
A Formal Mode l

Jens Chr is tensen
Computer Science Department

Stanford University
Stanford, CA 94305

jens@cs.stanford.edu

A b s t r a c t

In this paper, we describe a formal semantic
model that applies to many "classical" planning
systems. This gives a unifying framework in
which to study diverse planners, and motivates
formal logics that can be used to study their
properties. As an example of the model's ut i l ­
ity, we present a general t ruth criterion which
tests for the necessary t ruth of a proposition at
arbitrary points in the planning process.

1 I n t r o d u c t i o n

In this paper we investigate a formal model for a broad
class of A . I . planning systems. We define the range of
applicability of our model later; here, we simply note
that it is relevant to such well-known "classical" planners
as STRIPS [Fikes and Nilsson, 1971], NOAH [Sacerdoti
1977], NONLIN [Tate, 1977], T W E A K [Chapman, 1987
and SIPE [Wilkins, 1988]. Each of these planners has its
own very distinctive features. But there are also many
similarities, and we can define a useful formal model of
the concept of "plan" used by all of them.

The model can be used to provide semantics for much
of the planning process. That is, we can develop a logic
which is interpreted as making assertions about plans.
Relative to the model and the logic, claims about par-
ticular plans or planning systems can be proven true or
false. Section 3 gives a concrete application of this: we
develop a truth criterion for a broad class of planning
systems. The concept of a t ru th criterion (TC) is due to
Chapman [Chapman, 1987]. In fact, many of the ideas
in this paper were inspired by Chapman's work and so
we spend the rest of this introduction contrasting the
goals of his work and ours.

In general, a planner's t ru th criterion is the test it uses
to check whether a particular proposition holds at some
point in a proposed plan. It is easy to see how impor­
tant this test is. For example, we are always interested

*The first author was partially supported by NASA
Grant NCC2-494 and by Texas Instruments Contract No.
7554900. The second author is supported by an IBM Grad­
uate Fellowship.

Present address: Teknekron, 530 Lytton Ave, Palo Alto,
CA 94301.

246 Automated Reasoning

Classical Planning*

A d a m Grove
Computer Science Department

Stanford University
Stanford, CA 94305

grove@cs.stanford.edu

in whether the goal propositions wi l l be true after execu­
tion of a proposed plan. A truth criterion tells the plan­
ner when to stop planning for the current goal. Aside
from computational efficiency, there are three desirable
properties a t ruth criterion can have. First, it should
be correct: when it tells us that a goal is achieved, we
can safely stop planning (for this goal). Second, a TC
can be sufficient: if the goal is achieved, it wi l l tell us.
Sufficiency makes planning faster, because we can avoid
unnecessary work. Finally, and somewhat more vaguely,
a t ruth criterion may be informative. By this we mean
that, when a proposition fails to hold, the TC gives us
information about why it does not and we can use this
to guide further planning steps.

Chapman presented a model for one particular plan­
ning system (his " T W E A K " formalism). Using this
model, assertions about plans such as "proposition p nec-
essarily holds after execution of action a" are given a
precise meaning. Chapman gave an interesting test for
the necessary t ru th of a proposition which is, relative
to his model, provably correct and sufficient. Further-
more, this TC is informative; it is possible to "read off"
all the useful modifications we might make to a plan
to ensure the proposition's t ru th . Given any reasonable
search strategy that explores the suggested possibilities,
the resulting planner wi l l be correct and complete.1

We also give a precise semantic model for planning,
in Section 2. However, whereas Chapman discusses just
one, quite restrictive, planning system, we discuss a gen­
eral theory for all "classical" planners. This reflects our
goal to develop a theory that is useful for comparing
many different planners. In contrast, Chapman is able
to develop a new, straightforward, and provably correct
planner by taking advantage of features particular to the
system he studies.

We discuss a logic for describing and reasoning about
our models. The idea of using a logic was implicit in
Chapman's work, but never developed; for although he
attempts to give a version of his TC in "logical nota-
t ion" , the formula presented contains minor errors and
so does not quite correspond to his criterion. This has no
effect on his results, because the real criterion, its proof

1That is, it always finds a working plan if this is possi
ble, and never terminates with a plan that doesn't satisfy all
goals.

and all discussion of its application, are in English. But
in general, a well-defined formal language is useful be­
cause it can prevent ambiguity. Furthermore, we can
use a formal logic to give syntactic proofs of assertions
about the planner (such as the correctness of a proposed
t ruth criterion). Theorem proving is much easier to au­
tomate than subtle semantic arguments like those used
by Chapman.

2 The M o d e l and Logic

Our model applies to planning systems that depend on a
single-agent and situation-based world model and work
by refining nonlinear plans. Before presenting the model
itself, we look at these issues.

Plans are constructed for agents that operate in some
well-defined environment. We only consider planners
whose world model is like the situation calculus ([Mc­
Carthy, 1968]). More precisely, we suppose that a par­
ticular state of the world is described by a set of objects,
often called propositions, which throughout we consider
to come from some fixed set V? We say that a propo-
sition holds at, or is true in , a state if it is a member
of that state. We assume that basic operations in the
world, the actions, are functions mapping one state to
another resulting state (i.e., they are functions from sub­
sets of V to subsets of V). Of the class of all possible
actions, A, the agent we are planning for can presumably
execute some known subset, say R. If the agent executes
a sequence of actions starting in state I, the final state
must be what results from applying the composition of
the actions to /.

The purpose of a planner is to find a sequence of ac­
tions in R which ensures that, when the world contains
a given collection of initial propositions, then after ex­
ecution it is certain that all of some given collection of
goal propositions holds. We wil l call any sequence of
actions, together with the set /, a complete plan. We
are interested in planners that proceed by considering
sets of complete plans, and slowly narrow the size of the
sets unt i l all the complete plans that remain guarantee
the goals (i.e., this is the least-commitment approach to
planning). Because it is never practical to manipulate
arbitrary sets of plans, a planner always uses some com­
pact representation system, which we wi l l call the plan
representation language, to describe such sets. Here, we
make the assumption that the planners use a language
which describes nonlinear plans. A nonlinear plan is
given by:

ICV, which is the init ial state.

• A fixed, finite collection P of plan steps A1,..., An.
Each plan step is associated wi th a collection of ac­
tions in R (an action-set). Where there can be no
confusion, we wil l blur the distinction between a
plan step and its associated action-set.

• A partial order on plan steps, -<.

2 Propositions are often thought of as being formulas in
some formal logic. However, it is not always possible or useful
to take this view.

• A set of constraints on the n plan steps. The con­
straints specify which combinations of actions in
A1 x A2 x , . , x An are actually permitted.

It is easy to see how a nonlinear plan describes a set of
complete plans: it stands for all such plans obtainable
by extending -< into a total order on the Ai, and then
choosing (subject to the constraints) one action from
each Ai. The term "nonlinear" is used because we need
only give a partial order on the plan steps.

Virtual ly all the planners mentioned in Section 1 ma­
nipulate some form of nonlinear plan.3 Wi th in the
framework described so far (which has just concerned
itself with representations) planners differ in three main
ways. First, many planners only allow certain special
types of actions to occur in R. A very common restric­
tion on R is what we call the STRIPS assumption ([Fikes
and Nilsson, 1971]), Under this assumption, an action
a € R must have a very simple structure: in any situ­
ation, a has the effect of first removing some fixed set
of propositions (traditionally called the delete list) then
adding all of some other fixed set (the add list). Sec­
ond, plan representation languages differ in how they
describe the action-sets associated with a plan step in
a partial plan. One common technique, used in Chap-
man's system among others, allows action "schemas"
such as Puton(x.y) which stand for all actions obtained
instantiating the variables x ,y ; we discuss such systems
in somewhat more detail later. Finally, planners can
differ significantly in their constraint schemes (for ex­
ample, Chapman uses a simple language that constrains
the values his variables can be instantiated to). Note
that the constraint language and the action-set repre­
sentation language are interrelated.

In our model, these differences are represented within
a uniform framework. We first define a partial plan,
which is a tuple { I , P , -<) (where each component is as
described above). The structure of partial plans can be
viewed as a plan representation language, but it is very
weak because we make no provision for constraints. Our
model is based on the observation that a nonlinear plan
in a general language, possibly wi th constraints, can be

3Some of these planners, such as NOAH, NONLIN , and
SIPE, also make use of a hierarchical structure on actions
That is, there is a concept of "high level" actions and /or
propositions, which can be expanded into a more detailed
and more complex objects at a lower abstraction level. Our
model does not capture this aspect of a plan representation
system. This does not invalidate its usefulness however, be-
cause, as Wilkins [Wilkins, 1988] points out, all hierarchical
planners operate on a series of planning levels, where on any
one level the degree of abstraction never changes. With in one
level our model is usually applicable. Nevertheless, giving a
deeper theory for these concepts would probably be the most
interesting extension to the model we are proposing here.

4 In addit ion, we sometimes specify a set of preconditions,
which are propositions that must be true before an action is
regarded as being truly executable. Considerations of exe-
cutabil i ty are ignored in the model we present (and, in effect,
this is also true for Chapman's model). During planning, pre­
conditions become (sub-)goals that must be achieved, and so
typically only influence the goal selection component of the
planner.

Christensen and Grove 247

From any ni, there are a large number of potential
specializations (formed by constraining the partial order
in some way, and restricting the action-sets associated
with some of the plan steps). However, not all these
possibilities can be considered by the planner. This is
because the planner has a limited language for describ­
ing action-sets, so that not all possible subsets of R can
be captured, and also because of constraints. This is
perhaps the key point: the main differences between dif­
ferent planners' representations system can be captured
by differences in how the specialization relation works.

We can define a formal language, which makes asser­
tions about plan-structures. Because the model is so
general, the language covers many planning systems. To
shorten the presentation, we introduce our language in­
formally. The key features are:

• The language is a based on a sorted first-order logic,
with the usual connectives, and quantification for
the two sorts plan-steps and propositions. At any
node in the model, the domain of plan-steps is, of
course, just the plan-steps at the node, and the do­
main of the sort propositions is P.5

*

i

L

i

I

5 Note that these domains are independent of the node
in a plan-structure. In a presentation of the formal proper­
ties of the logic (for which we have insufficient space here)
this observation has some important consequences (such as
the truth of the "Barcan" axiom; see [Hughes and Cresswell,
1968]).

248 Automated Reasoning

precedes b.

• There is one unary predicate Initially on propo­
sitions. If p is a term denoting a proposition,
Initially(p) is true at a node if the denotation of p
is in I (for that node).

♦ There are three binary predicates, Asserts, Denies
and Holds which relate propositions to plan steps.
First suppose that, n is a complete plan, say
(I ,P , -<) , and that p denotes a proposition in V.
Then Holds(p, a) is true at n if the proposition de­
noted by p is true immediately prior to the plan
step denoted by a. This is well defined because of
the nature of complete plans, and because we know
the init ial state I. In a complete plan, Asserts(a,p)
is true if Holds(p, a) is false but p holds immediately
after a is executed. (Denies is defined similarly; p
must be true before o but false afterwards.)
When n is not complete, the denotations of Asserts,
Denies and Holds can be defined arbitrarily.

(In this axiom, Ensures(z,p) is simply an abbreviation
for Asserts(x,p) V Holds(p,x).) This axiom can be un­
derstood as showing that the constraint language in
T W E A K is rather weak; it cannot be used to constrain
a group of actions to assert p, except in the rather tr ivial
case where one particular action is guaranteed to assert
p anyway. We have insufficient space to explain in detail
how such axioms arise in Chapman's system. In brief,
Chapman's action-set language makes use of "proposi­
tions" with variables, which are essentially placehold­
ers that are instantiated during planning. For example,
in the "blocks world" a plan step might be associated
with action schema Pickup(x), with add list Holding(x)
(and perhaps some preconditions, such as Clear(x)). This
stands for all actions in R obtainable by instantiating x
to a real object,6 It turns out to be very important
for Chapman's TC that variables can be instantiated in
infinitely many ways; and the reason for this is essen­
tially to guarantee the t ruth of axioms like the above,
although this can appear quite mysterious unti l Chap­
man's proof is read. In our language we express many
of the important properties Chapman required without
using planner specific features such as variables. It is
not possible to reprove Chapman's TC exactly in our
system, because his TC makes use of features specific to
T W E A K . However, a TC which is very similar in spirit
can be proven just by making assumptions, such as the
formula just given, whose t ru th can be tested for any
nonlinear planning system.

3 T r u t h Cr i ter ion

Chapman proved that his T W E A K t ruth criterion is cor­
rect and sufficient for his model. However, as he points
out, this criterion fails for any planning system just
somewhat more expressive than his. One basic short­
coming of Chapman's t ruth criterion is its requirement
that, whenever a proposition necessarily holds at some
point in the plan, it is necessarily asserted by one partic­
ular plan step. But in general, it is possible for multiple
plan steps to act together to guarantee the t ruth of a
proposition, even where no one step alone is enough.

In this section, we discuss a new t ru th criterion that
is correct and sufficient for any planning system within
the scope of our model.

3.1 P resen ta t i on

Intuit ively our t ru th criterion can be read as follows.
A proposition p is necessarily true immediately before
plan step a iff, in all specializations of the plan, two
conditions hold; (1) If a is necessarily the first plan step,
then it is necessarily the case that p is init ially true, and
(2) whenever there is a plan step c that is necessarily

6Note that expressions like Holdtng(z) are part of the plan
representation language, and are meaningless unless consid­
ered in the context of the planning process. This contrast
with true propositions in V, for example Holding(BLOCKA),
which can be used to describe the state of the world. In lan-
guages like Chapman's, it is important to keep in mind that
"variables" like x are just formal objects used by the planner,
and do not connote any formal first-order quantification,

Christensen and Grove 249

that if the above expression does not hold in a special­
ization then CTC(p, a) must hold there.

Second, we only need to examine the weakest such spe-
cializations. A specialization is weaker than another if
the latter is a specialization of the former. If CJC(p,a)
does not hold in such a specialization we can stop, since
in that case CTC(p, a). If CTC(p, a) does hold in
such a specialization then it holds for all specializations
of that specialization. For a proof of this, see [Chris-
tensen, 1990]. Using these two properties we arrive at
the algorithm in figure 1.

The algorithm for checking the t ruth criterion re­
quires time exponential in the length of the plan. Chap­
man proved that determining Holds(p, a) in any system
where the schema representation is sufficiently strong
to include conditionals is NP-Hard.7 It is therefore ex­
tremely unlikely that any polynomial time algorithm wil l
ever be found for verifying the t ruth criteria of such sys-
tems. However, our algorithm wil l often be considerably
more efficient than the application of the Holds axiom
to all the completions of a plan, as we shall see shortly.
Furthermore, as we discuss later, it represents a good
starting point in the development of incomplete or un­
sound algorithms which might overcome the complexity
barrier.

3.3 R e s t r i c t e d Ranges of Var iab les

Chapman gives an example of an extension to T W E A K
that causes his TC to fai l . Recall that T W E A K uses
"variables", which are placeholders the planner uses
to reason about groups of actions. If T W E A K is ex­
tended with a mechanism for restricting the range of
variables, then Chapman's TC is no longer sufficient.
For example, in T W E A K , if CLEAR(x) is denied by a
T W E A K plan step, this step can be specialized into in­
finitely many actions which deny propositions that sat­
isfy the CLEAR(i) schema, e.g. CLEARS) , CLEAR(B),
CLEAR(C), CLEAR(Harry), etc., where A, B, C, and
Harry are constants. Restricting the range of variables
might be desirable to ensure that variables adhere to a
certain type, e.g. we might wish to restrict variable x to
the values {A, B, C}, thereby eliminating the possibility
CLEAR(Harry).

Suppose we have the plan in figure 2. In this example,
Punch(Bob, John) necessarily holds in the final situation.

Conditional actions, which can be modeled in our system,
will be described later.

250 Automated Reasoning

Figure 2: Example where Chapman's TC fails.

However, it is not necessarily asserted by any one step,
and so fails Chapman's t ruth criterion.

On the other hand, our t ru th criterion succeeds. Fur­
thermore, our t ru th criterion algorithm requires that
only two specializations of the plan be checked. To see
this let us step through the algorithm. We would be­
gin by evaluating Holds(Punch(Bob, John),C). Clearly,
there are no specializations where C is the first plan
step. However, there are two distinct weakest specializa­
tion such that there is a plan step immediately before C
and that plan step does not possibly assert Punch(Bob.
John). These are simply the specializations where the
constraints y Bob and x John have been respec­
tively added. We wil l examine the former specialization.
In this specialization plan step B must not possibly deny
Punch(Bob, John). This is in fact so, since plan step B
does not deny anything.

Furthermore, we want Holds(Punch(Bob, John),B).
This is checked with another application of the TC.
There are no specializations where B is the first plan
step. However, in this case there are no specializations
where there is a plan step immediately before B that does
not possibly assert Punch(Bob, John). To guarantee this
would mean adding either x Bob or y John. If we
add the former then both y and x must denote John,
which is not allowed. If we add the latter then y can't
possibly denote any object, which is also disallowed.

The evaluation of the other specialization proceeds in
an analogous manner. As can be seen from stepping
through the algorithm, it is somewhat reminiscent of
resolution theorem proving, in that we continually at­
tempt to disprove the proposition unti l a contradiction
is found. It is different from resolution theorem proving
in that it is guaranteed to terminate if a contradiction is
not found in this manner.

3.4 C o n d i t i o n a l A c t i o n s

Figure 3 shows a plan which, while simple, cannot be
represented by T W E A K , or by most other classical plan­
ning systems. One exception is [Pednault, 1988], who
presents a plan language that supports conditional ac­
tions and a method for synthesizing linear plans using
these actions.

The actions in figure 3 might be described as being
conditional because their effect depends on the state
of the world in which they are executed. In contrast

To test if Holds(p,a):
For every weakest specialization such that there
is a plan step c necessarily immediately before a
which does not possibly assert p:

Check that c does not possibly deny p
and necessarily Holds(p, c).

For any weakest specialization such that a is
the first plan step:

Check that Initially(p) necessarily holds.

Figure 1: Algor i thm for checking t ruth criterion.

STRIPS-like actions have a constant effect (in any world
where their preconditions are true).8 In the figure, one
can always go to the beach; there are no executabil-
ity preconditions as such. However, nothing wil l be
achieved at night. This is a very simple conditional ac­
tion representation and nothing in our model precludes
UE from having arbitrari ly complex conditional actions;
our model allows any action that is a function mapping
states to states.

The algorithm for determining our t ru th criterion
would begin by considering one of the specializations
where there is an action immediately before the fi­
nal situation which does not possibly assert HaveG-
oodTime. Assume it considers Goto(Beach) first. We
must constrain -day to be true, or else HaveGood-
Time would possibly be asserted. Then, we verify that
Goto(Beach) cannot deny HaveGoodTime and recurse
on Holds(HaveGoodTime,Goto(Party)). However, there
are no specializations with an action immediately be-
fore Goto(Party) where HaveGoodTime is not possibly as-
serted. If there were then both —"night and -day must
hold, which is impossible.

3,5 Conc lus ion a n d F u r t h e r W o r k

In practical terms, one might argue, our t ruth criterion
is not useful since the algorithm for verifying it appears
to be inherently exponential. This contrasts with Chap­
man's t ruth criterion, which can be verified in polyno-
mial time. However, the value of a polynomial time t ruth
criterion is somewhat questionable, given that the plan­
ning process is sti l l undecidable. Furthermore, T W E A K
achieves efficiency in the t ru th criterion at the cost of
limitations in expressive power.

As domains become more complex it becomes less and
less likely that the T W E A K representation can be used
to adequately model them. For example," T W E A K is
unable to efficiently model HACKERS cubical blocks
world, and completely unable to solve problems whose
solution requires conditional actions.

There is an interesting tradeoff between expressivity
of a planning language and the search process using that
language. As expressivity is added to the language the
number of choice points at each plan node in the search

5The idea of modifying the STRIPS paradigm, to allow
for "preconditions" which determine action's effects, can be
found occasionally in the literature; for instance, these are
Pednault's secondary preconditions.

tree increases. Furthermore, efficient t ru th criteria such
as Chapman's are less likely to exist. On the other hand,
because of the finer resolution greater expressivity al­
lows, over-commitment is more easily avoided, and so
the amount of backtracking can be reduced. Also, the
increased expressivity allows more knowledge to be en­
coded at each node, thereby allowing for possibly more
informed choices. So it is far from clear what the op­
t imal point along this spectrum of expressivity is. We
note that much of planning research has concerned itself
with developing planners which support powerful plan
representations.

Of course, such planners are generally not based on
provably correct t ru th criteria. Our t ruth criterion could
in principle be used instead. However, for efficiency rea­
sons, it is likely that the actual algorithm used would
be tailored to take advantage of the planner's specific
plan representation. It might even be the case that com­
pleteness, or even in some circumstances, correctness, is
sacrificed in order to achieve efficiency gains. However,
the designer of the t ruth criterion would have a sound
and complete reference point from which to start, and
would therefore be well aware of the corners that were
cut to achieve efficiency. It remains to be seen what
the appropriate tradeoff between efficiency, correctness,
completeness, and expressive power of the plan represen­
tation is.

References

[Chap man, 1987] Chapman, D., "Planning for Conjunc­
tive Goals," Artificial Intelligence, 32 (July 1987) 333-
378.

[Christensen, 1990) Christensen, J. , "Automatic Ab­
straction in Planning," PhD Dissertation, Stanford
University, 1990.

[Fikes and Nilsson, 1971] Fikes, R. E. and Nilsson, N,
J. , "STRIPS: A new Approach to the Application of
Theorem Proving to Problem Solving," Artifictal In-
telligence, 2(3-4) (1971) 189-208.

[Hughes and Cresswell, 1968] Hughes, G.E, and Cress-
well, M.J., "An Introduction to Modal Logic,11

Methuen and Co, London, England, 1968.

[McCarthy, 1968] McCarthy, J. , "Programs with Com­
mon Sense," in: Minsky, M. (Ed.), Semantic Informa­
tion Processing, M I T Press, Cambridge, MA, 1968.

[Pednault, 1988] Pednault, E., "Synthesizing Plans that
Contain Actions with Context-Dependent Effects,"
Computational Intelligence, 4(4) (1988) 356-372.

[Sacerdoti, 1977] Sacerdoti, E., A Structure for Plans
and Behavior, Elsevier, North-Holland, New York,
1977.

[Tate, 1977] Tate, A., "Generating Project Networks;
Proceedings IJCAI-77, Cambridge, Massachusetts,
(1977) 888-893.

[Wilkins, 1988] Wilkins, D. E., Practical Planning, Mor
gan Kaufman, San Mateo, California, 1988.

Christensen and Grove 251

