
A Parameterised Module System
for Constructing Typed Logic Programs

P.M. Hill*
Division of Artificial Intelligence, School of Computer Studies

University of Leeds, Leeds, LS2 9JT, UK
hill@scs.leeds.ac.uk

Abstract

The paper is concerned with the design of a
module system for logic programming so as to
satisfy many of the requirements of software en
gineering. The design is based on the language
Godel which is a logic programming language
which already has a simple type and module
system. The module system described here ex
tends the Godel module system so as to include
parameterised modules. In particular, this ex
tended system allows general purpose predi
cates that depend on facts and rules for specific
applications to be defined in modules that are
independent of their applications.

1 In t roduc t ion

Logic programming has been used extensively
for representing and reasoning about knowledge
bases. For large knowledge bases we require
a means of segmenting the program so that
small component parts of the knowledge base
can be developed. These can then be used to
build larger components, and so on, unti l the
program is completed. These components are
called modules.
Modules can be researched from a number of
points of view including software engineering,
object-oriented programming, and theory con
struction. We concentrate here on the software
engineering use of modules and, in particular,
the use of modules in program construction.
There are a number of requirements for such
a module system.

1. There must be a means of combining mod
ules. This is normally achieved by allowing
one module to import another.

2. Part of a module should be protected from
unintended use by other modules. This is
called encapsulation. Usually a module is
divided into two parts. One part defines a
language that can be used by an importing

•Supported by SERC grant GR/H/79S62

module. The other part extends this lan
guage with symbols only required locally.

3. It should be possible to develop a mod
ule independently of other modules that it
does not import. Thus the import relation
is normally restricted to defining a partial
order on the modules in a program. The
order of compilation of the modules must
then respect this ordering.

4. A module should be usable in as many con
texts as possible. A module providing an
abstract data type such as a stack or a def
init ion of an abstract relation such as tran
sit ivity needs to be re-usable and not tied
to a specific application.

The reasons for having types in logic program
ming languages are well known. The struc
ture of the knowledge domain can be repre
sented directly by means of type declarations.
These declarations also define the intended use
of the symbols and therefore protect the pro
gram from syntactic errors caused by misuse
of the symbols. The language on which we
have based our ideas is the logic programming
language Godel [Hil l and Lloyd, 1992]. Godel
has a parameterised type system that supports
generic but not inclusion polymorphism. More
over, Godel has a simple module system that
supports importation, encapsulation, and sepa
rate compilation as well as allowing for modules
defining abstract data types. The Godel mod
ule system does not support re-usable modules
defining abstract relations such as transitivity.
The parameterised module system described
here extends the module system in Godel so as
to provide better facilities for defining abstract
relations in re-usable modules.
Other authors have investigated modules for
logic programming. [Miller, 1986] extends Pro-
log to provide a theory of modules over Horn
clauses. The modules are defined by nested im
plication with the "semantics based on intuit ion-
istic logic. In this module system, the modules
are dynamic in the sense that they are created
and deleted at run time. Thus a modification

874 Logic Programming

of SLDNF-resolution is required for the proce
dural semantics.
The module system given in [O'Keefe, 1985]
only deals wi th untyped programs where the
predicates are considered to be local to the
modules but the functions are assumed to be
global. Thus abstract data types cannot be
defined. A number of Prolog implementations
supporting module systems similar to that de-
scribed by O'Keefe have been marketed.
[Sannella and Wallen, 1992] describe a Prolog
module system based on the theory of modu
lar i ty underlying the Standard ML module sys
tem. This module system (extended to include
types) provides all the facilities provided by
Godel. It also allows for a form of parame-
terised modules although the parameterisation
is wi th respect to the module names instead
of the symbols. However, the main difference
is that a predicate must be defined in a sin
gle module, whereas, in our system, predicates
that are parameterised can be defined in more
than one module. The system is less flexible
than the one described here but safer in that
the predicates are better protected from unin
tended use.
[Goguen and Meseguer, 1984] present EqLog
which combines functional and logic program
ming. The language provides a parameterised
module system which appears to be similar
in function to the module system described
in [Sannella and Wallen, 1992]. However, it
is described in the framework of EqLog rather
than Prolog so that it is not immediately ap
plicable to logic programming languages.
[Antoniou and Sperschneider, 1992] divide a
module into four parts; import, export, body,
and parameter. The import and export parts
use Horn Clauses to specify the imported and
exported predicates. These are only used for
the combination of the modules. Exported
predicates are also defined in the body part
of the module. It is these definitions that are
used in the execution of the program. The pa
rameter part specifies generic predicates using
fu l l first order logic. Import ing modules sup
ply the implementation for each of these pred
icates. This must be correct wi th respect to
its specification. Since each module has to de
note a complete theory, every predicate in the
module must be completely defined within the
module. This disallows the more flexible sys
tem described in the current paper.
The paper1 is organised as follows. In the next
section, Godel's module system is explained.
We show how this can be extended to include
parameterised modules. In section 3, we give a

number of definitions associated wi th a module-
free typed logic program which are needed
later. Then, in section 4, we provide a formal
definition of a modular program wi th parame
terised modules. Finally, section 5 outlines the
intended semantics for such a program.

2 The Godel Language
The module system in Godel is best explained
by means of an example2.

EXPORT The JonesFamily.
BASE Person.
COISTAIT Eve,Pat.Bob,Tim,Mary: Person.
PREDICATE Mother ,Father : Person*Person.

LOCAL TheJonesFaai ly.
Fa ther (Bob,Pat) .
Mother(Pat ,Mary)•

EXPORT TheJonesRels.
IMPORT TheJonesFamily.
PREDICATE Anc: Person * Person.

LOCAL TheJonesRels♦
PREDICATE Par: Person * Person.
Pa r (x , y) <- Mother (x ,y) V F a t h e r (x , y) .
Anc(x .y) <- P a r (x , z) * A n c (z , y) .
Anc(x .y) < - P a r (x , y) .

In both of the above modules there are a num
ber of declarations and statements. The state
ments are formulas in the language defined by
the declarations. There are two kinds of dec
laration: language and module. The language
declarations begin wi th a key word that indi
cates the category8 of symbol being declared.
In The JonesFaai ly module, Person is declared
to be a base type; Eve, Pat, etc., are declared
to be constants of type Person; Mother and
Father are declared to be predicates with ar
guments of type Person. In Godel, a symbol
name (for a given arity and category) must have
at most one declaration in a module.
Each module is in two parts called export and
local A part begins wi th a module declara
tion stating whether it is the export or local
part and the name of the module. The export
part contains language declarations for symbols
that can be used in this module and also in
other modules that import i t . Thus the type
Person can be used in TheJonesRels as well
as in either part of The JonesFamily. Symbols
declared in the local part of a module are only
available for use wi th in this part. Hence, since
TheJonesRels declares Par in the local part,
Par cannot be used outside this module. State-
ments are only allowed in the local part of a

lA version of this paper with several longer examples
showing the use of parameterised modules is available as a
technical report. [Hill, 1993]

3Par, Rela, Anc are short for Parent, Relations, Ancestor.
3The categories are: type constructor, function, or predi

cate. A base, constant, or proposition is regarded as a con
structor, function, or predicate, respectively, of arity 0.

Hill 875

module. These define the predicates declared in
either part of the module. The JonesRels also
has a module declaration that begins wi th the
key word IMPORT. This makes all the symbols
declared in the export part of The JonesFamily
available for use in The JonesRels.
The example illustrates the many-sorted types
in Godel. However, in Godel, we can also de
fine generic functions and predicates. A com
mon example of such a data structure is a list,
which is defined to be a list of terms of a cer
tain type, but the particular type to be used
is not specified. For example, Godel provides
a system module L i s t s . This module exports
the type constructor L i s t , constant M i l , func
t ion Cons, and predicate Member with language
declarations:
COISTRUCTOR L i s t / 1 .
COISTANT M i l : L i s t (a) .
FUNCTION Cons: a * L i s t (a) - > L i s t (a) .
PREDICATE Meaber: a * L i s t (a) .
If the language included the base type I n t , then
we have the types L i s t (a) , L i s t (L i s t (a)) ,
L i s t (l n t) , L i s t (L i s t (I n t)) , etc. The tu
ples of types in a declaration is called a de-
clared type. Other types for Wil, Cons,
and Member can be obtained from their de-
clared types by means of type substitu
tions. Thus Wil also has types L i s t (I n t)
and L i s t (L i s t (I n t)) , Cons has types I n t *
L i s t (I n t) -> L i s t (I n t) and L i s t (I n t) *
L i s t (L i s t (I n t)) - > L i s t (L i s t (I n t)) , and
Member has types I n t L i s t (I n t) and
L i s t (I n t) * L i s t (L i s t (I n t)) .
A definition of a constructor C is a set of func
t ion declarations wi th range type of the form
C(t1............,tn) (or C, if the arity n is 0). A def
inition of a predicate P is a set of statements
wi th P in the head.
A Godel program for a module rn (called the
main module) is the smallest set of modules
that includes m and is closed wrt the mod
ules named in the import declarations. The
program must satisfy the following three con
ditions.

Ml The module names can be partially or
dered so that if m1 occurs in an import
declaration in a module named m then
m' < m.

M2 Every symbol appearing in (the export
part of) a module, must be declared in
or imported into (the export part of) the
module*

M3 Each constructor or predicate wi th a non-
empty definition in a module must be de
clared in that module.

These conditions enable independent com
pi lat ion and protect procedures defined in
one module from being modified by an

other. The set of modules {TheJonesFamily,
The JonesRels} form a Godel program.
In the example, a module containing general
rules about family relations was forced, by the
module system, to contain a declaration im
porting a module defining a specific family
thereby preventing its reuse wi th other fami
lies. Thus we propose to modify the above lan
guage to allow parameterised modules. In the
next example, a Rels module is parameterised
wrt the base Person and predicates Mother and
Father. Note that, here it is the TheJones
module that imports the Rels module, whereas
in the previous example, the importat ion was
in the opposite direction.

EXPORT TheJones.
IMPORT Rels(Jones,Ma,Pa).
BASE Jones.
PREDICATE Ma,Pa: Jones * Jones.
COISTAIT Eve,Pat ,Bob,T in,Mary: Jones.

LOCAL TheJones.
Pa(Bob,Pat) .
Ma(Pat,Mary).

EXPORT Re ls (Person,Mother ,Fa ther) .
BASE Person.
PREDICATE Mother ,Father : Person*Person.
PREDICATE Anc: Person * Person.

LOCAL Re ls (Person,Mother .Fa ther) .
IMPORT Trans(Person, P a r) .
PREDICATE Par: Person * Person.
Pa r (x , y) < - M o t h e r (x , y) \ / F a t h e r (x , y) .
Anc(x ,y) < - T r (x , y) .

EXPORT Trans(Po in t ,Connec t) .
BASE P o i n t .
PREDICATE Connect: Po in t * P o i n t .
PREDICATE T r : Po in t * P o i n t .

LOCAL T rans (Po in t , Connect) .
T r (x , y) < - Connec t (x , y) .
T r (x , y) < - Connect (x ,z) f t T r (z , y) .

The module name that follows the key words
EXPORT and LOCAL consists of an identifier
with 0 or more symbols as arguments. The
set of declarations for these symbols (which
must be in the export part of the module) is
called the signature of the module. For exam
ple, Rels (Person, Mother, Fa ther) is a mod
ule name wi th identifier Rels and signature
BASE Person.
PREDICATE Mother ,Father : Person*Person.
Symbols that are declared in a module but are
not in the signature are said to be completely
specified by the module. For example, the base
Jones is completely specified in TheJones.
The writ ten module is the initial module, / n -
stances of these modules can be obtained by

876 Logic Programming

subst i tut ing new symbols for symbols occur-
r ing in the module name. The substituted sym
bols must be distinct f rom symbols completely
specified by the in i t ia l module. Thus the fol-
lowing module is imported into Re ls (Person ,
Mother , F a t h e r) .

EXPORT T rans (Pe rson ,Pa r) .
BASE Person.
PREDICATE Par : Person * Person.
PREDICATE T r : Person * Person.

LOCAL T rans (Pe rson ,Pa r) .
T r (x , y) < - P a r (x f y) .
T r (x , y) < - P a r (x , z) & T r (z . y) .

Note that if a symbol is completely speci-
fied in a module it is completely specified
in every module that is an instance of this
module. Thus the predicate Tr is com
pletely specified by Trans (P o i n t , Connect)
and T rans (Person ,Par) . (Trans(Person,Tr)
could not occur in an import declaration in
a module since Tr is completely specified in
Trans (Pe rson , Connect).)
We define a modular program in a similar way
to the definit ion of a Godel program above. In
formally, it is a set of in i t ia l modules wi th a
main module, closed wr t the identifiers in the
impor t declarations and satisfying similar mod
ule conditions to those given above.

M l * The identifiers in the module names can be
part ia l ly ordered so that if I' is an identi
fier in an impor t declaration in a module
w i th identifier I then J7 < /.

M 2 * Every symbol name appearing in (the ex
port part of) a module m, must either be
declared in (the export part of) m or be
completely specified by the export part of
a module that is imported into (the export
part of) m.

M 3 * Each constructor or predicate name de
clared in or imported into a module and
completely specified by an imported mod
ule n may only have a non-empty definition
in n or in imported modules that are also
imported into n.

The set of modules
{The J ones,
Rels (Pe rson , Mother , F a t h e r) ,
Trans (P o i n t , Connect) } ,
together form a modular program for the
The Jones.
The previous example shows the way the mod
ule system works where each module imports
no more than one module and each of the con
structors and predicates is completely defined
w i th in a module. However, the parameterised
module system allows for mult iple inheritance
and also for a predicate or constructor defini
t ion to be spl i t between several modules. To

i l lustrate this, we define another family named
Hi l l . Due to marriage between the families,
we create a new fami ly w i th name HilUones.

EXPORT T h e H i l l J o n s s (H i l l J o n e s , M a , P a) .
BASE H i l l J o n e s .
PREDICATE Ma, Pa: H i l U o n e s * H i l l Jones.
IMPORT TheJones(H i l l Jones ,Na ,Pa) ,

T h e H i l l s (H i l J o n e s ,Ma, Pa) .
COISTAIT Pas: H i l U o n e s .

LOCAL T h e H i l l Jones (H i l U o n e s , Ma, Pa) .
Ma(Mary,Pam).
Pa(Tom,Paa).

EXPORT T h e H i l l s (H i l l , M a , P a) .
BASE H i l l .
PREDICATE Ma,Pa: H i l l * H i l l .
IMPORT Rsls(Hi l l ,Ma,Pa) .
COMSTAIT Robin,J i l l ,Tom: H i l l .

LOCAL TheHi l ls (Hi l l ,Ma,Pa) .
Pa(Robin,Ton).

Hill 877

878 Logic Programming

Hill 879

References
[Antoniou and Sperschneider, 1992] G. Anto-

niou and V. Sperschneider. Modular i ty for
logic programs. In Proceedings of ALPUK-
92, pages 3-14. Ci ty University, London,
1992.

[Goguen and Meseguer, 1984]
J.A. Goguen and J. Meseguer. EQLOG:
Equality, types and generic modules for logic
programming. Journal of Logic Program
ming, 1:68-131, 1984.

[Hi l l and Lloyd, 1992] P.M. Hi l l and J.W.
Lloyd. The Godel programming language.
Technical Report CSTR-92-27, Department
of Computer Science, University of Bristol,
UK, 1992.

[Hi l l and Topor, 1992] P.M. Hi l l and R.W.
Topor. A semantics for typed logic programs.
In F. Pfenning, editor, Types in Logic Pro
gramming, pages 1-62. M I T Press, 1992.

[Hi l l , 1992] P.M. Hi l l . Data structures and
typed logic programs. In Bernd Neumann,
editor, Proceedings of the 10th European
Conference on Artificial Intelligence, V i
enna, Austria, pages 109-113. John Wiley &
Sons, 1992.

[Hi l l , 1993] P.M. H i l l . A parameterised mod
ule system for constructing typed logic pro
grams. Technical Report 93.12, School of
Computer Studies, 1993.

[Miller, 1986] D.A. Mil ler. A theory of modules
for logic programming. In IEEE Symposium
on Logic Programming, pages 106-115,1986.

[O'Keefe, 1985] R.A. O'Keefe. Towards an al
gebra for constructing logic programs. In
Proceedings of the Symposium on Logic Pro
gramming, Boston, pages 152-160. IEEE,
1985.

[Sannella and Wallen, 1992] D.T.Sannella and
L.A. Wallen. A calculus for the construc
t ion of modular Prolog programs. Journal
of Logic Programmimg, 12(1 & 2):147-177,
1992.

880 Logic Programming

