicographic ordering. This is because
dj # @) # az, an arbitrary instance of z # y » z, is either
simplified to a; # a; » a3 or az *a; » a; depending on the
ordering of a; and az. y*zsz S zand r+x ey — z are
the only two consistent permutations of z*y*z 4 z. We
derive two sufficient conditions for detecting inconsistent
rules. Consistency checking based on these conditions
greatly reduces the number of critical pairs generated.
In the examples that we tested, it shows a factor of 2
to 4 reduction. Qur implementation of the algorithm
is able to solve all six of equality benchmark problems
proposed by [Lusk and Overbeek, 1985).

Consistent unfailing completion does not require the
use of flattened terms. AC unification is therefore not
needed. Detecting inconsistency takes quadratic time
and generating consistent permutations takes single ex-
ponential time. Thus the worse case complexity of an
inference rule in consistent unfailing completion is single
exponential. The worse case complexity for AC unifi-
cation is double exponential. A special AC termination
ordering is not needed either. Consistent unfailing com-
pletion works for most of the commonly used orderings,
such as recursive path ordering, lexicographic path or-
dering, etc. In fact, we have a built-in ordering in cur
implementation, and all of our examples are solved us-
ing the same ordering. The built-in ordeting enables us
to fully automate the equational reasoning process and
incorporate it in a general first-order theorem prover.

The rest of the paper is organized as follows. We pro-
vide some background in the next section. We then
present the consistent unfailing completion algorithm
and show its completeness. We then show how the al-
gorithm can be refined and implemented. We give some
test results in the end.

2 Background

In this section, we define some relevant concepts. For
surveys on equational reasoning, see [Plaisted, 1993;
Dershowitz and Jouannaud, 1990; Klop, 1992]. For in-
troductions to the area of theorem proving, see [Chang
and Lee, 1973; Loveland, 1978, Wos et al., 1984]. We
follow the conventions of [Plaisted, 1993] in this paper.

We use the standard definitions of term, substitution,
instance, the most general unifier etc. Readers may con-
sult the aforementioned references for more details. We
use f,¢.h,...as function symbols, a,b,¢c, ... as constant
symbols, and z,y, z, ... as variables.

An equation is an expression of the form s = ¢ where
s and t are terms. An equational system is a set of
equations. Assume E is an equational system, we use
E = s = t to represent that 3 = t is a logical conse-
quence of £. The problem of equational reasoning can
be reduced to the problem of first-order theorem prov-
ing. Els=tiff {(EUAg} L s =1t, where A is the

set of equality axioms and L is any sound and complete,
first-order strategy. In practice, term rewriting based
approaches are often much more efficient.

A rewrite rule is written as » — s, where » and s
are terms. A rule r — # indicates that an instance
of r can be replaced by an instance of s, but not vice
versa. r <+ sif r — 8 or 8 = r. Sometimes r — s
is also rewritten as & ¢ r. A term rewriting system R
is a set of rewrite rules. We use —3p to represent the
rewrite relation. For example, a term rewriting system
Ris {f(z}) = b,9(b) 5 a}. Then g(f(z)) —<r g(b).
We define —+}, as the reflexive transitive closure of — 5.
Thus g(f(z)) -k a. We define & as the reflexive
transitive closure of 4<+g. Suppose R is a term rewriting
system {ry — 81,...,7n —* 8n}, A= is defined as the
associated equational system {r, = s1,...,r, = 8,}.
By Birkhoff’s theorem {Birkhoﬂ', 1935], R= Er=siff
r &} 8. This essentially shows the soundness and com-
pleteness of equational reasoning based on term rewrit-
ing. However, the rewriting system is not yet satisfactory
for theorem proving purposes: to show r &+ s, rewrit-
ing has to be dore in both directions, and it is highly
non-deterministic and inefficient.

A term r is reducible if there is a term s such that
r — 5, otherwise r is irreducible. If r —* 5 and 2 is
irreducible then we call s a normal form of r. We write
r | 5 if there is a term u such that r 9* u and § —=* u.
We write r 1 s if there is a term u such that u =* r
and u =" 5. We say a rewriting system R is confluent
if for all terms r and s, » 1 8 implies r | 5. It can be
shown that if R is confluent and » &% s then r | s.
A rewriting system R is terminating if it has no infinite
rewriting sequence. If there exists a termination ordering
> such that for all rules ! = rin R, { > r, then R is
terminating. If R is confluent and terminating, r &g s
can be decided by rewriting r and # to normal forms and
compare the normal forms.

Definition 2.1 Suppose thatly — ry end i3 = ry are
two rewrite rules with no common varsables. Suppose u
is a non-variable subterm of §;, (if I} is a variable, u
may be a variable). Suppose u and I, are unifiable and
8 is the most general unifier. We call the pair (I;]u «
ra]f, M8) a critical pair for rules iy, — ry and {3 —
ro. Ii[u « ry] denotes the term obtained by replacing a
spectfied occurrence of the subterm u in ly with rq.

Theorem 2.2 Suppose a term rewriling system R is
terminating. R is confluent iff for all critical pairs (s,1)
in R, slt.

If a rewriting system is not confluent, an equiva-
lent rewriting system might be obtained by adding new
rewriting rules. Theorem 2.2 can be used to generate
such new rules. The idea is to add rule s 5t or s ¢~
to R while preserving termination for all critical pairs
s,1) in R. The algorithm was initially proposed in
Knuth and Bendix, 1970}, and is often calied Knuth-
Bendix completion, or sitnply, completion. Sometimes,
it is not possible to orient an equation, i.e. f{x,y) =

PLAISTED & ZHU 109

Jf(y, 2), in either direction while maintaining termina-
tion. Thus Knuth- Bendix completion is extended to
unfailing completion[Bachmair et al., 1989). In unfailing
completion, if a critical pair (s,t) can not be oriented
then it is added as an equation s = £, Equation s = ¢
may participate in further critical pair generation. It is
regarded as containing rules s — ¢t and { - #. However,
the use of eguation in rewriting is restricted : #8 can be
replaced by tf only if 58 > 18, where > is the termination
ordering.

We give names to a set of inference rules. We fol-
low the convention used in [Plaisted, 1993]. The rule
UCP{—, -+) is the operation of generating critical pairs
between two rewrite rules. If a critical pair can be ori-
ented, a new rewrite rule is added to the rewrite system;
otherwise, an equation is added. UCP stands for Un-
failing Critical Pair generation. Similarly, UCP(=,)
generates critical pairs between a rewrite rule and an
equation; {/CP(=,=) generates critical pairs between
two equations. Inference rule SIM PRI LE is the oper-
ation of simplifying a rewrite rule or an equation with
other existing rewrite rules or equations. For example, if
a rewriting system R contains { f(z) = z, f(b&) = f(a}},
the second rewrite rule can be simplified to b -+ a,
and thus R contains {f(z) — 2, b —» a} after rule
SIMPRULE isapplied. ER s=tiff EU{s #1'}
is unsatisfiable, where &' and ¢’ are skolemized terms of
s and ¢, respectively. Thus we may include {5’ # ¢'}
as an inequation in a rewriting system R and show a
confradiction can be derived from R. SIMPGOAL is
the operation of simplifying an inequation using existing
rewrite rules or equations. The rule CONTRA derives
FALSE when the inequation s # s is derived. In ap-
plying these inference rules, the concept of fairness is
needed. Fairness means that every henceforth possible
inference will eventually be performed.

Theorem 2.3 Fair unfailing completion starting from
a set of R of rules, eguations and ground inequation
and using the inference rule {UCP(—, =), UCP(=,-3),
UCP(=,=), SIMPRULE, SIMPGOAL, CONTRA)
will eventually generate FALSE if RS is unsatisfiable.

Theorem 2.3 show the completeness of an equational
reasoning strategy based on unfailing completion. We
will also use the fact that SIMPRULE is inessential to
the completeness of the strategy.

In this paper, we are concerned with equational sys-
tems that involve associative and comrnutative func-
tions, or AC functions. An AC function f satisfies the
following axioms {f(f(z,¥),2) = f(z, f(s, 2)}, f(z,4) =
fy.2)}

3 AC-Consistent Completion

In this section, we introduce the concept of consistency
for AC equational problems. We present a new com-
pletion algorithm in which only consistent rules can be
used for critical pair generation and simplification. We
call the new algorithm consistent unfailing completion.

110 AUTOMATED REASONING

We show the correspondence between a consistent un-
failing completion and a ground completion procedure.
The correspondence helps us in deriving the consistency
constraints and establishing the completeness proof of
the consistent unfailing completion algorithm.

Definition 3.1 Suppose that > is a termination order-
tng and > is total on ground terms. A ground term s
18 an AC minimal term if s is the minimal term of its
AC-equivalence class with respect to the ordering >. A
rewrite rule 8 — 1 is consistent if there exists an in-
stance sf — t8 such that both s# and t8 are AC minimal
terms, and that @ assigns distinct ground terms to dis-
tinct variables in s and t. The consistency of an eguation
{a critical patr) is similarly defined.

Example 3.2 In this ezample, we use the lexicographic
ordering as the termination ordering. We assume
f is an AC function and g is not an AC function.
Fla, f(b,c)) 15 an AC minimal term. f(f(a,b),c)
is not an AC minimal term, because f(f(a,d),c) >
F(a, f(b, c)) and they are AC eguivalent. We sometimes
say f{a, f(b,c)) is the AC minimal term of f{ f(a,b),).
The rewrite rule g(f(=, f(y,2))} — a is consistent,
g(f(a, f(b,c)) — a is a consistent instance of the rule.
Rewrite rule g(f(z,y)) — f(y,z) 15 not consistent,
neither are f(g9{z),9(y)) = f(w,z) and critical pair

{#(z,0), f(s,z)}.

Definition 3.3 Inference rule CUCP(—,—) is the op-
eration that generates critical pairs between two consis-
tent rewrite rules. The critical pairs generated are oni-
ented as rewrite rules or added as equations. CUCP(—
, =)} i3 the same as UCP(—, =) except that only con-
sistent rewrite rules are used for critical pair generation
in CUCP. CUCP(=,—=) and CUCP(=,=) are simi-
larly defined. We say the extended set of AC arioms is
the st {{(f(z,y),2) = f(z,[(3.2)), [(z.9) = f(y,7),
fe, f(y,2)) = fly. f(z,2))} for all AC functions f. In-
ference rule UC Py 13 the operation that generates crit-
ical pairs between a rule or an equalion and an equalion
from the eztended set of AC arioms.

Theorem 3.4 Fair consistent unfailing completion
starting from a set of R of rules, equations and ground
inequation and using the inference rule (CUCP{—, -3},
CUCP(=,), CUCP(=,=), UCPsp, SIMPGOAL,
CONTRA} will eventually generate FALSE if R= is
unsatisfiable.

Theorem 3.4 outlines the consistent unfailing comple-
tion procedure. The soundness of the procedure is ob-
vious, as each inference rule generates only logical con-
sequences. We show that consistent unfailing comple-
tion can be regarded as a lifted version of the ground
completion procedure outlined in Theorem 3.6, and thus
establish its comDleteness Droof.

Definition 3.5 Inference rule INST s the operation of
generating an instance of a rewrite rule or an equation
and orienting it as o new rewrilte rule. Inference rule
GC P{—+,) is the operation of generating critical pairs

between two ground rewrite rules and orienting them as
new rewrite rules. GSIMPAC s the operation of re-
placing a ground rewrite rule s —W» t by a new rewrite
rule s' -t where s' and t' are AC minimal terms of s
and t, respectively.

Theorem 3.6 Fair tnstance-based completion starting
Jfrom a set of R of rules, equations and ground inegua-
tion and using the inference rule {INST, GCP(—, =),
GSIMPyc, SIMPGOAL, CONTRA} will eventually
generate FALSE if RT is unsatisfiable.

Proor: If R= is unsatisfiable, by Herbrand's theo-
rem, there is a finite unsatisfiable set of instances RT
of R=. By the fairness assumption, all instances in the
set Ry will be generated by INST. As a consequence of
Theorem 2.3, {GCP(—, =), GSIM Pac, SIMPGOAL,
CONTRA} will eventually generate FALSE from the
set R} .

Remark 3.7 The consistent unfailing completion pro-
cedure in Theorem 3.4 is a lifted version of the ‘instance-
based completion procedure in Theorem 3.6.

We now give an example to show the effect of the
onsistency constraints.

Example 3.8 Consider a rewriting system with the fol-
lowing rules, {(z¥y)*2 2z (ysz), zry=yrz}. We
use an ordering in which the associativity ariom can be
oriented . We refer to the associativity ariom as H;,
and the commutativity ariom as R;.

Applying UCP(—,=) on R, and R,, equations (y+z)#*
z={(zxy)*xz and zx(zxy) = (z+y)*xz will be generated.
Applying rule SITMPRULE, they are simplified to Ra
yrx{zx2)=zx(yr2)and Ryzx{zey)=z*(y*z).
Applying UCP(=,=) and SIMPRULE on Rt and RS,
equation Rs z«(y* (z+ w)) = y* (x* (z +w)) will be
generated.

Now let’s consider the permutations of the variables on
each side of the equation Ry. In unfailing completion, all
such permutations, e.g. zx(y*{z+w)) = yx{z*x{w=*z}),
will eventually be generated from Ry and Ry. There are
24 such permutations up to the renaming of variables.
Stnce none of the permutations except x + (y» (¢ w)) =
z«(y*(z+w)) can be simplsfied, 23 equations will be added
to the rewriting system. Howeuver, none of the permuted
equations are consistent, and +{y* (zxw)) = 24 (y*(z»
1)) is an inatance of £ = z and can be deleted. Thus in
consistent unfailing completion, no permutations of the
equation Ry will be added to the rewriting system.

4 Refinements

In this section, we present some refinements of Theo-
rem 3.4. Theorem 4.2 outlines the refined consistent un-
failing completion algorithm. We then show how the
algorithm can be efficiently implemented.

Definition 4,1 Inference rule PERM is the operation
that generates all consistent AC equivalent rewrite rules

'one such ordering is defined in Definition 4.3.

(equations) of an existing rewrite rule (equation). Infer-
ence rule CUCP, is the operation that generates critical
pairs between a consistent rule or equation and the asso-
ciativity azioms {f(f(z,v), 7} = f(=, f(v, 2))}.

The inference rule PERM and CUC P4 combined are
equivalent to the rule UCP4¢ in Theorem 3.4, and they
are more efficient. SIMPRULE often greatly reduces
the number of rewrite rules and equations in a rewriting
system. SIMPRULE can be added to the consistent
unfailing completion procedure in Theorem 3.4 without
affecting its completeness. The proof ir.volves extend-
ing the instance-based completion procedure as in The-
orem 3.6 with a restricted version of SIMPRULE and
then lifting it to the nonground case.

Theorem 4.2 Fair consistent unfailing completion
starting from a set of R of rules, equations and ground
inequation and using the inference rule {CUCP(—
,—+), CUCP(=,=), CUCP(=,=), PERM, CUCP,,
SIMPRULE, SIMPGOAL, CONTRA} will eventu-
ally generate FALSE ¢f R™ is unsatisfiable.

We now define an ordering that’s used in our imple-
mentation.

Definition 4.3 We define size lericographic path or-
dering >,ipo on ground terms as follows. Suppose
s and t are ground terms, 8§ = f,(a1,...,0,) and
t = fi(by,...,5), and >; is the lericographic ordering.
8 >llpa t 'ﬁ
1} size(s) > size(t), or
£} size(s) = size(l) and f, > f;, or
3) size(s) = size(t), fo=fi, ax=be Vk from 1 to i -1,
and a; > aipo b.

size(s) is defined as the length of s written as a charac-
ter string(excluding commas and parentheses}. The size
lexicographic path ordering is extended to nonground
terms as follows, 5 >4, t iff V8 58 >,p, t8. It can be
difficult to order two nonground terms with respect to
>4ipo- In practice, we use sufficient conditions based on
special cases such as g(2) >,p. 2 and f(2, £) >.p. g{=).
1t can be showed that size lexicographic path ordering is
a termination ordering.

Definition 4.4 Suppose that [is an AC func-
tion, we call f(s1,89,...,8,) the flattened term of
F(51, f(82,...f(8n-1,8n),...)), where s; does not contain
f as a top level function symbol. Suppose that & and t
are subterms of an expression e, we say 3 AC-precedes t
in e, or 8 <<t, if the flattened term of e contains o sub-
term of the form f(...,s,...,t,..), where f is an AC
Sfunction.

We now describe two sufficient conditions for detecting
the inconsistency of rewrite rules(or equations).

Theorem 4.5 Suppose a size lezicographic path order-
ing <.ipo i85 used as the termination ordering. A rewrite
rule 8 -3 t is fnconsistent if

1) uy <u1po 82 and Uy << Uy

or 2} u; << up and ug << u,, where u; and uy are
sublerms of s and {, respectively.

PLAISTED & ZHU 111

Proor: For case 1): Equation 8 = ¢ contains
a subterm f{...,u2,...,%;,...). Since wy <upo w2,
f(...,tlg,...,ui,.. J8 >aipo f(...,ul,.. .,ug,...)ﬁ, for
all #. That is, no instances of f(...,ug,...,4;,...) can
be an AC minimal term. s — ¢ is thus inconsistent. The
proof for case 2) is similar.

The inference rule PERM generates all consistent
AC-equivalent rewrite rules or equations of an existing
rewrite rule or equation. It essentially invoives solving a
constraint satisfaction problems. The simplest solution
ia to enumerate and check. Namely, for each rewrite ruie
s — 1, all AC equivalent rules of 8 — ¢ are enumerated,
and then Theorem 4.5 is used to filter out the incon-
sistent rules. More specifically, to apply PERM on a
rewrite rule s = t, we flatten 8 = ¢, collect new rewrite
rules by permuting the arguments of AC functions in
s —+ 1, delete all inconsistent rules, and finally unflatten
the remaining rewrite rules in the collection. For a term
f{a1,...,a,) where f is an AC function, unflattening the
term generates f(ay, f(..., f(@n-1,a,))). To unflatien
s term or an expression, unflattening is done recursively
for all its subterms. For example, g(f(a, h(),z}) = c is
unflattened to g(f(a, f(h(}),2))) — ¢, assuming that f
is the only AC function. Note that flattened terms are
only used as an intermediate representation for detecting
incongistent rules, and they are not used in the rewrite
rules and equations of the rewriting system.

Theorem 4.5 provides only sufficient conditions for in-
consistency, and thus some inconsistent rules can also
be generated. More deliberate approaches based on con-
straint satisfaction might be able to compute the exact
set of consistent rules, and thus further reduce the num-
ber of critical paire and rewrite rules generated in the
completion procedure.

5 Test Examples

It is fairly straightforward to implement the consistent
unfailing completion algorithm. We implemented the
algorithm with several hundred lines of Prolog code. We
tested a number of pure equality problems. The results
are listed in Table 1.

E1-E6 is a set of benchmark problems for equality
proposed by [Lusk and Overbeek, 1985]. E3 and EG6 in-
volve AC functions. wos21 (equality version), RNG015-6,
RNG023-6 and RNG024-6 are problems from ring the-
ory, all four of them involve AC functions. For non-AC
problems, the procedure is same as unfailing completion.
For AC problems, we study the effect of consistency
checking by comparing the result from unfailing com-
pletion and consistent unfailing completion. Note that
consistency checking significantly reduces the number of
critical pairs generated, the number of rules kept and
the time needed to obtain a proof. Our implementation
serves the purpose of demonstrating the effect of consis-
tency checking. A state of the art equality prover can
solve most of the listed problems in tens of seconds[Mc-
Cune, 1990]. Efficient data structures can be used to
improve our current implementation.

112 AUTOMATED REASONING

Froblem without AC comstrainte with AC Constramis

[+] Hules ime [+}] Rules | Time
[561 1 a6 | 2.8 njin n/a nis
1wl L] ¥ nfs n/s LT
4 TORS0 | 401 01,1 nfe nia nie
5 3- 1 18550 1 119 (LX) % n/a n/s
5 A7) | 23970 | 360 95,0 193 4942
L] - - - >360000 | 824603 | 2590 Ao |
woedl 12288 | a4 193.0 7] | 4
RNGO1S-6 42443 236 A41.3 20337 L] 410.4
TRNG023-8 - - 18000 | 13788 | BE] X
RN GO34-8 - = >1B000_ | TSAisa | 846 "RV |

Table 1: Timing on a set of equality problems. Size lexi-
cographic path ordering is used for all problems. Column
"CPs" shows the total number of critical pair generated.
Column "Rules" shows the number of rewrite rules kept.
Time is measured in seconds on a SPARC-20. n/a means
that the problem has no AC functions. - means that
time out occurred.

It is particularly encouraging that we are able to prove
E6, which says a ring with x} = x is commutative.
The problem has a long history. Wos had the follow-
ing remarks on the problem, "if one succeeds in having
a reasoning program prove this theorem, and it can be
shown that the success is the result of a new technique,
then one has solid evidence of the potential value of the
new idea"[Wos, 1988]. Veroff obtained a proof of the
problem using AURA [Veroff, 1981]. However, the input
contained many additional clauses that facilitated the
proof. Stickel was the first to prove the problem with a
natural set of input equations [Stickel, 1984]. The proof
took over 14 hours. Zhang and Kapur could find a proof
in a few minutes using RRL [Zhang and Kapur, 1990].
Both [Stickel, 1984] and [Zhang and Kapur, 1990] used
approaches based on AC unifications. The use of the
cancellation law for additional group was important for
them to get the proof efficiently.

6 Discussion

In term rewriting systems with AC functions, a term
can have an exponential number of AC equivalent terms,
and a rewrite rule can generate an exponential number
of new rules when combined with AC axioms for critical
pairs generation. A common approach for avoiding the
combinatorial explosion is to represent all AC equivar
lence terms as a single term. Flattened terms are used
to represent terms equivalent up to associativity, and
terms with arguments permuted are considered identi-
cal. AC unification algorithm is used to unify two flat-
tened terms. Flattening breaks the well-foundedness of
most termination orderings. Special AC termination or-
derings are needed to handle flattened terms.

On the other hand, the combinatorial explosion oc-
curs only because all AC equivalent terms of a term are
kept in a rewriting system. If they are simplified to a
single normal form, the explosion will not occur. This
is exactly the case for ground completion procedures:
all ground AC equivalent terms can be rewritten to a
normal form using AC axioms when a total termination
ordering on ground terms is used. Our approach is based

on the observation that a nonground completion proce-
dure can be constructed by lifting a ground completion
procedure, and thus avoid much of the redundancy in
representing AC equivalent terms. Our approach does
not need a special AC unification. It does not need a
special AC termination ordering either. The latter fa-
cilitates the complete automation of the equational rea-
soning process. We used a single termination ordering
for all of our test examples. We were also able to use
the equational prover as a component in a general first
order theorem prover.

There are some previous works on reducing unneces-
sary equational inferences, both for AC equational prob-
lems and equational problems in general[Zhang and Ka-
pur, 1990; Bachmair et a/., 1992]. Most of them are fun-
damentally different from our approach. They reduce
the number of critical pairs generated by blocking out
certain positions for overlapping two rewrite rules. Some
of these works might be combined with our approach. It
would also be interesting to study the applicability of
our approach to other equational theories.

References

[Bachmair and Plaisted, 1985] L. Bachmair and D. Plaisted.
Termination orderings for associative-commutative rewrit-
ing systems. J. Symbolic Computation, 1:329-349, 1985.

[Bachmair et al., 1989] Leo Bachmair, N. Dershowitz, and
D. Plaisted. Completion without failure. In Hassan Ait-
Kaci and Maurice Nivat, editors, Resolution of Equations
in Algebraic Structures 2: Rewriting Techniques, pages 1-
30, New York, 1989. Academic Press.

[Bachmair et al., 1992]
L. Bachmair, H. Ganzinger, C. Lynch, and W. Snyder.
Basic paramodulation and basic strict superposition. In
Proceedings of the 11th International Conference on Auto-
mated Deduction, pages 462-476, 1992.

[Birkhoff, 1935] G. Birkhoff. On the structure of abstract
algebras. Proc. Cambridge Philos. Soc, 31:433-454, 1935.

[Boudet et al., 1996]
A. Boudet, E. Contejean, and C Marche. AC-complete
unification and its application to theorem proving. In Pro-
ceedings of the 7th International Conference on Rewriting
Techniques and Applications, pages 18-32, July 1996.

[Chang and Lee, 1973] C. Chang and R. Lee. Symbolic Logic
and Mechanical Theorem Proving. Academic Press, New
York, 1973.

[Dershowitz and Jouannaud, 1990] N. Dershowitz and J.-P.
Jouannaud. Rewrite systems. In J. van Leeuwen, ed-
itor, Handbook of Theoretical Computer Science. North-
Holland, Amsterdam, 1990.

[Dershowitz et al., 1983] Nachum Dershowitz, J. Hsiang,
N. Josephson, and David A. Plaisted. Associative-
commutative rewriting. In Proceedings of the Eighth Inter-
national Joint Conference on Artificial Intelligence, pages
940-944, August 1983.

[Domenjoud, 1991] E. Domenjoud. Ac-unification through
order-sorted acl-unification. In Proceedings of the 4th In-
ternational Conference on rewriting techniques and appli-
cations. Springer-Verlag, 1991.

[Kapur et al., 1990] D. Kapur, G. Sivakumar, and H. Zhang.
A new method for proving termination of ac-rewrite sys-
tems. In Proc. of Tenth Conference on Foundations of Soft-
ware Technology and Theoretical Computer Science, pages
133-148, December 1990. Springer Verlag LNCS 472.

[Klop, 1992] Jan Willem Klop. Term rewriting systems. In
S. Abramsky, D. M. Gabbay, and T. S. E. Maibaum, ed-
itors, Handbook of Logic in Computer Science, volume 2,
chapter 1, pages 1 - 117. Oxford University Press, Oxford,
1992.

[Knuth and Bendix, 1970] D.E. Knuth and P.B. Bendix.
Simple word problems in universal algebras. In Computa-
tional Problems in Abstract Algebra, pages 263-297. Perg-
amon, Oxford, U.K., 1970.

[Lankford and Ballantyne, 1977] D. Lankford and A.M. Bal-
lantyne. Decision problems for simple equational theo-
ries with commutative-associative axioms: Complete sets
of commutative-associative reductions. Technical Report
Memo ATP-39, Department of Mathematics and Com-
puter Science, University of Texas, Austin, TX, 1977.

[Loveland, 1978] D. Loveland. Automated Theorem Proving:
A Logical Basis. North-Holland, New York, 1978.

[Lusk and Overbeek, 1985] E. Lusk and R. Overbeek. Non-
horn problems. Journal of Automated Reasoning, 1:103-
114, 1985.

[McCune, 1990] William W. McCune. OTTER 2.0 Users
Guide. Argonne National Laboratory, Argonne, lllinois,
March 1990.

[McCune, 1996] W. McCune. Solution of the robbins prob-
lem, draft, 1996.

[Peterson and Stickel, 1981] G.E. Peterson and M.E. Stickel.
Complete sets of reductions for some equational theories.
J. Assoc. Comput. Mach., 28(2):233-264, 1981.

[Plaisted, 1993] D. Plaisted. Equational reasoning and term
rewriting systems. In D. Gabbay, C. Hogger, J. A. Robin-
son, and J. Siekmann, editors, Handbook of Logic in Artifi-
cial Intelligence and Logic Programming, volume 1, pages
273-364. Oxford University Press, 1993.

[Stickel, 1981] M.E. Stickel. A unification algorithm for
associative-commutative functions. Journal of the Asso-
ciation for Computing Machinery, 28:423-434, 1981.

[Stickel, 1984] M Stickel. A case study of theorem proving by
the knuth-bendix method:discovering that x> = x implies
ring commutativity. In Proceedings of the 7th International
Conference on Automated Deduction, pages 248-258, 1984.

[Veroff, 1981] R.L. Veroff. Canonicalization and demodula-
tion. Technical Report ANL-81-6, Argonne National Lab-
oratory, Argonne, IL, 1981.

[Wos et al., 1984] L. Wos, R. Overbeek, E. Lusk, and
J. Boyle. Automated Reasoning: Introduction and Appli-
cations. Prentice Hall, Englewood Cliffs, N.J., 1984.

[Wos, 1988] L. Wos. Automated Reasoning: S3 Basic Re-
search Problems. Prentice Hall, Englewood Cliffs, N.J.,
1988.

[Zhang and Kapur, 1990] H. Zhang and D. Kapur. Unneces-
sary inferences in associative-commutative completion pro-
cedures. Mathematical Systems Theory, 23:175-206, 1990.

PLAISTED & ZHU 113

