
Using Inferred Disjunctive Constraints 
To Decompose Constraint Satisfaction Problems* 

Eugene C. Freuder 
Paul D. Hubbe 

Department of Computer Science 
University of New Hampshire 

Durham, New Hampshire 03824, U.S.A. 

Abstract 

Constraint satisfaction problems involve finding 
values for problem variables that satisfy 
constraints on what combinations of values are 
permitted. They have applications in many areas of 
artificial intelligence, from planning to natural 
language understanding. A new method is proposed 
for decomposing constraint satisfaction problems 
using inferred disjunctive constraints. The 
decomposition reduces the size of the problem. 
Some solutions may be lost in the process, but 
not all. The decomposition supports an algorithm 
that exhibits superior performance. Analytical and 
experimental evidence suggests that the algorithm 
can take advantage of local weak spots in globally 
hard problems. 

1 Introduction 

Constraint satisfaction problems (CSPs) involve finding 
values for a set of problem variables consistent with a set 
of constraints on which combinations of values are 
permitted. They arise often in artificial intelligence, in 
fields ranging from temporal reasoning to machine vision. 

This paper proposes a new technique that utilizes inferred 
disjunctive constraints to guide decomposition of a CSP. 
The decomposition reduces the size of the problem. The 
technique was used in an algorithm that achieved up to an 
order of magnitude improvement on difficult problems 
when compared with one of the most successful algorithms 
in the literature. The advantage of the new technique often 
increased as problem difficulty increased. The technique 
appears particularly well suited to taking advantage of local 
"weak spots" in globally difficult problems. 

The following observation expresses the key idea: Given 
a solvable problem and a value v for a variable V, if there is 
no solution involving v, then there must be a solution 
involving a value inconsistent with v. 

The basic problem decomposition can be illustrated with 
a simple example. Suppose we have a problem where one 
of the variables, X, is constrained by one other variable Y. 
Suppose value a for X is not consistent with values b and 

•This material is based on work supported by the National 
Science Foundation under Grant No. LRI-9207633. 

c for Y, i.e. the combination (a b) and the combination (a c) 
are not allowed, but a is consistent with all other values. 
Suppose further that the domain of every variable, the set 
of possible values, is D; so a is consistent with D-{b c} for 
Y. 

We claim that we can divide and conquer by reducing the 
problem to two subproblems. One subproblem wil l be the 
same as the original except the domain of X wil l be {a} and 
the domain of Y wil l be D-{b c}. The other subproblem 
wil l be the same as the original except the domain of X 
wil l be D-(a} and the domain of Y wi l l be (b c). Notice 
that we are pruning away a subproblem, where the domain 
of X is D-{a) and the domain of Y is D-{b c) , that may 
contain solutions. However, we shall see that we can 
guarantee that not all solutions are pruned away. 

Section 2 further develops the basic decomposition 
technique, and proves that it wi l l not lose all solutions. 
Section 3 embeds this technique in an algorithm for solving 
CSPs. Section 4 adds some important refinements to the 
decomposition and the algorithm. Section 5 investigates the 
potential of the technique analytically, Section 6 
experimentally. 

2 Decomposition 

We wil l assume in this paper that we are dealing with 
binary CSPs, where constraints involve two variables, 
which we wil l say share the constraint. In a constraint 
graph a binary CSP is represented with vertices for 
variables and edges for constraints. If variables share a 
constraint the corresponding vertices share an edge in the 
constraint graph, and thus the variables are called 
neighbors. 

The weak inferred disjunctive constraint (weak IDC) 
decomposition of problem P around value v for variable V 
consists of the fol lowing subproblems: The first 
subproblem, Sv, is the same as P except the domain of V 
is restricted to {v} and the domains of the other variables are 
restricted to values consistent with V. Then, for each 
variable Vi that is a neighbor of V, we form a subproblem, 
S V i , that wi l l be the same as P except that the domain of V 
wil l be its domain in P minus v, and the domain of Vi 
wil l consist of those values inconsistent with v. 

We wi l l call the first subproblem, the precluded 
subproblem, because values are deleted using a preclusion 

254 Constraint Satisfaction Problems 



process [Golumb and Baumert, 1965], and the rest the 
neighbor subproblems. We wi l l call a subproblem empty 
if any of its variable domains is empty. 

This decomposition generalizes the basic insight 
presented in Section 1. It derives from the inferred 
disjunctive constraint: if there is a solution, either there is 
a solution containing v, or there is one not containing v, 
but containing a value inconsistent with v. 

Theorem /: If a problem P has a solution, given a weak 
inferred disjunctive constraint decomposition of P around 
any value v for any variable V, one of the subproblems will 
have a solution that is a solution to P. 

Proof: Either P has a solution involving v for V, or it 
does not. If it does, that solution clearly wil l be a solution 
of the subproblem that contains v for V. (The removal of 
values inconsistent with v does not remove any solutions.) 
If it does not, then any solution must contain at least one 
value inconsistent with v for V. Let us say that for a 
solution s the inconsistent value is v' for variable V'. The 
subproblem SV wil l contain the solution s. • 

Note that there may be solutions to P that are not 
solutions to any subproblem. Such solutions would neither 
contain v nor any values inconsistent with v. However, this 
does not matter if we do not require all the solutions. 

3 Algori thm 

The decomposition process can be imbedded in a CSP 
algorithm. We start with a very basic implementation. 

Weak IDC Algorithm: 
Stack <- (initial problem, empty solution) 
Until Stack empty: 

Pop (Problem, Solution) from Stack 
If Problem has only one variable, U 

then Exit with Solution plus value(s) of U 
else 

Decompose around first value, v, in first 
variable, V 

For each non-empty neighbor subproblem, N: 
Push (N, Solution) onto Stack 

If the precluded subproblem, Sv, is not empty 
then 

SV <- SV minus V 
Push (Sv, Solution plus v) onto Stack 

This algorithm conducts a depth-first search through a 
"decomposition tree". The root is the original problem. The 
children of a node are produced by decomposing around the 
first value, v, in the list of potential values for the first 
variable, V, in the list of variables for the parent problem. 
The precluded subproblem is reduced further by eliminating 
V. 

Children are always smaller than parents (with fewer 
values), thus each branch of the tree terminates (assuming 
finite domains). Leaf nodes are identifiable as solvable (they 
involve only one variable, and any value for this variable 
can be combined with the stored Solution to form a 
complete solution to the problem) or unsolvable (they 
produce no non-empty children). Theorem 1 ensures that a 
solvable problem cannot produce only unsolvable leaf 

nodes. 
The algorithm can be viewed as a combination of the 

standard forward checking algorithm [Haralick and Elliott, 
1980], and the decomposition process. The local 
inconsistency removal in the first subproblem corresponds 
to a forward checking step. 

4 Refinements 

4.1 Further Domain Reduction 

Consider the decomposition of P around v for V. In SVi, 
for each neighbor V i , we can reduce the domain of Vj , for 
all j< i , to the set of values consistent with v. We call the 
this decomposition that uses this further reduction the 
inferred disjunctive constraint (IDC) decomposition. We 
call the set of neighbor subproblems after this further 
reduction the excised subproblems. 

Theorem 2: If a problem P has a solution, given an IDC 
decomposition of P around any value v for any variable V, 
one of the subproblems wi l l have a solution that is a 
solution to P. 

Proof: SV1, which remains unchanged from the weak 
IDC decomposition, considers all the possibilities that 
exclude v and include values for V1 inconsistent with v. 
Thus values for V1 inconsistent with v can be ignored in 
SVk for k > l . SV2 where the domain of V1 is now reduced 
to the values consistent with v, considers all the 
possibilities that exclude v and include values for V2 
inconsistent with v, except those where the value for V1 is 
also inconsistent with v; but those were considered in SVl-
Thus values for V2 inconsistent with v can be ignored in 
SVk for k >2. This line of reasoning carries on to establish 
the validity of the overall reduction. • 

4.2 Order ing Heuristics 

The algorithm presents new opportunities for ordering 
heuristics: choosing a variable domain in which to look for 
a value to decompose around, choosing the value, choosing 
the order in which subproblems are placed on the stack, 
maintaining the subproblems on an ordered agenda rather 
than a stack. 

The variable ordering heuristic we test below is based on 
a well-known heuristic that we wi l l refer to here as 
dynamic minimal domain variable ordering. This is a 
variable ordering heuristic that chooses a variable to 
instantiate with minimal current domain size. It has proven 
especially effective with forward checking, where preclusion 
effects changes in the current domain size of variables 
[Haralick and El l iott , 1980], We wi l l refer to the 
combination of forward checking and dynamic minimal 
domain variable ordering as the FC-D algorithm, and use it 
as a basis for comparison in Section 6. 

We use this heuristic to a limited degree in conjunction 
with IDC. After taking a precluded subproblem (or the 
initial problem) off the stack, the variable V from which we 
choose a value to decompose around is a variable with 
minimal current domain size. Otherwise we wil l simply 

Freuder and Hubbe 255 



choose the first remaining uninstantiated variable to process 
next. Note that for the remainder subproblem, by choosing 
the first uninstantiated variable to process we automatically 
get the effect of minimal domain size ordering, as this first 
variable wil l be V, whose domain has just been reduced 
further in size while the other domains have remained 
unchanged. We wi l l refer to our our ordering strategy for 
IDC as dynamic minimal domain precluding variable 
ordering. 

We also experimented a bit with a simple, static value 
ordering scheme. The problem was preprocessed to obtain 
an inconsistency count for each value v: this is the total 
number of values for all other variables inconsistent with v. 
During search when choosing a value for a variable V, a 
value in the current domain of V with a minimal 
inconsistency count is chosen. Call this the inconsistency 
count value ordering heuristic. When we test it below we 
add the constraint checks required to compute the 
inconsistency counts into the total search effort. 

4.3 Conservative Decomposition Strategies 

When a problem P is popped from the stack we can choose 
not to perform an IDC decomposition. Instead, after 
choosing a value v for a variable V, we can decompose into 
only two subproblems. The first is the same precluded 
subproblem as in the IDC decomposition; it includes v and 
the values consistent with v. (As before in the context of 
the algorithm we can further reduce the subproblem by 
removing V, adding v to the associated solution.) The 
second, which we wil l call the remainder subproblem, is 
the same as P except that the domain of V excludes v. If we 
always decompose in this way we end up with a non
standard description of the standard forward checking 
algorithm. Thus we call this decomposition the forward 
checking decomposition. 

We identify two conditions under which we will choose 
this more conservative decomposition strategy, in effect 
reverting to forward checking in these two circumstances. 
(Note that if we always used the forward checking 
decomposition and our dynamic minimal domain precluding 
variable search order that we would have an algorithm 
equivalent to FC-D.) 

The first condition is that the precluded subproblem is 
empty (one of the variable domains is empty). In this case 
we end up only putting one subproblem onto the stack, and 
taking it right back off. So, in effect, we simply move 
right on to consider the next value for V. We wil l term the 
principle of avoiding IDC decomposition when the 
precluded subproblem is empty the empty domain 
decomposition heuristic. Theorem 5 below implies that 
IDC decomposition wil l not reduce the problem more than 
forward checking decomposition when the precluded 
subproblem is empty. 

The second condition under which we choose the simpler 
decomposition utilizes an estimate of the relative 
complexity of the subproblems produced by the IDC 
decomposition versus those produced by the forward 
checking decomposition. 

Since both decompositions include the precluded 

subproblem, we compare the excised subproblems from the 
IDC decomposition with the remainder subproblem from 
the forward checking decomposition. The size of a 
problem, as measured by the number of possible value 
combinations, is a reasonable heuristic estimate of problem 
complexity here, and is obtained by simply multiplying the 
domain sizes for the variables. The size of the remainder 
subproblem is compared with the sum of the sizes of the 
excised subproblems. (Actually we use the "consistent 
subproblem", defined below, to simplify the computations.) 

We wil l show below that the former wil l in fact never be 
smaller. However, it proved desirable only to choose the 
IDC decomposition when the latter is smaller than the 
former to more than a specified degree. We will refer to this 
as our partial IDC reduction heuristic. 

This heuristic employs an IDC choice factor. We 
experimented a bit with different IDC choice factors. The 
results reported below are for a conservative factor of 1.8, 
meaning we only use IDC decomposition when it results in 
more than an 80% decrease compared with the size of the 
remainder subproblem. More frequent use sometimes 
produced even more dramatic improvements, but was less 
consistent overall. We hope to discover strategies that wil l 
permit us to take even greater advantage of IDC 
decomposition problem size reduction. Estimates of 
complexity other than problem size may be of use here. 

4.4 Reducing the Stack Size 

We do not have to generate and store all the subproblems of 
an IDC decomposition at once. We can generate and push 
onto the stack one subproblem at a time along with 
information needed to generate the rest. We will refer to this 
as our stack reduction strategy. 

4.5 The IDC Algor i thms 

We define the IDC algori thm to be the weak IDC 
algorithm described in section 3, together with the further 
domain reduction of full IDC decomposition and the empty 
domain decomposition heuristic. The IDC algorithm wil l 
be our primary target of analysis in Section 5. We define 
the IDC-PDS algorithm to be the IDC algorithm plus 
partial IDC reduction, the dynamic minimal domain 
precluding variable ordering and the stack reduction strategy. 
The IDC-PDS algorithm, with an IDC choice factor of 1.8, 
will be the primary target of experimental investigation in 
Section 6. 

In both Section 5 and Section 6 we compare IDC-based 
algorithms with algorithms based on forward checking This 
is useful both because of the interesting relationship 
between the two approaches and because FC-D is one of the 
most successful algorithms in the literature. 

5 Analysis 

5.1 Reducing the Problem Size 

We arrived at the IDC decomposition by observing that if 
there was no solution, for a solvable problem, involving a 

256 Constraint Satisfaction Problems 



value v for a variable V, that there must then be a solution 
for a subproblem where at least one variable domain is 
restricted to those values inconsistent with v. Consider, on 
the other hand, the subproblem where the domain of V 
contains every value but v and every other variable domain 
is restricted to just those values consistent with v. Call 
this the consistent subproblem for v. 

In the precluded subproblem the domain of V is reduced 
to v and the domains of all the other variables are reduced to 
the values consistent with v. In the consistent subproblem 
the domain of V is reduced by v, v is omitted; the other 
variables again contain all the values consistent with v. 

Theorem 3: Given a problem P and a value v, we can 
prune the consistent subproblem for v from consideration 
without losing all solutions. 

Proof. If there is a solution, S, to the consistent 
subproblem, clearly we can substitute v for the V value in 
S and still have a solution. • 

Theorem 2 says that a problem can be viewed as a sum 
of subproblems, and the weak IDC algorithm demonstrated 
how we can process a sum of subproblems by processing 
each in turn. Theorem 3 says that a problem can be viewed 
as a difference of problems. However, we do not know how 
to process a difference of problems, how to utilize this 
insight algorithmically. On the other hand, this new view 
is clearly guaranteed to reduce the original problem, by 
eliminating some possibilities from consideration, or at the 
very least not make it larger. For all we know at this point 
the IDC decomposition could increase the number of 
possibilies to consider by adding some redundancy; the 
weak IDC decomposition can do so in fact. We wi l l now 
adopt a third view that wi l l tie together these other two 
demonstrating that the IDC decomposition in fact produces 
exactly the original problem minus the consistent 
subproblem (and minus the values removed by preclusion). 
Thus the IDC algorithm is an algorithmic method of 
pruning away the consistent subproblem. 

Theorem 4: IDC decomposition around a value v for 
variable V prunes the consistent subproblem for v from 
consideration. 

Proof. We create a "decomposition tree" as follows. First 
we divide the original problem into two "children", the 
precluded problem and the remainder problem. Next we 
divide the remainder problem into two children, 
subproblems that are the same except that in one the 
domain of a neighbor of V contains only the values 
inconsistent with v and in the other the domain of the 
neighbor contains only the values consistent with v. (This 
decomposition is reminiscent of Mackworth's NC 
algorithm [Mackworth, 1977].) Next we divide the second 
child into two subproblems, each of which is the same 
except for the domain of another neighbor of V. One 
subproblem wi l l contain the values of that neighbor 
inconsistent with v, another the values consistent with v. 
We continue this process until we have run through all the 
neighbors. When we are done the leaf nodes of the tree of 
problems we have created wil l together represent exactly 
those combinations of values represented in the original 
problem, minus the combinations removed by preclusion, 
and solving the leaf node subproblems will be equivalent to 
solving the original subproblem. Examination of the leaf 

nodes w i l l reveal that they are precisely the IDC 
decomposition subproblems plus the consistent 
subproblem. • 

Further consideration of the decomposition tree used in 
the proof of Theorem 4 suggests an alternative proof of 
Theorem 2, and supports the following theorem. 

Theorem 5: The size of the IDC decomposition around a 
value v (the sum of the sizes of the subproblems) is less 
than the size of the forward checking decomposition by an 
amount exactly equal to the size of the consistent 
subproblem. 

Thus the IDC decomposition always reduces the size of 
the problem. In the extreme case where the consistent 
subproblem is empty we still have preclusion. In the 
extreme case where there is no preclusion, IDC in effect 
removes the entire remainder problem. 

5.2 Comparison wi th Forward Checking 

When considering a value v for a variable V, forward 
checking prunes away all the values inconsistent with v. As 
we have seen, IDC wi l l in addition prune away a 
subproblem where the domain of V omits v and the 
domains of all the other variables contain all the values 
consistent with v. 

Consider, for example, the classic coloring problem, 
which involves assigning colors to countries on a map so 
that neighboring countries do not have the same color. 
Suppose we have four countries and three colors (red, green, 
blue) and we are considering the first color, red, for the first 
country, A. Forward checking eliminates all possibilities 
that include coloring a neighbor of A red. Our new 
technique eliminates at least an additional 16 possibilities, 
all 16 different ways of choosing a color for each country 
from the two choices green and blue. 

Computing the IDC decomposition requires no more 
constraint checks than computing the precluded 
subproblem, except possibly when v is inconsistent with 
every value for some variable. In this case the empty 
domain decomposition heuristic avoids IDC decomposition. 
IDC decomposition can prune away more possibilities than 
forward checking decomposition, which may save constraint 
checks. However, more pruning does not guarantee fewer 
constraint checks. In particular, if there is more than one 
solution IDC might prune away a solution that forward 
checking wi l l find early. (However, if there is only one 
solution, that cannot happen.) 

The preclusion of forward checking with a value v does 
more pruning if v is inconsistent with more values. The 
consistent subproblem removal of IDC decomposition on 
the other hand does more pruning if v is consistent with 
more values. Thus IDC decomposition nicely 
complements, or completes, forward checking. 

For ordering heuristics, the fact that forward checking 
preclusion and IDC consistent problem pruning are 
complementary unfortunately means that they wil l benefit 
most from complementary heuristics. Forward checking 
benefits most when a lot of values for uninstantiated 
variables are inconsistent with the value v for a variable V 
used for preclusion. IDC consistent problem pruning 

Freuder and Hubbe 257 



benefits most (the size of the pruned consistent subproblem 
is greatest) when a lot of values for uninstantiated variables 
are consistent with the value v for a variable V used for 
IDC decomposition. The domain size of the variable V is 
irrelevant to the amount of pruning accomplished by 
forward checking, while the larger the domain size the larger 
the consistent subproblem pruned by IDC (assuming there 
arc no empty domains in the consistent subproblem). 

Small domain sizes for V and extensive preclusion is 
consistent with the important "fail first" principle for 
variable ordering [Haralick and Elliott, 1980]. In particular 
heuristics favoring minimal domain size, such as those used 
in FC-D and IDC-PDS further the fail first principle 
without hindering preclusion, but at some cost to IDC 
consistent problem pruning. For value ordering on the other 
hand, the "succeed first" principle suggests choosing least 
constraining values first. Those wi l l be least useful for 
preclusion, but w i l l have the largest consistent 
subproblems, and thus benefit most from IDC consistent 
problem pruning. 

5.3 Weakly Constrained Values 

The consistent subproblem for value v for variable V, 
pruned away by IDC, wil l be largest when v is weakly 
constrained, i.e. v is consistent with most of the other 
values for each of the other variables. Of course, if all 
values in a problem are weakly constrained the problem 
itself wi l l be easy to solve. However, IDC should be able 
to take advantage of individual weakly constrained values in 
a problem of high overall difficulty. IDC is also prepared to 
take advantage of weaknesses that arise during processing of 
the problem. If v is inconsistent with many values for U in 
the original problem, these values, or U itself, may not be 
present in a subproblem. 

5.4 Space Complexi ty 

We are not trading time for exponential space here. The size 
of the stack has an 0(n2) bound in the IDC algorithm. 
With the stack reduction strategy the bound is only O(n). 

6 Experiments 

We used 99-variable test problems, generated for us by 
Richard J. Wallace. IDC-PDS, with an IDC choice factor of 
1.8, was compared with FC-D. We measured constraint 
checks, a standard measure of CSP algorithm performance, 
and cpu time. A constraint check asks whether a pair of 
values satisfies the relevant constraint, e.g. whether the 
combination of a for X and b for Y is permitted by the 
constraint between X and Y. Cpu time was measured on a 
Sun SPARCstation ELC. 

6.1 Random Problems 

Al l the problems had 99 variables, each with four values in 
its domain. Which pairs of variables shared a constraint and 
which pairs of values were permitted by the constraints was 
determined by an "expected value" random generation 

procedure. 
For each problem we determined which pairs of variables 

shared a constraint, i.e. which constraints were present in 
the constraint graph, as follows. First we randomly chose 
98 edges that connected the variables in a tree structure. 
This was to ensure that no problems were decomposable 
into two independent problems. Then an expected value was 
set for the constraint density which measures the fraction 
of possible additional constraints present. A density of 1 
corresponds to a completely connected constraint graph, all 
possible edges present; a density of 0 corresponds to a tree-
structured constraint graph. In these 99-variable problems, 
each .01 of additional density corresponds roughly to adding 
50 edges and increasing the average degree of a vertex in the 
constraint graph by 1. For example, starting from a tree 
structure, with an average degree of approximately 2, a 
density of .06 corresponds to an average of about 8 
constraints associated with each variable. Once an expected 
density value was chosen, we considered each possible pair 
of variables not already sharing a constraint in the initial 
tree structure. A constraint between each such pair was 
included with probability equal to the expected density. 

The pairs of consistent values that define each constraint 
were determined in a similar random, probabalistic manner. 
Constraint tightness measures the fraction of possible 
value pairs excluded by a constraint. Al l problems had an 
expected tightness value of .25: each possible pair of values 
was considered for each constraint, and excluded with a 
probability of .25. (The problem generator did not permit 
all possible pairs to be excluded; but it did permit zero pairs 
to be excluded: this did not occur very often, but would 
have been better avoided also.) Notice that this allows for 
some variation in the actual tightness of individual 
constraints, and certainly in the tightness of individual 
values with respect to individual constraints. The 
constraints for coloring problems with four colors have the 
same tightness, but they are much more uniform in 
structure. 

6.2 Vary ing Di f f icu l ty by Vary ing Density 

In the first set of experiments we generated problems 
supplying varying values for expected density, from .03 to 
.09, looking for "really hard" problems, employing recent 
experimental and theoretical insights [Checseman et al., 
1991; Williams and Hogg, 1992]. The results are shown in 
Figure 1. Each point plotted is the average number of 
constraint checks for five problems, with the exception of 
an "outlier" omitted from the .03 average. The hardest 
problem set is at an expected density value of .06. Thus the 
average degree of the constraint graphs variables in the 
hardest problem set is approximately 8. (Put another way, 
what Wil l iams and Hogg [1992] call the critical 
connectivity appears to lie near 8.) 

The IDC-PDS averages are better than the FC-D averages 
for each set, except at .03 where the two are equal. The 
IDC-PDS improvement increases to over 100% on the 
hardest set. The outlier at .03 took about 17 mill ion 
constraint checks with FC-D and about 15 million with 
IDC-PDS. However, when tested with FC-D and IDC-PDS, 

258 Constraint Satisfaction Problems 



Freuder and Hubbe 259 



with the inconsistency count value ordering heuristic, only 
8545 checks were required by each, most of which went to 
computing the inconsistency counts. 

6.3 Weak Spots 

For each problem in the .06 set we processed problem 
variables to create a sequence of problems, introducing local 
"weak spots" into the original problem, either by removing 
or by weakening constraints. As we shall see, such local 
weak spots can be present in problems of extreme overall 
difficulty. Indeed, to a degree, it appears that local weak 
spots can actually increase overall problem difficulty. For 
forward checking, we might expect this, as forward 
checking around weakly constrained values produces 
relatively little pruning. 

Figure 2 plots constraint checks for problems in one of 
these sequences. The first problem represented is one of the 
original .06 problems. We added weak spots to this 
problem, one at a time, by repeatedly picking a variable V, 
at random, that was involved in more than three constraints, 
and then randomly removing constraints involving V until 
only three remained. Each problem in Figure 2, after the 
first, includes five more weak spots. 

We observe a "complexity peak" induced, interestingly 
enough, by added weak spots. And we observe that IDC-
PDS dramatically "flattens" the complexity peak. IDC-PDS 
does very well both on the hardest problem that has no 
solution (15 weak spots added) and on the hardest problem 
that does have solutions (30 weak spots added). 

IDC-PDS does have more overhead than FC-D, but IDC-
PDS can achieve a significant advantage in cpu time as 
well. In this sequence IDC-PDS has better cpu time on four 
of the seven problems, including the most difficult one: 
12,162 seconds to 20,831 seconds. Bear in mind also that 
we are conducting constraint checks here by consulting 
efficiently hash-coded tables. In a real problem constraint 
checks could require significant calculation, which is one 
reason they are a significant measure of CSP algorithm 
performance. Finally, observe that we are not trading 
constraint checks for some other form of table lookup, as 
can occur in "memory-based" algorithms. 

Figures 3 through 6 shows the constraint check results 
for similarly induced problem sequences starting with the 
other four problems in the .06 set. Four of the five 
sequences exhibit a weakness-induced complexity peak, 
where IDC-PDS performance excels (though in two 
problems effort initially decreases). In one of these 
problems IDC-PDS completely eliminates the peak present 
in the FC-D results. In that sequence IDC-PDS achieves a 
full order of magnitude improvement over FC-D (70,528 
constraint checks to 870,307 constraint checks) on a 
problem with solutions. The fifth sequence, the only one 
where even the original problem has solutions, exhibits no 
significant weakness-induced peak; however, IDC-PDS 
superiority is still manifest. (Note that the scale on the 
constraint checks axis differs in the four graphs.) 

In Figure 5 the effort for the last problem in the sequence 
is not plotted. FC-D tested at close to 5 million constraint 
checks while IDC-PDS with an IDC choice factor of 1.5 

tested at close to 50 million constraint checks. However, 
again adding the inconsistency count value ordering 
heuristic made a dramatic difference: FC-D and IDC-PDS 
both required only 7,773 checks, all but 797 of them for 
computing the inconsistency counts! This problem does 
have solutions. Adding the value ordering for the problem 
at the plotted peak in this sequence (15 weak spots added), 
where there are no solutions, has a relatively small effect, 
as one might expect. (The value ordering does not always 
trivialize problems with solutions. The last problem in the 
sequence in Figure 2 becomes much simpler with the value 
ordering, but still requires almost 100,000 constraint checks 
with FC-D, and about half that with IDC-PDS.) 

We also conducted a few experiments where weak spots 
were added by loosening rather than removing constraints, 
changing the local tightness rather than the local density. 
Problem sequences were generated where each successive 
problem contained five more weak spots, generated in this 
new way, choosing variables randomly for creating weak 
spots. To create a weak spot at a variable all the constraints 
involving the variable had consistent pairs, chosen at 
random, added as needed for the tightness of each constraint 
times the degree of the variable to be less than one. (If this 
required adding all possible pairs to a constraint, the 
weakening was not carried out. If none of the constraints 
needed and permitted weakening, another variable was 
chosen at random to work on instead.) 

We observed a complexity peak pattern similar to the one 
induced by removing constraints. For a sequence beginning 
with the original problem used in Figure 2, but inducing 
weak spots in this alternative manner, the peak occured at 
10 added weak spots and went up to close to 50 million 
constraint checks for FC-D, but only about 10 million for 
IDC-PDS. 

One might expect that many realistic problems wil l be 
inhomogeneous enough to contain some weak spots. 
Ironically, it appears that local weakness can dramatically 
increase overall problem difficulty. Thus a technique, like 
IDC decomposition, that is able to exploit weaknesses in 
hard problems seems highly desirable. 

References 

[Cheeseman et al., 1991] P. Cheeseman, B. Kanefsky and 
W. Taylor. Where the really hard problems are. 
Proceedings of the Twelfth International Joint 
Conference on Artificial Intelligence. 331-337. 

[Golumb and Baumert, 1965] S. Golumb and L. Baumert. 
Backtrack programming. JACM 12. 516-524. 

fHaralick and Elliott, 1980] R. Haralick and G. Elliott. 
Increasing tree search efficiency for constraint satisfaction 
problems. Artificial Intelligence 14. 263-313. 

[Mackworth, 1977] A. Mackworth. On reading sketch 
maps. Proceedings of the Fifth International Joint 
Conference on Artificial Intelligence. 598-606. 

[Williams and Hogg, 1992] C. Williams and T. Hogg. 
Using deep structure to locate hard problems. 
Proceedings of the Tenth National Conference on 
Artificial Intelligence. 472-477. 

260 Constraint Satisfaction Problems 


