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Abstract 
In order to deal with over-constrained Constraint 
Satisfaction Problems, various extensions of the 
CSP framework have been considered by taking 
into account costs, uncertainties, preferences, pri­
orities...Each extension uses a specific mathemat­
ical operator (+, max...) to aggregate constraint 
violations. 
In this paper, we consider a simple algebraic frame­
work, related to Partial Constraint Satisfaction, 
which subsumes most of these proposals and use 
it to characterize existing proposals in terms of ra­
tionality and computational complexity. We exhibit 
simple relationships between these proposals, try to 
extend some traditional CSP algorithms and prove 
that some of these extensions may be computation­
ally expensive. 

1 Introduction and related works 
The CSP framework provides a very convenient framework 
for representing and solving various problems related to AI 
and OR (scheduling, assignment, design...). When a real 
problem is casted in the CSP framework, different types of 
knowledge have to be dealt with: 

• Hard constraints: physical properties (eg. spatial or 
temporal constraints), which have to be necessarily sat­
isfied, are naturally represented as constraints; 

• Preferences: properties which should be satisfied "when 
possible" (due dates, user preferences, cost...) are either 
represented as constraints or simply ignored; 

• Uncertainties: properties that are relevant in some sit­
uations which cannot be predicted with certainty; such 
properties are then ignored, or represented as constraints. 

Thus, such soft constraints can be either ignored, which nat­
urally leads to a poor mean quality of the solutions or rep­
resented as hard constraints which may yield an inconsis­
tent CSP. A better solution is to take the violation of these 
constraints into account in a specific criterion that should be 
minimized. 

Various proposals have been made in this direction, extend­
ing classical CSP in order to express "soft" constraints with 
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a dedicated semantics in terms of priorities [Schiex, 1992; 
Borning et al„ 1989], preference degrees [Rosenfeld et a/., 
1976; Martin-Clouaire, 1992; Dubois et al., 1993; Ruttkay, 
1994], costs [Shapiro and Haralick, 1981; Dechter etal., 1990; 
Freuder and Wallace, 1992] or probabilities [Rosenfeld et al., 
1976; Fargier and Lang, 1993]. The specific nature of the 
criterion optimized allows dedicated branch and bound algo­
rithms to be defined. 

In these approaches, hard constraints and preferably satis­
fied/uncertain constraints are expressed as constraints but a 
valuation (usually a number) is associated to each constraint 
c, or each tuple t of a constraint. This valuation expresses the 
impact of violating the constraint c or using the tuple t on the 
quality of the solution. These valuations are combined using 
an operator that gives them a specific semantics. For example, 
in [Schiex, 1992], the valuations of violated constraints are 
combined using a max operator, which gives the valuations 
an interpretation in terms of priorities, while in [Shapiro and 
Haralick, 1981], the valuations are numbers combined using 
addition, with an obvious interpretation as costs. 

In this paper, rather than choosing a specific set for ex­
pressing valuations and a specific operator, we observe that 
an ordered commutative monoid (an ordered set with an oper­
ator satisfying some properties), is enough to encompass most 
existing CSP extensions. The valuations are taken from the 
set of the monoid, combined using its operator and compared 
using the order. For the sake of simplicity, we consider that 
valuations are only associated to constraints. 

Our aim is then to use this abstract framework to provide 
general algorithms and properties, to bring to light relations 
between previous proposals and to identify where the difficult 
problems are, and what property makes them difficult1. 

The next section defines the valued CSP (VCSP) frame­
work, rapidly justifies the algebraic structure used and gives 
some simple properties. Section 3 describes previous propos­
als as VCSP and shows how they relate to each other in terms 
of rationality and complexity. Section 4 considers the generic 
extension of different Backtrack based algorithms and ends 
with preliminary experiments on the related observed com­
plexities of some types of VCSP. 

This work is therefore related to [Shafer, 1991] which considers 
an axiomatic framework where hyper-tree structured problems are 
solved efficiently and to [Minoux, 1976; Bistarelli etal, 1995] where 
a semi-ring is used to study the possible generalization of shortest 
path and k-consistency enforcing algorithms respectively. 
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bilistic VCSP, obtained in polynomial time and the problem 
of finding one optimal assignment for the Max-VCSP may be 
reduced to the problem of finding one optimal assignment of 
the corresponding Lex-VCSP. 

The partition between idempotent and strictly monotonic 
VCSP classes is also made clear at the level of polynomial 
classes: the existence of an assignment with a valuation lower 
than v in a strictly monotonic binary VCSP with domains 
of cardinality two is obviously NP-hard by restriction to 
MAX2SAT [Garey et al, 1976]. One of the few polynomial 
classes which seems to extend to all classes of VCSP is the 
class of CSP structured in hyper-tree (see [Dechter et al, 1990; 
Shafer, 1991]). 

4 Extending traditional algorithms 

4.1 Local consistency 
In classical binary CSP (all constraints are supposed to involve 
two variables only), satisfiability defines an NP-complete 
problem, k-consistency properties and algorithms [Freuder, 
1982] offer a range of polynomial time weaker properties: 
enforcing strong k-consistency in a consistent CSP will never 
lead to an empty CSP. 

From the VCSP point of view, strong k-consistency enforc­
ing defines a kind of lower bound of the CSP valuation: if 
strong k-consistency enforcing yields an empty CSP, then we 
know that the CSP valuation is greater than T and therefore 
equal to T, else it is simply greater than X, which is always 
true. 

Arc-consistency (strong 2-consistency) is certainly the 
most prominent level of local consistency and has been ex­
tended to Max-VCSP years ago [Rosenfeld et al, 1976]. In 
Max-VCSP, are-consistency can be defined as follows: 
Definition 10 A VCSP V is said to be arc-consistent iff (1) 
there exists, for each variable, a value that defines an assign­
ment with a valuation strictly lower than T and (2) any assign­
ment A of one variable can be extended to an assignment A' 
on two variables with the same valuation (Vp(A) = V-p (A')). 
Polynomial worst-case time algorithms that enforce this prop­
erty on Max-CSP are defined in [Rosenfeld et al, 1976; 
Snow and Freuder, 1990; Schiex, 1992]. These algorithms 
yield an are-consistent Max-VCSP with the same valuation 
distribution on complete assignments, and a lower bound on 
the VCSP valuation can easily be derived from it. 

Obviously, this definition could also be used in non idempo­
tent VCSP. But it is useless if we can not define the correspond­
ing arc-consistency enforcing algorithms that should compute, 
in polynomial time, a VCSP V which is both arc-consistent 
and in some sense "equivalent to the original VCSP V. The 
strongest level of equivalence one could achieve (stronger 
than our strong equivalence notion, def. 9) is the equality of 
the valuations in both VCSP for all complete assignments. 

But the generalization of AC enforcing algorithms that 
consists in using min and ® respectively for projection and 
combination of constraints fails for non idempotent mono­
tonic VCSP as it has been shown in a similar framework 
(see [Bistarelli et al., 1995], in these proceedings). The distri­
bution of valuations may be modified and the algorithm may 
fail to terminate. However, it is still an open question whether 
more drastic modifications of the algorithms/properties, or a 
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weakening of the "equivalence" notion (as def. 9) would allow 
us to recover something related to arc-consistency. 

4.2 Tree search 
Following the works from [Shapiro and Haralick, 1981; 
Schiex, 1992; Freuder and Wallace, 1992; Dubois era/., 1993], 
we try to extend some traditional CSP algorithms to the binary 
VCSP framework to solve the problem of finding a provenly 
optimal assignment. The class of algorithms which we are 
interested in are hybrid algorithms that combine backtrack 
tree-search with some level of local consistency enforcing at 
each node. These algorithms have been called look-ahead, 
prospective or prophylactic algorithms. Some possible in­
stances have been considered in [Nadel, 1989]: Backtrack, 
Forward-Checking , Really Full Look Ahead. We consider 
here that such algorithms are described by the type of lo­
cal consistency enforcing maintained at each node: check-
backward, check forward, arc-consistency or more... 

In prospective algorithms, an assignment is extended un­
til either a complete assignment (a solution) is found, or the 
given local consistency property is not verified on the current 
assignment: backtrack occurs. The extension of such algo­
rithms to the VCSP framework, where the problem is now an 
optimization problem, relies on a transformation of the Back­
track tree search schema to a Depth First Branch and Bound 
algorithm. DFBB is a simple depth first tree search algorithm, 
which, like Backtrack, extend an assignment until either (1) 
a complete assignment is reached: a new "better" solution 
is found or (2) a given lower bound on the valuation of the 
best assignment that can be found by extending the current 
assignment exceeds the valuation of the current best solution 
found: backtrack occurs. The lower bound used defines the 
algorithm. Our aim is to derive a lower bound from any given 
local consistency property. 

In classical CSP, seen as A-VCSP, the actual local consis­
tency property used gives the "lower bound": for example, in 
Really Full Look Ahead, the inexistence of an arc-consistent 
closure of the CSP guarantees that the valuation of any ex­
tension of the current assignment will be greater than T and 
therefore equal to T. However, as we pointed out earlier, no 
arc-consistency enforcing algorithm is available for strictly 
monotonic VCSP. We will therefore use classical local consis­
tency notions plus the notion of relaxation of a VCSP (which 
defines classical CSP) to define our class of bounds: 
Property 1 Given a classical local consistency property L, a 
lower bound on the valuation of a given VCSP V is defined by 
the valuation of an optimal relaxation of P among those that 
satisfy the "local consistency" property L used (consistency 
of the current assignment, absence of domain wipe-out after 
check-forward or arc-consistency enforcing...). 
This valuation is a lower bound of the valuation of an optimal 
assignment since the valuation of an optimal assignment is 
also the valuation of an optimal consistent relaxation and all 
the relaxations where the "local consistency" property L is 
not verified are non consistent. 

These lower bounds verify two interesting properties: 
• they guarantee that the extended algorithm will behave 

as the original "classical" algorithm when applied to a 
classical CSP seen as a A-VCSP (a classical CSP seen 
as a A-VCSP has only one relaxation with a valuation 
lower than T: itself); 

• a stronger local consistency property will define a better 
lower bound, leading to a tree search with less nodes but 
possibly more computation at each node. 

4.3 Extending Backtrack 
Backtrack uses the local inconsistency of the current partial 
assignment as the condition for backtracking. Therefore, the 
lower bound derived is the valuation of an optimal relaxation 
in which the current assignment is consistent. This is simply 
the relaxation which precisely rejects the constraints violated 
by the current assignment (these constraints have to be re­
jected or else local inconsistency will occur; rejecting these 
constraint suffices to restore the consistency of the current 
assignment in the relaxation). The lower bound is therefore 
simply defined by: 

and is obviously computable in polynomial time. 
The lower bound can easily be computed incrementally 

when a new variable xi is assigned: the lower bound associ­
ated to the father of the current node is aggregated with the 
valuations of all the constraints violated by Xi using ®.. 

The generic VCSP algorithm defined encompass all the 
"Branch and Bound" algorithms defined for Max-VCSP or E-
VCSP in [Schiex, 1992; Freuder and Wallace, 1992; Fargier, 
1994; Ruttkay, 1994]. Note that for Max-VCSP, thanks to 
idempotency, it is useless to test whether constraints whose 
valuation is lower than the lower bound associated to the 
father node have to be rejected since their rejection cannot 
influence the bound. 

4.4 Extending Forward Checking 
Forward-checking uses an extremely limited form of arc-
consistency: backtracking occurs as soon as all the possible 
extensions of the current assignment A on any uninstantiated 
variable are locally inconsistent: the assignment is said non 
forward-checkable. Therefore, the lower bound used is the 
minimum valuation among the valuations of all the relaxations 
that makes the current assignment forward-checkable. 

A relaxation in which A is forward-checkable (1) should 
necessarily reject all the constraints violated by A itself and 
(2) for each uninstantiated variable Xi it should reject one of 
the sets C(xi, v) of constraints that are violated if Xi is instan­
tiated with value v of its domain. Since ® is monotonic, the 
minimum valuation is reached by taking into account,for each 
variable, the valuation of the set C(xi, v) of minimum valua­
tion. The bound is again computable in polynomial time since 
it is the aggregation of (1) the valuations all the constraints 
violated by A itself (i.e., the bound used in the extension of 
the backtrack algorithm, see 4.3) and (2) the valuations of 
the constraint in all the C(x i, v). This computation needs 
less than (e.n.d) constraint checks and ® operations (e is 
the number of constraints); all the minimum valuation can be 
computed with less than (d.n) comparisons and aggregated 
with less than n ® operations. Note that the lower bound 
derived includes the bound used in the backtrack extension 
plus an extra component and will always be better than the 
"Backtrack" bound. 

The lower bound may be incrementally computed by main­
taining during tree search, and for each value v of every unas-
signed variable xi the aggregated valuation B(v, xi) of all the 
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constraints that will be violated if v is assigned to Xi given 
the current assignment. Initially, all B(y, Xi) are equal to 1. 
When the assignment A is extended to A' — A u {XJ = u}, 
the B may be updated as follows: 

) 

that takes into account all the constraints between xi and 
Xj that are necessarily violated if, is assigned to xj. Upon 
backtrack, the B have to be restored to their previous values, as 
domains in classical Forward-checking. Note that the B offer 
a default value heuristic: choose the value with a minimum 
B. 

The lower bound is simply obtained by aggregating, using 
®, the valuations of all the constraints violated by the assign­
ment and all the minimum B(v, Xi) for each unassigned vari­
able. The aggregated valuation v(A'), A! — A U {XJ = u}), 
of all the constraints violated by the assignment A! is eas­
ily computed by taking the valuation v(A) computed on the 
father node ®'ed with B(u, Xj). 

Additional sophistications include deleting values v of 
the domains of non instantiated variables if the aggregated 
valuation of v(A') and B(v,Xi) exceeds the upper bound 
(see [Freuder and Wallace, 1992]). The generic VCSP al­
gorithm defined encompass the forward-checking based al­
gorithm for Max-VCSP described in [Schiex, 1992] or the 
Partial Forward-checking algorithm defined for _ VCSP in 
[Freuder and Wallace, 1992]. Note that for Max-VCSP, and 
thanks to idempotency, the updating of B can ignore con­
straints whose valuation is less than the B updated or than the 
current lower-bound. 

4.5 Trying to extend Really Full Look Ahead 
Really Full Look Ahead maintains arc consistency during tree 
search and backtracks as soon as the current assignment in­
duces a domain wipe-out: the CSP has no arc-consistent clo­
sure. For a VCSP, the bound which can be derived from 
are-consistency will be the minimum valuation among the 
valuations of all the relaxations such that the current assign­
ment does not induces a domain wipe-out. 

Let us consider any class ®-VCSP of the VCSP framework 
such that ® is strictly monotonic and for any a, 6 € E,a,b -< 

be any valuation different from T and 
The decision problem corresponding to the computation 

of the lower bound in this class can be formulated as: 
Problem 1 (MAX-AC-CSP) Given such a &-VCSP and a val­
uation v, is there a set such that the relaxation 

has a non empty arc-consistent closure and a val­
uation lower than v? 
Theorem 1 MAX-AC-CSP is strongly NP-complete. 
Sketch of proof: The problem belongs to NP since computing the 
arc-consistent closure of a CSP can be done in polynomial time and 
we have supposed that ® and are polynomial in the size of their 
arguments. 

We give the polynomial transformation from MAX2SAT [Garey 
et al.t 1976] to MAX-AC-CSP. An instance of MAX2SAT is defined 
by a set of e 2-clauses and a positive integer k, the problem 
being the existence of a consistent subset of of cardinality larger 
than k. Let be the set of n prepositional variables occurring 
in , We consider the binary CSP (X, D, C) which is composed 

For example, Figure 1 illustrates the micro-structure of the CSP 
built from the set The trans­
formation is clearly polynomial. Furthermore, one may prove that 
the existence of a truth assignment that satisfies at least k clauses 
of $ is equivalent to the existence of a relaxation with a non-
empty arc-consistent closure and a valuation lower than 
with occurrences of l This shows that 
MAX2SAT oc MAX-AC-CSP. 

Therefore, extending Really Full Look Ahead seems diffi­
cult since computing the lower bound itself is NP-complete. 
For idempotent VCSP, the bound may be computed using 
polynomial time algorithms for enforcing are-consistency 
[Rosenfeld et al, 1976; Snow and Freuder, 1990]. 

4.6 Experimentations 
The Forward-Checking algorithm has been coded and applied 
to random VCSP generated as follows: a classical random 
CSP with 16 variables, domains of size 9 is generated as in 
[Hubbe and Freuder, 1992]. A first possibilistic VCSP is 
obtained by randomly assigning a valuation J, i, § or 1 to 
each constraint. A lexicographic VCSP is then built simply 
by using the transformation from possibilistic to lexicographic 
CSP described in section 3. This VCSP is a strong refinement 
of the original possibilistic CSP. 

Because of limited space, we only report mean number 
of constraint checks performed to find an optimal assign­
ment and prove optimality for a slice of the random CSP 
space (see Figure 2): constraint satisfiability is fixed to 60% 
and the constraint graph goes from tree structured CSP to a 
complete graph. At each point 50 classical, possibilistic and 
corresponding lexicographic CSP are solved with the follow-
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i.e., uselessly trying to anticipate a possible inconsistency, 
is relatively inexpensive, even for Lex-VCSP. On inconsis­
tent CSP, possibilistic CSP are not much harder than classical 
CSP, but the transition phase is apparently extended to the 
left. Last, but not least, lexicographic CSP are incredibly 
more difficult which again shows the computational com­
plexity of strictly monotonic ®: rationality seems expensive. 
Stronger argument could probably be obtained using recent 
developments in complexity theory, the transformations of 
Section 3.1 defining metric reductions between optimization 
problems [Krentel, 1988]. 

5 Conclusion 
The VCSP framework enables the expression of a large num­
ber of real constraint satisfaction/optimization problems. If 
idempotent VCSP have already received a lot of attention and 
most classical CSP algorithms/properties have been extended 
to this setting [Fargier, 1994], the case of non idempotent op­
erators, a desirable property as it has been shown, seems much 
harder to tackle and few CSP algorithms have been extended 
to this case [Freuder and Wallace, 1992]. 

Since local consistency enforcing algorithms are unavail­
able in this case, we have considered a general class of bounds, 
that could be used in a depth first branch and bound algorithm 
and which have been derived from classical local consistency 
properties. It appears that at the level of arc-consistency, the 
problem of computing the bound is as difficult as solving a 
VCSP itself and other types of bounds have to be considered. 
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