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Abstract

In order to deal with over-constrained Constraint
Satisfaction Problems, various extensions of the
CSP framework have been considered by taking
into account costs, uncertainties, preferences, pri-
orities...Each extension uses a specific mathemat-
ical operator (+, max...) to aggregate constraint
violations.

In this paper, we consider a simple algebraic frame-
work, related to Partial Constraint Satisfaction,
which subsumes most of these proposals and use
it to characterize existing proposals in terms of ra-
tionality and computational complexity. We exhibit
simple relationships between these proposals, try to
extend some traditional CSP algorithms and prove
that some of these extensions may be computation-
ally expensive.

1 Introduction and related works

The CSP framework provides a very convenient framework
for representing and solving various problems related to Al
and OR (scheduling, assignment, design...). When a real
problem is casted in the CSP framework, different types of
knowledge have to be dealt with:
» Hard constraints: physical properties (eg. spatial or
temporal constraints), which have to be necessarily sat-
isfied, are naturally represented as constraints;

* Preferences: properties which should be satisfied "when
possible"” (due dates, user preferences, cost...) are either
represented as constraints or simply ignored;

» Uncertainties: properties that are relevant in some sit-
uations which cannot be predicted with certainty; such
properties are then ignored, or represented as constraints.

Thus, such soft constraints can be either ignored, which nat-
urally leads to a poor mean quality of the solutions or rep-
resented as hard constraints which may yield an inconsis-
tent CSP. A better solution is to take the violation of these
constraints into account in a specific criterion that should be
minimized.

Various proposals have been made in this direction, extend-
ing classical CSP in order to express “soft" constraints with

"This work has been partially funded by the French Centre Na-

a dedicated semantics in terms of priorities [Schiex, 1992;
Boming et al, 1989], preference degrees [Rosenfeld et a/.,
1976; Martin-Clouaire, 1992; Dubois et al,, 1993; Ruttkay,
1994, costs [Shapiro and Haralick, 1981; Dechter etal., 1990;
Freuder and Wallace, 1992] or probabiliies [Rosenfeld et al,,
1976; Fargier and Lang, 1993]. The specific nature of the
criterion optimized allows dedicated branch and bound algo-
rithms to be defined.

In these approaches, hard constraints and preferably satis-
fiedluncertain constraints are as constraints but a
valuation (usually a number) is associated to each constraint
¢, or each tuple t of a constraint. This valuation expresses the
impact of violating the constraint ¢ or using the tuple t on the
quality of the solution. These valuations are combined using
an operator that gives them a specific semantics. For example,
in [Schiex, 1992], the valuations of violated constraints are
combined using a max operator, which gives the valuations
an interpretation in terms of priorities, while in [Shapiro and
Haralick, 1981], the valuations are numbers combined using
addition, with an obvious interpretation as costs.

In this paper, rather than choosing a specific set for ex-
pressing valuations and a specific operator, we observe that
an ordered commutative monoid (an ordered set with an oper-
ator satisfying some properties), is enough to encompass most
existing CSP extensions. The valuations are taken from the
set of the monoid, combined using its operator and compared
using the order. For the sake of simplicity, we consider that
valuations are only assodated to constraints.

Our aim is then to use this abstract framework to provide
general algorﬂhms and properties, to bring to light relations
between previous proposals and to identify where the dlff cult
problems are, and what property makes them difficult”.

The next section defines the valued CSP (VCSP) frame-
work, rapidly justifies the algebraic structure used and gives
some simple properties. Section 3 describes previous propos-
als as VCSP and shows how they relate to each other in terms
of rationality and complexity. Section 4 considers the generic
extension of different Backtrack based algorithms and ends
with preliminary experiments on the related observed com-
plexities of some types of VICSP.

This work is therefore related to [Shafer, 1991] which considers
an axiomatic framework where hyperree struciured problems ae
solved efficiently and to [Minoux, 1976, Bistarelli etal, 1M\Ahere
a semiing is used fo study the of shortest

tional dFfudes Spatiales and by the Furopean Eudid project CALMA. path and koonsisiency enforcing algorithms respeciively.
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2 Towards valued CSP

A classical CSP is defined by a set X = {z,...,z,} of
variables, each variable x; having an associated finite domain
d;. A constraint ¢ = (X, R.) is defined by a set of variables
X. € X and a relation R, between the variables of X, i.e.,
asubset of the Cartesian product [], ., d.. A CSP is noted
{X,D,C}, where D is the set of the domains and C the set
of the constraints. A solution of the CSP is an assignment of
values to the varigbles in X such that all the constraints are
satisfied; for each constraint ¢ = (X, R.), the tuple of the
values taken by the variables of X belongs to R...

To express the fact that a constraint may eventually be vio-
lated, we annotate each constraint with a valuation taken from
a set of valuations E equipped with the following structure:

Definition 1 A valuation structure (E,®, ») verifies:

o E is a set, whose elements are called valuations, which
is totally ordered by »-, with & maximum element noted
T and a mintmum element noted L,

* @ is a conumutative, associative closed binary operation
on E that verifies:

- Identity: Ve € E\a ® 1L = a;
- Monaotonicity: Va,b,c € E,

(@axb)=> ((a®c) > (b®2));
- Absorbing element®: Yo € E,(a® T) = T.

This structure of totally ordered commutative monoid with a
monotonic operator is also known in uncertain reasoning, £
being restricted to [0, 1], as a “triangular co-norm™ [Dubeis
and Prade, 1982]. In the rest of the paper, we implicitly sup-
pose that the computation of > and @ are always polynomial
in the size of their arguments.

2.1 Justification and properties

The ordered set E allows different levels of violations to be
expressed. Commutativity and associativity guarantee that
the valuation of an assignment depends only on the set of the
valuations of the violated constraints, and not on the way they
are aggregated. The element T corresponds to unacceptable
violation and is used to express hard constraints. The element
1 corresponds to complete satisfaction. These maximurm and
minimum elements can be added to any totally erdered set,
and their existence is supposed without any loss of generality.
Monotonicity guarantees that the valuation of an assignment
that satisfies a set B of constraints will always be as good as
the valuation of any assignment which satisfies a subset of B.
Two additional properties will be considered later because of
their influence on algorithms and computation:

Strict monotonlcity (Va,b,c € E, if (e > ¢),(b # T) then
(¢ ®b) > {¢ @ b)) guarantees that amy modification in a set of
valuations that does not contain T passes on the aggregation,
via ®, of these valuations: the fact that something can be
locally improved can not be globally ignored. This type of
property is usual in multi-criteria theory, namely in social
welfare theory [Moulin, 1988).

2 Actually, the “absorbing element” property can be inferred from
the other axioms: since L is the identity, {1 & T) = T, since L is
minimum,¥s € E,{(o®T) = (L@®T) = T, sitxe, T is maximum,
VecE(a®dT)=T
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Idempotency (Va € E,a ®a = a) is fundemental in all CSP
algorithms that enforce k-consistency since it guarantees that
aconstraint that is satisfied by all the solutions of a CSP can be
added to the CSP without changing its meaning. Idempotency
is incompatible with strict monotonicity as soon as £ has
more than two elements3. It should be noted that the only
idempotent operator in a valuation structure is max*.

22 Valued CSP

A valved CSP is then simply obtained by annotating each
constraint of a classical CSP with a valuation denoting the
impact of its violation® or, equivalently, of its rejection from
the set of constraints.

Definition 2 A valued CSP is defined by a classical CSP
(X,D,C), a valuation soructure 5 = (E, ®,>). and an
application p from C to E. It is noted (X, D, C, 5, ¢). (e}
is called the valuation of c.

An assignment A of values to some variables Y C X can
now be simply evaluated by combining the valuations of all
the violated constraints using &:

Definition 3 Given a VCSP P = (X,D,C,S,¢) and an
assignment A of the variables of Y C X, the valuation of A
with respect fo the VCSP P is defined by:
ve(d)= &  lele)]
A viclates ¢

The semantics of a VCSP is a distribution of valuation on the
assignments of X (potential solutions). The problem consid-
ered is to find an assignment A with a minimum valuation,
The valuation of such an optimal solution will be called the
CSP valuation. It provides a gradual notion of inconsistency,
from L, which corresponds to consistency, to T, for complete
inconsistency.

Our notion of VCSP is equivalent to [Freuder and Wallace,
1992] view of partial consistency. Indeed, a VCSP defines a
relaxation lattice equipped with a distance measure:

Definition 4 Given a VCSP P = (X,D,C, 8,y). a relax-
ation of P is a classical CSP (X, D,C"), where C' C C.

Relaxations are naturally ordered by inclusion of constraint
sets. Obviously, the consistent inclusion-maximal relaxations
are the classical CSP which can not get closer to the original
problem without loosing consistency. It is alsa possible to
order relaxations by extending the valuation distribution to
relaxations:

Definition 5 Givena VCSP P = (X, D,C,5,y), and a re-
laxation (X, D, C') of P, the valuation of this relaxation is:

V(X.D.C) =& _lele]

3From identity, it follows that Ya € E,{a ® L) = a, then for
any @, L < & < T, strict monotonicity implies that (e ® &) = &
and idempotency implies that (@ ®a) = a.

“This result is well known for t-conorms. From monotonicity and
idempotency, wehave ¥b 0, (c® 1) = a % (a®b) % a = (a®a)
and therefore e ® b = a.

5The finer approach which associates a valuation to each tuple of
a relation allows the expression of gradusl violation of a constraint.
However, since L is the identity, and since domains are finite, such
a gradual relation may be simply expressed as a conjunction of
annotated constraints and the restriction t0 annotated congtraints is
made without any loss of generality.



The valuation of the top of the relaxation lattice, CSP
{X, D,C), is obviously L. The valuations of the ather relax-
ations can be understood as a distance to this ideal problem,
The best assignments of X are the solutions of the closest
consistent problemns of the lattice. The monotonicity of ®
ensures that the order on problems defined by this valuation
distribution is consistent with the inclusion order on refax-
ations.

Definition 6 Given a VCS5P P = (X,D,C,5,), and
{X,D,C"), (X, D,C"), two relaxations of P:

C' € C" = Vp(X,D,C) » Vp(X,D,C")

If ® is strictly monotonic, the inequality becomes strict if the
valuation of P isnot T,

This last result shows that strict monotonicity is indeed a
highly desirable property since it guarantees that the order
induced by the valuation distribution will respect the strict
inclusion order on relaxations (if the VCSP valuation is not
equal to T). In this case, optimal consistent relaxations are
always selected among inclusion-maximal consistent relax-
ations, which seems quite rational.

Since idempotency and strict monotonicity are incompati-
ble as soon as £ has more than two elements, idempotency
can be seen as an undesirable property, at least from the ra-
tionality point of view. Using an idempotent operator, it is
possible for a consistent non inclusion-maximal relaxation to
get an optimal valuation.

There is an immediate relation between optimal assign-
ments and optimal consistent relaxations. Indeed, to any
assignment A of X, we can gssociate the classical consistent
CSP [A}p obtained by excluding the constraints violated by
4

Deflnition 7 Giver a VCSP P = (X,D,C, S, ) and an
assignment A of the variables of X, we note [ A]p the classical
consistent CSP (X, D, C")where C' = {c € C, Asarisfiesc}.
[Alp is called the consistent relaxation of P associated to A.
Cbviously, Vp(A4) = Vp([A]lp) and [A]p is among the apti-
mal problems that A4 satisfies. It is equivalent io look for an
optirnal assignment or for an optimal consistent relaxation.

3 Classes of VCSP and their relationships
We consider some extensions of the CSP framework as VCSP;

A=VCSP or classical CSP correspond to the trivial boolean
lattice E = {t, fl.t =1 =< f =T, & = A{or max), all
constraints being annotated with T. The operation A is both
idempotent and strictly monotonic (this is the only case where
both properties may exist simultaneously).

Max-VCSP or possibilistic CSP [Schiex, 1992] comrespond
to the operation ® = max. Traditionally, E = [0,1,0= 1,
1 = T. The annotation of a constraint is interpreted as a pri-
arity degree. A preferred assigrment minimizes the priority
of the most important violated constraint. The idempotency
of max lead to the so-called “drowning-effect™ if a constraint
with priority o has to be necessarily violated then any con-
straint with a priority lower then « is simply ignored and can
be rejected from any consistent relaxation without changing
its valuation.

Obviously, a classical CSP is simply a specific possibilistic
CSP where only one vaiuation other than L is used. Note that

finite fuzzy CSP [Dubois et al., 1993] can easily be cast as
possibilistic CSP and vice-versa.

Z-VCSP or penalty CSP, correspond to the operation @ = +
in N U {+0o}, using the usual ordering <. First considered
in [Shapiro and Haralick, 1981], penalty CSP have been con-
sidered as Parrial CSP in [Freuder and Wallace, 1992], all
constraint valuations being equalto 1,

[I-VCSP or probabilistic CSP correspond to the operation
z@®y=1-(1-5){l-y)in E ={0,1}. TI-VCSP have
been defined in [Fargier and Lang, 1993 to enable the user
to represent ill-known problems, where the existence of con-
straints in the real problem is uncertain. Each constraint ¢
is annotated with its probability of existence, all supposed to
be independent. The probability that an assignment that vio-
iates 2 constraints ¢; and c; will not be a solation of the real
problem is therefore 1 — (1 — (e )}{1 - wlez)).
Lex-VCSP (or lexicographic CSP) offer a combination of
penalty and possibilistic CSP and suppress the “drowning
effect” of the latter [Fargier ef al,, 1993). A valuation is
¢ither a designated element T or a multiset (elements may be
repeated) of elements of [0, 1[ (or any other totally ordered
set, defining priorities}.

The operation & is simply multi-set union, extended to treat
T as an absorbing element (the empty multi-set is the identity
1). The order » is the lexicographic (or alphabetic) total
order induced by the order > on multisets and extended to
give T its role of maximum element: let v and ' be two
multisets and o and &' be the largest elements in ¥ and ¢/,
v+ o' iffeither ¢ > o' or (@ = o' and v — {a} » v~ {a'}).
The recursicn ends on 2, the minimurn multi-set.

3.1 Properties and relations

In order to compare the previous VCSP classes, that relies
on different valuation structures, we introduce the following
notion:

Definitlon 8 AVCSP P = (X, D, C, 5, ) is a refinement of
the VCSP P’ = (X, D, ", 8, ¢') if for any pair of assign-
ments A, A" of X such that Vp:(A) > Vp:(A') in § then
Vp(A) » Vp(A'}in 5. P is a strong refinement of P' if the
property holds when A, A’ are assignments of subsets of X,
This main point is that if P is a refinement of 7', then the
set of optimal assignments of P is included in the set of
optimal assignments of P'; the problem of finding an optimal
assignment of P can be reduced to the same problem in 7',
Definition 9 Tivo VCSP P = (X, D,C.5,p) and P' =
(X,D,C".8,¢") will be said equivalent iff each one is a
refinement af the other. They will be said strongly equivalent
if eack one is a strong refinement of the other.

Equivalent VCSF define the same ordering on assignments of
X and have the same set of optimal assignmenis: the problem
of finding an optimal assigninent is equivalent in both VCSP.

Considering all previous VCSP classes, we may partition
them according to the idempotency of the operator: A-VCSP
and Max-VCSP on one side and ©-VCSP, II-VCSP and Lex-
VCSP on the other. Interestingly, this partition is in agreement
with polynomial transformations that exist between instances
of different classes for the problem of finding an optimal as-
signment (ot the corresponding decision problem of existence
of an assignment with a valuation lower than a givenv € E).
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Idempotent classes: a A-VCSP is nothing but a specific Max-
VCSP that uses only the valuation T and the transformation
from A-VCSP to Max-VCSP is simply the identity.

Conversely, the problem of the existence of an assign-
ment of valeation strictly lower than v in a Max-VCSP
(X,D,C, S, ) can easily be reduced to the existence of a
solution for the classical CSP (X, D, C") such that ' =
{c € C | wle) 2 v} if such a constraint is violated, the
assighment valuation is larger than v and conversety. Thus,
using binary search, the optimnal assignment in a Max-VCSP
can be found in a logarithmic number of resolution of a clas-
sical CSP. Indeed, all the traditional polynomial classes and
problems (k-consistency enforcing...) of classical CSP can
be extended to Max-VCSP in this way [Fargier, 1954],
Stricly monotonic classes: in this section, we put [I-VCSP
aside because II-VCSP combination operator relies on mul-
tiplication of rea! numbers. However, note that if we also
relax the integrity constraint on penalties in T-VCSP (penal-
ties are allowed to take values in R instead of N), then these
frameworks are related by a simple isomorphism: a constraint
with a probability ¢(c) of existence can be transformed in &
constraint with a penalty of ~ log(1 — (c)) (and conversely
using the transformation 1 — e ~¥(<)), The two VCSP obtained
in this way are obviously strongly equivalent.

A penalty CSP can easily be polynomially transformed in
a lexicographic CSP: the valuation £ € N is transformed in a
multiset contgining a given element ¢ # O repeated k times
(noted {{e, k) 1), where o is a fixed priority and the valuation
+o0 is transformed to T. The lexicographic VCSP obtained
(in polynomial time} is obviously strongly equivalent to the
original penalty VCSP.

Interestingly, a lexicographic CSP may also be transformed
into a strongly equivalent penalty CSP. Let oy, ..., o be the
elements of |0, 1[ that appear in all the Lex-VCSP annota-
tions, sorted in increasing order. Let n; be the number of
occurrences of a; in all the annotations of the VCSP. The
lowest pricrity o) is associated to the penalty f{a;) = 1, and
inductivety o is associated to flo) = foi-g) % (ni—1 + 1}
(this way, the penalty f(cq;) associated to priority ¢ is strictly
larger than the largest possible sum of f(a;), 5 < i. This is
immediately satisfied for o, and inductively verified for o).
An initial lexicographic valuation is converted in the sum of
the penalties f(a,) foreach ¢; in the valuation. The vatuation
T is converted to +o0c. All the operations involved, sum and
multiplication, are polyncmiat and the sizes of the operands
remain polynomial: if k is the number of priorities used in
the VCSP and ¢ the maximum number of occutrences of a
priority, then the largest penalty f{a) is in O(€*), with a
length in O(k.log(f)) while the original annotations used at
least space O(k + log{f)). Therefore, the transformation is
polynomial.

An isthm between idempotent and sirictly monotonic VCSP
is provided by Lex-VCSP: a Max-VCSP can be transformed
in a Lex-VCSP by annotating each constraint with a multi-set
containing one occurrence of the original (possibilistic) an-
notation if it is not equal to 1, or by T else. In this case, an
optimal assignment of the Lex-VCSP not only minimizes the
priority of the most important constraint violated, but also,
the number of constraint violated successively at each level
of priority, from the highest first to the lowest. The Lex-
VCSP is therefore a strong refinement of the original possi-
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bilistic VCSP, obtained in polynomial time and the problem
of finding one optimal assignment for the Max-VCSP may be
reduced to the problem of finding one optimal assignment of
the comesponding Lex-VCSP.

The partition between idempotent and strictly monotonic
VCSP dasses is also made clear at the level of polynomial
dasses: the existence of an assignment with a valuation lower
than v in a strictly monotonic binary VCSP with domains
of cardinality two is obviously NP-hard by restriction to
MAX2SAT [Garey et al, 1976]. One of the few polynomial
dasses which seems to extend to all dasses of VCSP is the
dass of CSP structured in hyper-tree (see [Dechter et al, 1990;
Shafer, 1991]).

4 Extending traditional algorithms

4.1 Local consistency

In classical binary CSP (all constraints are supposed to involve
two variables only), satisfiability defines an NP-complete
problem, k-consistency properties and algorithms [Freuder,
1982 offer a range of polynomial time weaker properties:
enforcing strong k-consistency in a consistent CSP will never
lead to an empty CSP.

From the VICSP point of view, strong k-consistency enforc-
ing defines a kind of lower bound of the CSP valuation: if
strong k-consistency enforcing yields an empty CSP, then we
know that the CSP valuation is greater than T and therefore
equal to T, else it is simply greater than X, which is always
true.

Arcconsistency (strong 2-consistency) is certainly the
most prominent level of local consistency and has been ex-
tended to Max-VCSP years ago [Rosenfeld ef al, 1976]. In
Max-VCSP, are-consistency can be defined as follows:

Definition 10 A VCSP Vs said to be arc-consistent iff (1)

there exists, for each variable, a value that defines an assign-
ment with a valuation strictly lowerthan T and (2) any assign-
ment A of one variable can be extended to an assignment A’
on two variables with the same valuation (Vp(A) = V-p (A')).

Polynomial worst-case time algorithms that enforce this prop-
erty on Max-CSP are defined in [Rosenfeld et al, 1976;
Snow and Freuder, 1990; Schiex, 1992]. These algorithms
yield an are-consistent Max-VCSP with the same valuation
distribution on complete assignments, and a lower bound on
the VICSP valuation can easily be derived from it.

Obviously, this definition could also be used in non idempo-
tent VCSP. But it is useless if we can not define the comespond-
ing arc-consistency enforcing algorithms that should compuite,
in polynomial time, a VCSP V which is both arc-consistent
and in some sense "equivalent to the original VCSP V. The
strongest level of equivalence one could achieve (stronger
than our strong equivalence notion, def. 9) is the equality of
the valuations in both VCSP for all complete assignments.

But the generalization of AC enforcing algorithms that
consists in using min and ® respectively for projection and
combination of constraints fails for non idempotent mono-
tonic VCSP as it has been shown in a similar framework
(see [Bistarelli et al., 1995), in these proceedings). The distri-
bution of valuations may be modified and the algorithm may
fail to terminate. However, it is still an open question whether
more drastic modifications of the algorithms/properties, or a



weakening of the "equivalence" notion (as def. 9) would allow

us to recover something related to arc-consistency.

4.2 Tree search
Following the works from [Shapiro and Haralick, 1981;

Schiex, 1992; Freuder and Wallace, 1992; Dubois era/., 1993],

« a stronger local consistency property will define a better
lower bound, leading to a tree search with less nodes but
possibly more computation at each node.

4.3 Extending Backtrack
Backtrack uses the local inconsistency of the current partial

we fry to extend some traditional CSP algorithms to the binary assignment as the condition for backtracking. Therefore, the

VCSP framework to solve the problem of finding a provenly
optimal assignment. The dass of algorithms which we are
interested in are hybrid algorithms that combine backirack
tree-search with some level of local consistency enforcing at
each node. These algorithms have been called look-ahead,
prospective or prophylactic algorithms. Some possible in-
stances have been considered in [Nadel, 1989]: Backirack,
Forward-Checking , Really Full Look Ahead. We consider
here that such algorithms are described by the type of lo-
cal consistency enforcing maintained at each node: check-
backward, check forward, arc-consistency or more...

In prospective algorithms, an assignment is extended un-
til either a complete assignment (a solution) is found, or the
given local consistency property is not verified on the current
assignment: backtrack occurs. The extension of such algo-
rithms to the VVCSP framework, where the problem is now an

optimization problem, relies on a transformation of the Back-

lower bound derived is the valuation of an optimal relaxation
in which the cumrent assignment is consistent. This is simply
the relaxation which precisely rejects the constraints violated
by the cument assignment (these constraints have to be re-
jected or else local inconsistency will occur; rejecting these
constraint suffices to restore the consistency of the cument
assignment in the relaxation). The lower bound is therefore
simply defined by:
® ol

cEC
A Vi 3

and is obviously computable in polynomial time.

The lower bound can easily be computed incrementally
when a new variable x; is assigned: the lower bound assoc-
ated to the father of the current node is aggregated with the
valuations of all the constraints violated by X; using ®..

The generic VCSP algorithm defined encompass all the

track tree search schema to a Depth First Branch and Boungranch and Bound" algorithms defined for Max-VCSP or E-

algorithm. DFBB is a simple depth first tree search algorithm,
which, like Backtrack, extend an assignment until either (1)
a complete assignment is reached: a new "better" solution
is found or (2) a given lower bound on the valuation of the
best assignment that can be found by extending the current
assignment exceeds the valuation of the curent best solution
found: backtrack occurs. The lower bound used defines the
algorithm. Our aim is to derive a lower bound from any given
local consistency property.

In classical CSP, seen as A-VCSP, the actual local consis-
tency property used gives the "lower bound": for example, in

Really Full Look Ahead, the inexistence of an arc-consistent

closure of the CSP guarantees that the valuation of any ex-
tension of the curent assignment will be greater than T and
therefore equal to T. However, as we pointed out earlier, no
arc-consistency enforcing algorithm is available for strictly

monotonic VCSP. We will therefore use classical local consis-

tency notions plus the notion of relaxation of a VCSP (which
defines classical CSP) to define our dass of bounds:

Property 1 Given a classical local consistency property L
lower bound on the valuation of a given VCSP V is defin
the valuation of an optimal relaxation of Pamong those t é'ﬁ

VCSP in [Schiex, 1992; Freuder and Wallace, 1992; Fargier,
19%4; Ruttkay, 1994]. Note that for Max-VCSP, thanks to
idempotency, it is useless to test whether constraints whose
valuation is lower than the lower bound associated to the
father node have to be rejected since their rejection cannot
influence the bound.

44 Extending Forward Checking

Forward-checking uses an extremely limited form of arc-
consistency: backtracking occurs as soon as all the possible
extensions of the cumrent assignment A on any uninstantiated
variable are locally inconsistent: the assignment is said non
forward-checkable. Therefore, the lower bound used is the
minimum valuation among the valuations of all the relaxations
that makes the cumrent assignment forward-checkable.

A relaxation in which A is forward-checkable (1) should
necessarily reject all the constraints violated by A itself and
(2) for each uninstantiated variable X; it should reject one of
the sefs C(x;, v) of constraints that are violated if X; is instan-
tiated with value v of its domain. Since ® is monotonic, the

imum valuation is reached by taking into accountfor each
/&b/e, the valuation of the set C(x;, v) of minimum valua-
. The bound is again computable in polynomial time since

satisfy the "local consistency" property L used (consisteﬁ)? he aggregation of (1) the valuations all the constraints

ofthe current assignment, absence of domain Wipe-out@

check-forward or arc-consistency enforcing...).
This valuation is a lower bound of the valuation of an optimal
assignment since the valuation of an optimal assignment is

also the valuation of an optimal consistent relaxation and all

the relaxations where the "local consistency" property L is
not verified are non consistent.

These lower bounds verify two interesting properties:

+ they guarantee that the extended algorithm will behave
as the original "classical" algorithm when applied to a
classical CSP seen as a A-VCSP (a classical CSP seen
as a A"VCSP has only one relaxation with a valuation
lower than T: itself);

felted by A itself (i.e., the bound used in the extension of
the backirack algorithm, see 4.3) and (2) the valuations of
the constraint in all the C(x;, v). This computation needs
less than (e.n.d) constraint checks and ® operations (e is
the number of constraints); all the minimum valuation can be
computed with less than (d.n) comparisons and aggregated
with less than n ® operations. Note that the lower bound
derived includes the bound used in the backirack extension
plus an extra component and will aways be better than the
"Backtrack" bound.

The lower bound may be incrementally computed by main-
taining during tree search, and for each value v of every unas-
signed variable x; the aggregated valuation B(v, x)) of all the
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constraints that will be violated if v is assigned to X; given
the current assignment. Initially, all B(y, X)) are equal to 1.
When the assignment A is extended to A'— A u {X, = u},
the B may be updated as follows:

B(v.z) & B(rz:)® [ete)],

®
€0, Xpmiei,m,)
AU} vinlnies o

that takes into acoount all the constraints between x; and
X; that are necessariy violated if,u is assigned to x. Upon

of n + 2n.(e + 1) variabies: (1) the first n variables z;,...,2n

to the n variables of T and have a domain of cardinality
two comresponding to the boolean values ¢ and [; (2) the next 2n.(e+
1) variables will have a domain of size i, containing the only value
. This set of variables is composed of n sets of 2e + 2 variables
{t.‘.h coabierty Jity oo ey fl}¢+1 } associated to the original variable
L.

The constraints that appear in C are composed of 3 sets: (1) a set
of e constraint corresponding to the e clauses of € on the variables
£1,..., T} (2) for each variable r; and its associated e + 1 variables
ti ;. a5t C7 of e+ 1 constraints which connect z; with ¢; ; and allaw

backtrack, the B have to be restored to their previous values, as only the tuple (t, % J; (3) for each variable z, and its associated e+1
domains in classical Forward-checking. Note that the B offer variables f;,;. & set C} of e + 1 constraints which comnect =; with

a default value heuristic: choose the value with a minimum
B.

The lower bound is simply obtained by aggregating, using
®, the valuations of all the constraints violated by the assign-
ment and all the minimum B(v, X)) for each unassigned vari-
able. The aggregated valuation v(A'), Al— AU {XJ=u}),
of all the constraints violated by the assignment A! is eas-
ily computed by taking the valuation v(A) computed on the
father node ®'ed with B(u, Xj).

Additional sophistications include deleting values v of
the domains of non instantiated variables if the aggregated
valuation of v(A') and B(v,X;) exceeds the upper bound
(see [Freuder and Wallace, 1992]). The generic VVCSP al-
gorithm defined encompass the forward-checking based al-
gorithm for Max-VCSP described in [Schiex, 1992] or the
Partial Forward-checking algorithm defined {£-_ VCSP in
[Freuder and Wallace, 1992]. Note that for Max-VCSP, and
thanks to idempotency, the updating of B can ignore con-
straints whose valuation is less than the B updated or than the
current lower-bound.

45 Trying to extend Really Full Look Ahead

Ji,; and allow only the tuple (f,4). All the constraints have the
valuation £

Figure 1: The micro-structere of the CSP

For example, Figure 1 illustrates the micro-structure of the CSP
buitfromtesst & = {m; V o, 23V 23,3 Vis}‘ The trans-
formation is dearly polynomial. Furthermore, ane may prove that
the existience of a truth assignment that satisfies at least k dauses

Really Full Look Ahead maintains arc consistency during tree of $ is equivalent to the exisence of a relaxation with a non-

search and backiracks as soon as the current assignment in-
duces a domain wipe-out: the CSP has no arc-consistent clo-
sure. For a VVCSP, the bound which can be derived from
are-consistency will be the minimum valuation among the
valuations of all the relaxations such that the current assign-
ment does not induces a domain wipe-out.

Let us consider any dass ®VCSP of the VCSP framework
such that ® is strictly monotonic and for any a, 6 € E,a,b -<
T.{e ®b) < T. Let £ be any valuation different from T and
1. The decision problem cormresponding to the computation

emply arc-oonsistent dosure and a valuation lower thef @ -+ @ £
with n.{e + 1) + (r — k) ooourences of | This shoas that
MAXSAT ac MAXAGCSP. ]
Therefore, extending Really Full Look Ahead seems diffi-
cult since computing the lower bound itself is NP-complete.
For idempotent VCSP, the bound may be computed using
polynomial time algorithms for enforcing are-consistency
[Rosenfeld et al, 1976; Snow and Freuder, 1990].

4.6 Experimentations

of the lower bound in this dass can be formulated as: The Forward-Checking algorithm hes been coded and applied
Problem 1 (MAX-ACCSP) Given such a &-VCSP and a val- to random VCSP generated as follows: a classical random
uation v, is there €' ¢ € suchthatthe relaxation CSP with 16 variables, domains of size 9 is generated as in
(X,D,C") has a non empty arc-consistent closure and a flibbe and Freuder, 1992]. A first possibilistic VCSP is

uation lowerthan v? obtained by randomly assigning a valuation J, i, § or 1 to
AC ; . each constraint. A lexicographic VCSP is then built simply

Theorem 1 MAX-AC-CSP s strongly NP c':omp lete. ) by using the transformation from possibilistic to lexicographic

Sketch of proof: The probem o NP sinoe compuing e CSP described in section 3. This VICSP is a strong refinement

arc-consistent dosure of a CSP can be dore in polynomial ime and

we have supposad that ® an~ are polynomial in the size of their

agumern's.

We give the ial fransformation from MAXSAT [Garey
et al.; 1976] to MAX-AC-CSP. An instance of MAXZAT is defined
by aset® of e 2dauses ad a positive integer k, the problem
being the existence of a consistent subset @ of cardinality larger
than k Let T be the setof n ional variables occuming
in ., We consider the binary CSP (X, D, C) which is composed
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of the original possibilistic CSP.

Because of limited space, we only report mean number
of constraint checks performed to find an optimal assign-
ment and prove optimality for a slice of the random CSP
space (see Figure 2): constraint satisfiability is fixed to 60%
and the constraint graph goes from tree structured CSP to a
complete graph. At each point 50 classical, possibilistic and
corresponding lexicographic CSP are solved with the follow-



ing heuristics: the variable which minimizes the ratic do-
mairv/degree is chosen, the value that minimizes B is chosen.
A first conclusion is that solving consistent CSP as VCSP,

200000 T T ™= T T T

J80000

B . nmn o T
ree cocstraled graph density

=1

complets
Figure 2: Number of cc for A, max and lex, VCSP

i.e., uselessly trying to anticipate a possible inconsistency,
is relatively inexpensive, even for Lex?VCSP. On inconsis-
tent CSP, possibilistic CSP are not much harder than classical
CSP, but the transition phase is apparently extended to the
left. Last, but not least, lexicographic CSP are incredibly
more difficult which again shows the computational com-
plexity of strictly monotonic ®: rationality seems expensive.
Stronger argument could probably be obtained using recent
developments in complexity theory, the transformations of
Section 3.1 defining metric reductions between optimization
problems [Krentel, 1988].

5 Conclusion

The VICSP framework enables the expression of a large num-
ber of real constraint satisfaction/optimization problems. If
idempotent VCSP have already received a lot of attention and
most classical CSP algorithms/properties have been extended
to this setting [Fargier, 1994], the case of non idempotent op-
erators, a desirable property as it has been shown, seems much
harder to tackle and few CSP algorithms have been extended
to this case [Freuder and Wallace, 1992].

Since local consistency enforcing algorithms are unavail-
able in this case, we have considered a general dass of bounds,
that could be used in a depth first branch and bound algorithm
and which have been derived from classical local consistency
properties. It appears that at the level of arc-consistency, the
problem of computing the bound is as difficult as solving a
VCSP itself and other types of bounds have to be considered.
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