
Ten Challenges in Propositional Reasoning and Search 
Bart Selman, Henry Kautz, and David McAllester 

AT&T Laboratories 
600 Mountain Avenue 
Murray Hill, NJ 07974 

{selman, kautz, dmac}@research.att.com 
http://www. research, att.com/~selman/challenge 

Abstract 
The past several years have seen much progress 
in the area of propositional reasoning and sat­
isfiability testing. There is a growing consensus 
by researchers on the key technical challenges 
that need to be addressed in order to maintain 
this momentum. This paper outlines concrete 
technical challenges in the core areas of system­
atic search, stochastic search, problem encod­
ings, and criteria for evaluating progress in this 
area. 

1 Introduction 

Propositional reasoning is a core problem in many ar­
eas of artificial intelligence. In recent years this area has 
seen growing interest and activity, due to advances in 
our ability to solve large problem instances, including 
ones that encode real-world problems such as planning 
and diagnosis. Contributions to the area of propositional 
deduction and satisfiability testing have come from re-
search communities in artificial intelligence, operations 
research, and theoretical computer science. A set of key 
technical challenges have begun to emerge from interac­
tions within and among these research groups. We will 
describe some of these challenges and discuss why they 
are important for progress in the field. 

For many years the problem of propositional reason­
ing received relatively little attention. It appeared that 
nothing could be done to improve upon the performance 
of the Davis-Putnam procedure (1960), which held its 
position as the most efficient satisfiability testing algo­
rithm for three decades. Furthermore, most researchers 
in artificial intelligence felt that the representational 
power of propositional logic was too limited, and turned 
their attention to first-order logic or even more powerful 
formalisms, such as various modal and non-monotonic 
logics. Several factors contributed to a renewed inter­
est in propositional reasoning. First, new algorithms 
were discovered, including ones based on stochastic local 

search as well as systematic search, that have better scal­
ing properties than the basic Davis-Putnam algorithm. 
Second, improvements in machine speed, memory size, 
and implementations extended the range of the algo­
rithms. Third, researchers began to develop and solve 
propositional encodings of interesting, real-world prob-
lems such as planning and diagnosis, with others on the 
horizon, such as natural language processing and ma­
chine learning. Such encodings were not even being con­
sidered a few years ago because they were thought to 
be far too large to be handled by any method. Between 
1991 and 1996 the size of hard satisfiability problems 
that could be feasibly solved grew from ones involving 
less than 100 variables to ones involving over 10,000 vari­
ables. 

Progress has been spurred by the interaction of re-
searchers in AI , operations research, and theory, in mak­
ing available benchmark problems (DIMACS, see Trick 
and Johnson 1996), holding joint workshops (Ginsberg 
1995), and sharing algorithms and code. There is a grow­
ing consensus, however, that certain key technical chal­
lenges must be addressed in order to continue to increase 
the range of problems that can be practically solved. 
Work on propositional reasoning can be grouped in three 
core areas: systematic search; stochastic search; and 
problem encodings. For each area, we will discuss con­
crete challenges that have arisen. We stress that these 
challenges are not particularly our own invention, but 
rather summarize the issues that frequently arise in in­
formal discussions among researchers. Progress on any 
of these challenges would directly extend the usefulness 
of the propositional reasoning approach to problems in 
AI. 

Because of the large number of references involved, 
we have not attempted to cite all related literature. 
However, a web page for these challenge problems has 
been constructed with a more complete bibliography, 
further details on the challenge problems, and point­
ers to existing satisfiability testing procedures. See 
http://www.research.att.com/~selman/challenge. 

50 AI CHALLENGES 



With each challenge, we give our best estimate of a 
time frame within which we think the challenge can be 
met. For the harder challenges, even partial solutions 
will constitute a significant contribution to the field. 

2 Evaluation Criteria 

The main evaluation criteria that has been adopted in 
the satisfiability testing (SAT) community is empirical 
performance on shared benchmark problems. We believe 
that this remains the best way to evaluate responses to 
any of the algorithmic challenges we will present. The 
alternative, evaluation by theoretical analysis, is prob­
lematic. Worst-case complexity results are all usually 
exponential. Furthermore, theoretical average case re­
sults are difficult to obtain, and can even be mislead­
ing because of the difficulty of formally characterizing 
problem distributions. Even when a sound theoretical 
analysis is devised, it may only characterize the asymp­
totic performance of the algorithm, and that asymptote 
may lie too far out (e.g., to problems containing trillions 
of variables) to be of practical consequence. Of course, 
theoretical analysis can be a very useful complement to 
empirical evaluation, and can help us gain insights into 
why an algorithm works well or poorly on a given prob-
lem distribution. (In fact, one of our non-algorithmic 
challenges, as we will see, is to develop a theoretical anal­
ysis that explains why local search works well on certain 
problem distributions.) 

Reasonably good benchmark collections of satisfiabil­
ity problems, mainly in CNF form, are publically avail­
able from a number of sources. These include the DI-
MACS collection, which was used as a testbed for a large 
number of algorithms as reported in (Trick and Johnson 
1996); a collection of circuit diagnosis problems encoded 
as SAT (Larrabee 1992); the planning problems Kautz 
and Selman (1996) devised for their SATPLAN system; 
hardware and software verification problems from the 
model checking community; and others. All these col­
lections have the property that published papers exist 
specifying the best known algorithms and running times 
for solving each of their instances. 

Progress on any of our challenges (when applicable) 
will be measured by showing that the proposed method 
outperforms all other known methods on at least one set 
of benchmark problems. Some of our challenges in the 
area of problem encodings involve finding better ways to 
represent a real-world problem as SAT. In these cases, 
the empirical evaluation should involve comparing per­
formance of the best SAT algorithms on the proposed 
encoding against the best published results for any algo­
rithm that can solve the original (i.e., unencoded) prob-
lem instances. In such a comparison it is usually not pos­
sible to outperform the specialized algorithms (although 

it is sometimes possible, see for example (Kautz and Sel­
man 1996)), but one should provide evidence that sofv-
ing the encoded problem with general purpose Boolean 
satisfiability procedures is at least competitive. 

Whenever possible, comparisons should also be made 
to the difficulty of solving the problems when alternative 
encodings are used, such as may be found in some of the 
benchmark sets. In cases where alternative encodings 
are available, one should show that the new encoding 
yields problems that are easier to solve by at least one 
state-of-the-art SAT procedure. (For example, it would 
be counted as progress if one developed a new encoding 
of planning problems that was good for stochastic search 
procedures, even if the encoding did not help systematic 
search procedures.) 

In order to keep the criteria for comparison as objec­
tive as possible, it is important that results include total 
running time. This may be adjusted for machine speed, 
but it is not sufficient to only report certain character­
istics of the execution, such as "number of nodes ex­
panded" (Johnson 1996). There are many ways to shift 
the computational effort in search algorithms — for ex­
ample, to visit fewer nodes by doing more work at each 
node — and an objective evaluation must consider the 
entire picture. Comparisons should cite the best results 
from the Operations Research and computer science the­
ory literature, as well as the AI literature. 

Tests should be done on a variety of problem sizes, up 
to the hardest available instances that the method can 
solve. It is important to show the limits of the proposed 
method, that is, where it becomes highly exponential or 
otherwise fails. Often methods that look good on small 
instances break down on larger ones (Johnson 1996). 

3 Challenging SAT Problems 

We shall begin the list of challenges by citing two spe­
cific open SAT problems. The first is to develop a way 
to prove that unsatisfiable 700 variable 3-CNF formu­
las, randomly generated in the "hard" region where the 
ratio of variables to clauses is 4.3, are in fact unsatisfi­
able (Mitchell et al. 1992; Crawford and Auton 1993). 
Randomly-generated satisfiable formulas of this size are 
regularly solved by stochastic search algorithms such as 
GSAT, but they are unable to prove unsatisfiability; and 
no systematic algorithm has been able to solve hard ran­
dom formulas of this size. A generator for these hard 
random problem instances can be found at the DIMACS 
benchmark archive (Trick and Johnson 1996). 

CHALLENGE 1: (1-2 yrs) Prove that a hard 700 
variable random 3-SAT formula is unsatisfiable. 

The second challenge problem is satisfiable. It is an 
encoding of a 32-bit parity problem, that appears in the 
DIMACS benchmark set. It appears to be too large for 

SELMAN, KAUTZ, & MCALLESTER 51 



current systematic algorithms. It also defeats the hill-
climbing techniques used by current local search algo­
rithms. 

CHALLENGE 2: (2-5 yrs) Develop an algorithm 
that finds a model for the DIM A CS 32-bit parity problem. 

For the second challenge, of course, the algorithm 
should not be told in advance the known solution! Given 
the amount of effort that has been spent on these two 
instances, any algorithm solving one or both will have to 
do something significantly different from current meth­
ods. 

4 Challenges for Systematic Search 

In the previous section we described two challenging SAT 
problems. In this section, and the next one, we describe 
promising ideas whose utility has not yet been demon­
strated. In each case the challenge is to demonstrate 
the utility of a currently known, but as yet unproven, 
approach to solving SAT problems. In keeping with the 
discussion in section 2, to demonstrate the utility of an 
idea one must construct a procedure which uses that idea 
in an essential way in solving at least one class of prob-
lems more effectively than any other known approach. 

Our next challenge is using proof systems stronger 
than resolution. All of the best systematic methods for 
propositional reasoning are based on creating a resolu­
tion proof tree. This includes depth-first search algo­
rithms such as the Davis-Putnam procedure, where the 
proof tree can be recovered from the trace of the algo­
rithm's execution, but is not explicitly represented in 
a data structure (the algorithm only maintains a single 
branch of the proof tree in memory at any one time). 
Most work on systematic search concentrates on heuris-
tics for variable-ordering and value selection, all in order 
to the reduce size of the tree. 

However, there are known fundamental limitations on 
the size of the shortest resolution proofs for certain prob-
lems (Haken 1985; Chvatal and Szemeredi 1988). For 
example, "pigeon hole" problems (showing that n pi­
geons cannot fit in n — 1 holes) are intuitively easy, 
but shortest resolution refutation proofs are of exponen­
tial length. Shorter proofs do exist in more powerful 
proof systems. Examples of proof systems more pow­
erful than resolution include extended resolution, which 
allows one to introduce new defined variables, and reso-
lution with symmetry-detection, which uses symmetries 
to eliminate parts of the tree without search. Assum­
ing NP ≠ co — NP, even the most powerful propo-
sitional proof systems would require exponential long 
proofs worst case — nonetheless, such systems provably 
dominate resolution in terms of minimum proof size. 

However, at this point in time, attempts to mecha­
nize these more powerful proof systems usually yield no 

computational savings, because it is harder to find the 
small proof tree in the new system, than to simply crank 
out a large resolution proof. In essence, the overhead in 
dealing with the more powerful rules of inference con­
sumes all the potential savings. There is promising work 
in this area (Crawford et al. 1996; de la Tour and Demri 
1995), but not yet convincing empirical results on a va­
riety of benchmark problems; such evidence would meet 
our third challenge: 

CHALLENGE 3: (2-5 yrs) Demonstrate that a 
propositional proof system more powerful than resolution 
can be made practical for satisfiability testing. 

Our next challenge is the use of integer programming 
techniques in solving SAT problems. It is straightfor­
ward to translate SAT problems into 0-1 integer pro-
gramming problems (Hooker 1988), and thus it has been 
argued that integer programming techniques should be 
useful for propositional reasoning. In fact, however, this 
has not been shown to be the case. For example, one of 
the main techniques in integer programming is to com­
pute the linear relaxation of the problem, and then to 
use the (easily-found) solution of the relaxed problem to 
guide the selection of values in solving the integer prob­
lem. However, in most formulations the solution to the 
linear relaxation of any SAT problem simply sets all the 
variables to the value "1/2" (modulo unit propagation), 
thus yielding no guidance at all. Therefore we offer a 
challenge to show that the well-developed body of tools 
and techniques from Operations Research does in fact 
have something new to offer for propositional reasoning. 

CHALLENGE 4: (2-5 yrs) Demonstrate that inte­
ger programming can be made practical for satisfiability 
testing. 

5 Challenges for Stochastic Search 

Stochastic local search has been shown to be a powerful 
alternative to systematic search for finding models of sat­
isfiable CNF formulas. Stochastic algorithms are inher­
ently incomplete, because if they fail to find a model for a 
formula one cannot be certain that the formula is unsat-
isfiable. This has led to an asymmetry in our ability to 
solve satisfiable and unsatisfiabie instances drawn from 
the same problem distribution. Stochastic algorithms 
can solve hard random satisfiable formulas containing 
thousands of variables, but we cannot solve unsatisfiabie 
instances of the same size. 

Can local search be made to work for proving unsat-
isfiability? This apparently would require searching in 
space of refutation proofs, rather than in space of truth 
assignments. Each state would be an incomplete proof 
tree, e.g., a proof tree that rules out some fraction of the 
truth assignments. The neighborhood of a state would 
be similar proof trees. The step in the local search would 

52 AI CHALLENGES 



try to transform the proof into one that rules out a larger 
fraction of assignments. 

CHALLENGE 5: (5-10 yrs) Design a practical 
stochastic local search procedure for proving unsatisfia-
bility. 

Our next challenge is that of distinguishing "depen­
dent" from "independent" variables. SAT encodings of 
structured problems such as planning and diagnosis of­
ten contain large numbers of variables whose values are 
constrained to be a simple Boolean function of other 
variables. We call these dependent variables. Variables 
whose values can not be easily determined to be a simple 
function of other variables are called independent. For 
a given SAT problem there may be many different ways 
to classify the variables as dependent and independent. 
But for most SAT encodings of real-world problems there 
is a natural division between dependent and indepen­
dent variables. Since an assignment to the independent 
variables determines a truth value for each dependent 
variable, the number of assignments that need be con­
sidered in a systematic search is at most 2n where n is 
the number of independent variables. 

We belief that it fairly easy to empirically demonstrate 
that identification of dependent variables improves the 
performance of systematic search. It appears to be more 
difficult to establish that identification of dependent vari­
ables improves stochastic search. The challenge, there­
fore, is to improve local search for problems with de­
pendent variables: the search should concentrate only 
(or mainly) on the independent variables, and some fast-
mechanism should then set the dependent variables. 

CHALLENGE 6: (1-2 yrs) Improve stochastic lo­
cal search on structured problems by efficiently handling 
variable dependencies. 

As we have noted, systematic and local search proce­
dures outperform each other on different problem classes. 
Even putting the issue of incompleteness aside, there ex­
ist classes of satisfiable problems for which one or the 
other approach is clearly the winner. This leads to the 
general question: Can we develop a procedure that lever­
ages the strengths of each? The obvious way, of course, is 
to simply run good implementations of each approach in 
parallel. But is there a more powerful way of combining 
the two? Recently there has been some intriguing work 
on using local search to implement the variable ordering 
heuristic for systematic search (Boufkhad 1996; Mazure 
et al. 1996). These methods and other ways of combin­
ing systematic and stochastic search need to be further 
developed and compared with previous approaches on a 
range of benchmark problems. 

CHALLENGE 7: (l-2yrs) Demonstrate the suc-
cesful combination of stochastic search and systematic 
search techniques, by the creation of a new algorithm 
that outperforms the best previous examples of both ap­

proaches. 

6 Challenges for Problem Encodings 

The value of research on propositional reasoning ulti­
mately depends on our ability to find suitable SAT en­
codings of real-world problems. As discussed in the in­
troduction, there has been significant recent progress 
along this front. Examples include classical constraint-
based planning (Blum and Furst 1995; Kautz and Sel-
man 1996), problems in finite algebra (Pujita et al. 1993), 
verification of hardware and software, scheduling (Craw­
ford and Baker 1994), circuit synthesis and diagnosis 
(Larrabee 1992), and many other domains. Experience 
has shown that different encodings of the same problem 
can have vastly different computational properties. For 
example, in planning, "causal" encodings appear to be 
harder to solve than "state-based" encodings. 

A challenge, therefore, is to develop a general char­
acterization of encodings that can be efficiently solved. 
This characterization may involve, for example, under­
standing the relationship between the encoding and the 
shape of its search space. Note that the characterization 
cannot be as simple as stating that the search space has 
no local minima, because realistic problems will almost 
certainly have local minima. For example, the SAT en­
codings of blocks-world planning problems do have deep 
local minima, yet can be solved by local search. We 
need to understand why search can escape from local 
minima in some encodings but not in others. Perhaps 
one can find easily measurable statistical properties of 
the encoding that predict the behavior of various search 
algorithms on a given instance. 

CHALLENGE 8: (5-10 yrs) Characterize the com-
putational properties of different encodings of a real-
world problem domain, and/or give general principles 
that hold over a range of domains. 

Note that evaluation of progress on this last challenge 
cannot be purely empirical. There will be some sub­
jective judgement necessary in determining whether the 
characterization is useful and enlightening. Predictions 
of the theory can be put to an empirical test: in the best 
case, the general principles would suggest new encodings 
which can be solved more easily than previous ones. 

One problem with all of the propositional encodings 
for real-world problems that have been suggested in the 
literature is that they are extremely "brittle". If we look 
at formulations where models that satisfy the encoding 
correspond to solutions to the original problem instance, 
we see little relationship between models that "almost" 
satisfy the encoded problem and candidate solutions that 
"almost" satisfy the original problem instance. For ex­
ample, Kautz and Selman (1992) noted that it was easy 
to find truth-assignments that satisfied all but a single 

SELMAN, KAUTZ, & MCALLESTER 53 



clause of SAT encodings of blocks-world planning prob­
lems. These "near models" corresponded to making a 
series of random motions, and then, in the last state 
the blocks "magically" (violating physical constraints) 
arrange themselves in the correct position. 

The robustness of encodings, and in particular, the 
robustness of local search algorithms applied to those 
encodings, could be improved by finding ways to more 
closely align the semantics of the SAT instance with the 
semantics of the source domain: 

C H A L L E N G E 9: (1-2 yrs) Find encodings of real-
world domains which are robust in the sense that unear 
models" are actually "near solutions". 

As we discussed earlier, benchmarks have been an im­
portant driving force behind work on propositional rea-
soning algorithms. Ideally one would have access to a 
very large number of real-world problem encodings, so 
that one could develop solid statistical evidence of the 
performance of various techniques. In practice the num­
ber of real problems that can be obtained is l imited. 
It is extremely time-consuming and knowledge-intensive 
work to manually create such instances, and the largest 
and potentially most useful examples are often part of 
some proprietary project, and thus cannot be shared. 
Hard randomly-generated problems have proven to be 
a good alternative for testing — so far, the algorithms 
that are the best on randomly generated instances are 
also best on structured problems. However, there is the 
concern that we may be reaching a point where this is 
no longer the case, and that of the simple random dis­
tributions now used for testing may be driving us in the 
wrong direction in our research (Johnson 1996). There-
fore we present a final challenge, which if answered would 
provide vital tools for ensuring progress in this field. 

C H A L L E N G E 10: (2-5 yrs) Develop a generator 
for problem instances that have computational properties 
that are more similar to real-world instances. 

It is necessary to provide concrete evidence, empirical 
and/or theoretical, that the problem distribution so gen­
erated closely matches some set of real-world domains. 

7 Conclusions 

We have presented a series of technical challenge prob­
lems in the area of propositional reasoning and search. 
We believe that progress towards solving these problems 
wil l directly extend the usefulness of the propositional 
reasoning approach to problems in artificial intelligence, 
and computer science in general. 

References 
Blum, A. and Furst, M.L. (1995). Fast planning through 

planning graph analysis. Proc. IJCAI-95, Canada. 
Boufkhad, Y. (1996) Aspects probabilistes et algorithmiques 

du probleme de satisfiabilite. Ph.D. Thesis, Univ. of 
Paris, 1996. 

54 AI CHALLENGES 


