
Equational Reasoning using AC Constraints 
David A. Plaisted and Yunshan Zhu 

Computer Science Department 
University of North Carolina 
Chapel Hill, NC 27599-3175 
{plaisted,zhu}@cs.unc.edu 

Fax: (919)962-1799 

Abstract 
Unfailing completion is a commonly used tech­
nique for equational reasoning. For equational 
problems with associative and commutative 
functions, unfailing completion often generates 
a large number of rewrite rules. By compar­
ing it with a ground completion procedure, 
we show that many of the rewrite rules gen­
erated are redundant. A set of consistency 
constraints is formulated to detect redundant 
rewrite rules. We propose a new completion 
algorithm, consistent unfailing completion, in 
which only consistent rewrite rules are used for 
critical pair generation and rewriting. Our ap­
proach does not need to use flattened terms. 
Thus it avoids the double exponential worst 
case complexity of AC unification. It also al­
lows the use of more flexible termination order-
ings. We present some sufficient conditions for 
detecting inconsistent rewrite rules. The pro­
posed algorithm is implemented in PROLOG. 

1 Introduction 
Knuth-Bendix completion [Knuth and Bendix, 1970] and 
its extensions [Bachmair et a/., 1989] have been widely 
used for equational reasoning. One of the main bot­
tlenecks of completion-based inference strategies is the 
large number of critical pairs generated. This is particu­
larly evident when dealing with equational problems in­
volving associative and commutative functions, i.e. AC 
equational problems. In this paper, we present a tech­
nique for reducing redundant equational inferences using 
constraints. 

AC equational problems represent an important class 
of problems in theorem proving. Many mathematical 
functions of interest are associative and commutative. 
For example, the union and intersection operations in 
set theory and the addition operations in ring structures 
are all associative and commutative. Furthermore, addi­
tion and multiplication in arithmetic are both AC. Some 
form of AC equational reasoning is necessary if a term 
rewriting system is used to perform integer arithmetic. 

AC equational reasoning is often difficult. One of the 
most recognized recent successes of automated reason­
ing, perhaps of Al in general, is the solution of the Rob-
bins Problem. The Robbins Problem is in fact formu­
lated as an equational problem with AC functions [Mc-
Cune, 1996]. Most term rewriting systems do inferences 
by generating rewrite rules using Knuth-Bendix comple­
tion or unfailing completion. Associativity axioms and 
commutativity axioms often cause an explosion of new 
rewrite rules in the completion process. When over­
lapped with the AC axioms, an existing rewrite rule 
can generate an exponential number of AC equivalent 
rewrite rules. Since commutativity axioms cannot be 
oriented in any termination ordering, many of these new 
rewrite rules generated from the AC axioms cannot be 
simplified. 

Special completion procedures are developed to han­
dle AC equational problems [Lankford and Ballantyne, 
1977; Peterson and Stickel, 1981]. Most of the ap-
proaches in the literature use flattened terms. For exam­
ple, +(a,+(6,c)) is represented as +(a,b,c), and terms 
+(a,c, b) and +(a,b, c) are considered identical. A flat­
tened term represents all terms equivalent up to the 
AC axioms. Since flattening breaks the original term 
structure, special unification techniques are needed. AC 
unification algorithms [Stickel, 1981; Domenjoud, 1991; 
Boudet et a/., 1996] are developed to compute all possible 
most general unifiers of two terms up to associativity and 
commutativity axioms. Special AC termination order-
ings are also needed to show termination of AC rewriting 
systems. Many commonly used orderings, such as recur­
sive path ordering and lexicographic path ordering, are 
no longer well founded when flattened terms are used. 
Several AC termination ordering have been devised 
[Dershowitz et a/., 1983; Bachmair and Plaisted, 1985; 
Kapur et a/., 1990]. 

We study the problem of AC equational reasoning with 
a different approach. We propose a procedure called 
consistent unfailing completion in which only consistent 
rules and equations are used for critical pair generation 
and rewriting. A consistent unfailing completion proce­
dure can be regarded as the lifted version of a ground 
completion procedure. In a standard unfailing comple-
tion procedure, some rewrite rules do not correspond to 

108 AUTOMATED REASONING 



PLAISTED & ZHU 109 



110 AUTOMATED REASONING 

3 AC-Consistent Completion 
In this section, we introduce the concept of consistency 
for AC equational problems. We present a new com­
pletion algorithm in which only consistent rules can be 
used for critical pair generation and simplification. We 
call the new algorithm consistent unfailing completion. 

Theorem 2.3 show the completeness of an equational 
reasoning strategy based on unfailing completion. We 
wi l l also use the fact that SIMP RULE is inessential to 
the completeness of the strategy. 

We show the correspondence between a consistent un­
fail ing completion and a ground completion procedure. 
The correspondence helps us in deriving the consistency 
constraints and establishing the completeness proof of 
the consistent unfailing completion algorithm. 

Theorem 3.4 outlines the consistent unfailing comple­
t ion procedure. The soundness of the procedure is ob­
vious, as each inference rule generates only logical con­
sequences. We show that consistent unfailing comple­
t ion can be regarded as a lifted version of the ground 
completion procedure outlined in Theorem 3.6, and thus 
establish its comDleteness Droof. 



PLAISTED & Z H U 111 

between two ground rewrite rules and orienting them as 
new rewrite rules. GSIMPAC is the operation of re-
placing a ground rewrite rule s —► t by a new rewrite 
rule s' -t' where s' and t' are AC minimal terms of s 
and t, respectively. 

R e m a r k 3.7 The consistent unfailing completion pro-
cedure in Theorem 3.4 is a lifted version of the instance-
based completion procedure in Theorem 3.6. 

We now give an example to show the effect of the 
consistency constra ints. 

4 Ref inements 
In this section, we present some refinements of Theo­
rem 3.4. Theorem 4.2 outlines the refined consistent un-
fail ing completion algorithm. We then show how the 
algorithm can be efficiently implemented. 

D e f i n i t i o n 4,1 Inference rule PERM is the operation 
that generates all consistent AC equivalent rewrite rules 

We now describe two sufficient conditions for detecting 
the inconsistency of rewrite rules(or equations). 



5 Test Examples 
It is fairly straightforward to implement the consistent 
unfailing completion algorithm. We implemented the 
algorithm with several hundred lines of Prolog code. We 
tested a number of pure equality problems. The results 
are listed in Table 1. 

E1-E6 is a set of benchmark problems for equality 
proposed by [Lusk and Overbeek, 1985]. E3 and E6 in­
volve AC functions. wos21 (equality version), RNG015-6, 
RNG023-6 and RNG024-6 are problems from ring the-
ory, all four of them involve AC functions. For non-AC 
problems, the procedure is same as unfailing completion. 
For AC problems, we study the effect of consistency 
checking by comparing the result from unfailing com­
pletion and consistent unfailing completion. Note that 
consistency checking significantly reduces the number of 
critical pairs generated, the number of rules kept and 
the t ime needed to obtain a proof. Our implementation 
serves the purpose of demonstrating the effect of consis­
tency checking. A state of the art equality prover can 
solve most of the listed problems in tens of seconds[Mc-
Cune, 1990]. Efficient data structures can be used to 
improve our current implementation. 

Table 1: T iming on a set of equality problems. Size lexi­
cographic path ordering is used for all problems. Column 
"CPs" shows the total number of critical pair generated. 
Column "Rules" shows the number of rewrite rules kept. 
Time is measured in seconds on a SPARC-20. n/a means 
that the problem has no AC functions. - means that 
time out occurred. 

It is particularly encouraging that we are able to prove 
E6, which says a ring with x3 = x is commutative. 
The problem has a long history. Wos had the follow­
ing remarks on the problem, " i f one succeeds in having 
a reasoning program prove this theorem, and it can be 
shown that the success is the result of a new technique, 
then one has solid evidence of the potential value of the 
new idea"[Wos, 1988]. Veroff obtained a proof of the 
problem using AURA [Veroff, 1981]. However, the input 
contained many additional clauses that facilitated the 
proof. Stickel was the first to prove the problem with a 
natural set of input equations [Stickel, 1984]. The proof 
took over 14 hours. Zhang and Kapur could find a proof 
in a few minutes using RRL [Zhang and Kapur, 1990]. 
Both [Stickel, 1984] and [Zhang and Kapur, 1990] used 
approaches based on AC unifications. The use of the 
cancellation law for additional group was important for 
them to get the proof efficiently. 

6 Discussion 
In term rewriting systems with AC functions, a term 
can have an exponential number of AC equivalent terms, 
and a rewrite rule can generate an exponential number 
of new rules when combined with AC axioms for critical 
pairs generation. A common approach for avoiding the 
combinatorial explosion is to represent all AC equivar 
lence terms as a single term. Flattened terms are used 
to represent terms equivalent up to associativity, and 
terms with arguments permuted are considered identi­
cal. AC unification algorithm is used to unify two flat­
tened terms. Flattening breaks the well-foundedness of 
most termination orderings. Special AC termination or-
derings are needed to handle flattened terms. 

On the other hand, the combinatorial explosion oc­
curs only because all AC equivalent terms of a term are 
kept in a rewriting system. If they are simplified to a 
single normal form, the explosion wi l l not occur. This 
is exactly the case for ground completion procedures: 
all ground AC equivalent terms can be rewritten to a 
normal form using AC axioms when a total termination 
ordering on ground terms is used. Our approach is based 

112 AUTOMATED REASONING 



on the observation that a nonground completion proce­
dure can be constructed by lifting a ground completion 
procedure, and thus avoid much of the redundancy in 
representing AC equivalent terms. Our approach does 
not need a special AC unification. It does not need a 
special AC termination ordering either. The latter fa­
cilitates the complete automation of the equational rea­
soning process. We used a single termination ordering 
for all of our test examples. We were also able to use 
the equational prover as a component in a general first 
order theorem prover. 

There are some previous works on reducing unneces-
sary equational inferences, both for AC equational prob-
lems and equational problems in general[Zhang and Ka­
pur, 1990; Bachmair et a/., 1992]. Most of them are fun­
damentally different from our approach. They reduce 
the number of critical pairs generated by blocking out 
certain positions for overlapping two rewrite rules. Some 
of these works might be combined with our approach. It 
would also be interesting to study the applicability of 
our approach to other equational theories. 

References 
[Bachmair and Plaisted, 1985] L. Bachmair and D. Plaisted. 

Termination orderings for associative-commutative rewrit­
ing systems. J. Symbolic Computation, 1:329-349, 1985. 

[Bachmair et al., 1989] Leo Bachmair, N. Dershowitz, and 
D. Plaisted. Completion without failure. In Hassan Ait-
Kaci and Maurice Nivat, editors, Resolution of Equations 
in Algebraic Structures 2: Rewriting Techniques, pages 1-
30, New York, 1989. Academic Press. 

[Bachmair et al., 1992] 
L. Bachmair, H. Ganzinger, C. Lynch, and W. Snyder. 
Basic paramodulation and basic strict superposition. In 
Proceedings of the 11th International Conference on Auto­
mated Deduction, pages 462-476, 1992. 

[Birkhoff, 1935] G. Birkhoff. On the structure of abstract 
algebras. Proc. Cambridge Philos. Soc, 31:433-454, 1935. 

[Boudet et al., 1996] 
A. Boudet, E. Contejean, and C Marche. AC-complete 
unification and its application to theorem proving. In Pro-
ceedings of the 7th International Conference on Rewriting 
Techniques and Applications, pages 18-32, July 1996. 

[Chang and Lee, 1973] C. Chang and R. Lee. Symbolic Logic 
and Mechanical Theorem Proving. Academic Press, New 
York, 1973. 

[Dershowitz and Jouannaud, 1990] N. Dershowitz and J.-P. 
Jouannaud. Rewrite systems. In J. van Leeuwen, ed­
itor, Handbook of Theoretical Computer Science. North-
Holland, Amsterdam, 1990. 

[Dershowitz et al., 1983] Nachum Dershowitz, J. Hsiang, 
N. Josephson, and David A. Plaisted. Associative-
commutative rewriting. In Proceedings of the Eighth Inter-
national Joint Conference on Artificial Intelligence, pages 
940-944, August 1983. 

[Domenjoud, 1991] E. Domenjoud. Ac-unification through 
order-sorted acl-unification. In Proceedings of the 4th In-
ternational Conference on rewriting techniques and appli­
cations. Springer-Verlag, 1991. 

[Kapur et al., 1990] D. Kapur, G. Sivakumar, and H. Zhang. 
A new method for proving termination of ac-rewrite sys­
tems. In Proc. of Tenth Conference on Foundations of Soft­
ware Technology and Theoretical Computer Science, pages 
133-148, December 1990. Springer Verlag LNCS 472. 

[Klop, 1992] Jan Willem Klop. Term rewriting systems. In 
S. Abramsky, D. M. Gabbay, and T. S. E. Maibaum, ed­
itors, Handbook of Logic in Computer Science, volume 2, 
chapter 1, pages 1 - 117. Oxford University Press, Oxford, 
1992. 

[Knuth and Bendix, 1970] D.E. Knuth and P.B. Bendix. 
Simple word problems in universal algebras. In Computa­
tional Problems in Abstract Algebra, pages 263-297. Perg-
amon, Oxford, U.K., 1970. 

[Lankford and Ballantyne, 1977] D. Lankford and A.M. Bal-
lantyne. Decision problems for simple equational theo­
ries with commutative-associative axioms: Complete sets 
of commutative-associative reductions. Technical Report 
Memo ATP-39, Department of Mathematics and Com­
puter Science, University of Texas, Austin, TX, 1977. 

[Loveland, 1978] D. Loveland. Automated Theorem Proving: 
A Logical Basis. North-Holland, New York, 1978. 

[Lusk and Overbeek, 1985] E. Lusk and R. Overbeek. Non-
horn problems. Journal of Automated Reasoning, 1:103-
114, 1985. 

[McCune, 1990] William W. McCune. OTTER 2.0 Users 
Guide. Argonne National Laboratory, Argonne, Illinois, 
March 1990. 

[McCune, 1996] W. McCune. Solution of the robbins prob-
lem, draft, 1996. 

[Peterson and Stickel, 1981] G.E. Peterson and M.E. Stickel. 
Complete sets of reductions for some equational theories. 
J. Assoc. Comput. Mach., 28(2):233-264, 1981. 

[Plaisted, 1993] D. Plaisted. Equational reasoning and term 
rewriting systems. In D. Gabbay, C. Hogger, J. A. Robin-
son, and J. Siekmann, editors, Handbook of Logic in Artifi­
cial Intelligence and Logic Programming, volume 1, pages 
273-364. Oxford University Press, 1993. 

[Stickel, 1981] M.E. Stickel. A unification algorithm for 
associative-commutative functions. Journal of the Asso­
ciation for Computing Machinery, 28:423-434, 1981. 

[Stickel, 1984] M Stickel. A case study of theorem proving by 
the knuth-bendix method:discovering that x3 = x implies 
ring commutativity. In Proceedings of the 7th International 
Conference on Automated Deduction, pages 248-258, 1984. 

[Veroff, 1981] R.L. Veroff. Canonicalization and demodula­
tion. Technical Report ANL-81-6, Argonne National Lab­
oratory, Argonne, IL, 1981. 

[Wos et al., 1984] L. Wos, R. Overbeek, E. Lusk, and 
J. Boyle. Automated Reasoning: Introduction and Appli­
cations. Prentice Hall, Englewood Cliffs, N.J., 1984. 

[Wos, 1988] L. Wos. Automated Reasoning: S3 Basic Re­
search Problems. Prentice Hall, Englewood Cliffs, N.J., 
1988. 

[Zhang and Kapur, 1990] H. Zhang and D. Kapur. Unneces­
sary inferences in associative-commutative completion pro­
cedures. Mathematical Systems Theory, 23:175-206, 1990. 

PLAISTED & ZHU 113 


