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A b s t r a c t 

In this paper, we describe a formal semantic 
model that applies to many "classical" planning 
systems. This gives a unifying framework in 
which to study diverse planners, and motivates 
formal logics that can be used to study their 
properties. As an example of the model's ut i l ­
ity, we present a general t ruth criterion which 
tests for the necessary t ruth of a proposition at 
arbitrary points in the planning process. 

1 I n t r o d u c t i o n 

In this paper we investigate a formal model for a broad 
class of A . I . planning systems. We define the range of 
applicability of our model later; here, we simply note 
that it is relevant to such well-known "classical" planners 
as STRIPS [Fikes and Nilsson, 1971], NOAH [Sacerdoti 
1977], NONLIN [Tate, 1977], T W E A K [Chapman, 1987 
and SIPE [Wilkins, 1988]. Each of these planners has its 
own very distinctive features. But there are also many 
similarities, and we can define a useful formal model of 
the concept of "plan" used by all of them. 

The model can be used to provide semantics for much 
of the planning process. That is, we can develop a logic 
which is interpreted as making assertions about plans. 
Relative to the model and the logic, claims about par-
ticular plans or planning systems can be proven true or 
false. Section 3 gives a concrete application of this: we 
develop a truth criterion for a broad class of planning 
systems. The concept of a t ru th criterion (TC) is due to 
Chapman [Chapman, 1987]. In fact, many of the ideas 
in this paper were inspired by Chapman's work and so 
we spend the rest of this introduction contrasting the 
goals of his work and ours. 

In general, a planner's t ru th criterion is the test it uses 
to check whether a particular proposition holds at some 
point in a proposed plan. It is easy to see how impor­
tant this test is. For example, we are always interested 

*The first author was partially supported by NASA 
Grant NCC2-494 and by Texas Instruments Contract No. 
7554900. The second author is supported by an IBM Grad­
uate Fellowship. 

Present address: Teknekron, 530 Lytton Ave, Palo Alto, 
CA 94301. 

246 Automated Reasoning 

Classical Planning* 

A d a m Grove 
Computer Science Department 

Stanford University 
Stanford, CA 94305 

grove@cs.stanford.edu 

in whether the goal propositions wi l l be true after execu­
tion of a proposed plan. A truth criterion tells the plan­
ner when to stop planning for the current goal. Aside 
from computational efficiency, there are three desirable 
properties a t ruth criterion can have. First, it should 
be correct: when it tells us that a goal is achieved, we 
can safely stop planning (for this goal). Second, a TC 
can be sufficient: if the goal is achieved, it wi l l tell us. 
Sufficiency makes planning faster, because we can avoid 
unnecessary work. Finally, and somewhat more vaguely, 
a t ruth criterion may be informative. By this we mean 
that, when a proposition fails to hold, the TC gives us 
information about why it does not and we can use this 
to guide further planning steps. 

Chapman presented a model for one particular plan­
ning system (his " T W E A K " formalism). Using this 
model, assertions about plans such as "proposition p nec-
essarily holds after execution of action a" are given a 
precise meaning. Chapman gave an interesting test for 
the necessary t ru th of a proposition which is, relative 
to his model, provably correct and sufficient. Further-
more, this TC is informative; it is possible to "read off" 
all the useful modifications we might make to a plan 
to ensure the proposition's t ru th . Given any reasonable 
search strategy that explores the suggested possibilities, 
the resulting planner wi l l be correct and complete.1 

We also give a precise semantic model for planning, 
in Section 2. However, whereas Chapman discusses just 
one, quite restrictive, planning system, we discuss a gen­
eral theory for all "classical" planners. This reflects our 
goal to develop a theory that is useful for comparing 
many different planners. In contrast, Chapman is able 
to develop a new, straightforward, and provably correct 
planner by taking advantage of features particular to the 
system he studies. 

We discuss a logic for describing and reasoning about 
our models. The idea of using a logic was implicit in 
Chapman's work, but never developed; for although he 
attempts to give a version of his TC in "logical nota-
t ion" , the formula presented contains minor errors and 
so does not quite correspond to his criterion. This has no 
effect on his results, because the real criterion, its proof 

1That is, it always finds a working plan if this is possi 
ble, and never terminates with a plan that doesn't satisfy all 
goals. 



and all discussion of its application, are in English. But 
in general, a well-defined formal language is useful be­
cause it can prevent ambiguity. Furthermore, we can 
use a formal logic to give syntactic proofs of assertions 
about the planner (such as the correctness of a proposed 
t ruth criterion). Theorem proving is much easier to au­
tomate than subtle semantic arguments like those used 
by Chapman. 

2 The M o d e l and Logic 

Our model applies to planning systems that depend on a 
single-agent and situation-based world model and work 
by refining nonlinear plans. Before presenting the model 
itself, we look at these issues. 

Plans are constructed for agents that operate in some 
well-defined environment. We only consider planners 
whose world model is like the situation calculus ([Mc­
Carthy, 1968]). More precisely, we suppose that a par­
ticular state of the world is described by a set of objects, 
often called propositions, which throughout we consider 
to come from some fixed set V? We say that a propo-
sition holds at, or is true in , a state if it is a member 
of that state. We assume that basic operations in the 
world, the actions, are functions mapping one state to 
another resulting state (i.e., they are functions from sub­
sets of V to subsets of V). Of the class of all possible 
actions, A, the agent we are planning for can presumably 
execute some known subset, say R. If the agent executes 
a sequence of actions starting in state I, the final state 
must be what results from applying the composition of 
the actions to /. 

The purpose of a planner is to find a sequence of ac­
tions in R which ensures that, when the world contains 
a given collection of initial propositions, then after ex­
ecution it is certain that all of some given collection of 
goal propositions holds. We wil l call any sequence of 
actions, together with the set /, a complete plan. We 
are interested in planners that proceed by considering 
sets of complete plans, and slowly narrow the size of the 
sets unt i l all the complete plans that remain guarantee 
the goals (i.e., this is the least-commitment approach to 
planning). Because it is never practical to manipulate 
arbitrary sets of plans, a planner always uses some com­
pact representation system, which we wi l l call the plan 
representation language, to describe such sets. Here, we 
make the assumption that the planners use a language 
which describes nonlinear plans. A nonlinear plan is 
given by: 

ICV, which is the init ial state. 

• A fixed, finite collection P of plan steps A1,..., An. 
Each plan step is associated wi th a collection of ac­
tions in R (an action-set). Where there can be no 
confusion, we wil l blur the distinction between a 
plan step and its associated action-set. 

• A partial order on plan steps, -<. 

2 Propositions are often thought of as being formulas in 
some formal logic. However, it is not always possible or useful 
to take this view. 

• A set of constraints on the n plan steps. The con­
straints specify which combinations of actions in 
A1 x A2 x , . , x An are actually permitted. 

It is easy to see how a nonlinear plan describes a set of 
complete plans: it stands for all such plans obtainable 
by extending -< into a total order on the Ai, and then 
choosing (subject to the constraints) one action from 
each Ai. The term "nonlinear" is used because we need 
only give a partial order on the plan steps. 

Virtual ly all the planners mentioned in Section 1 ma­
nipulate some form of nonlinear plan.3 Wi th in the 
framework described so far (which has just concerned 
itself with representations) planners differ in three main 
ways. First, many planners only allow certain special 
types of actions to occur in R. A very common restric­
tion on R is what we call the STRIPS assumption ([Fikes 
and Nilsson, 1971]), Under this assumption, an action 
a € R must have a very simple structure: in any situ­
ation, a has the effect of first removing some fixed set 
of propositions (traditionally called the delete list) then 
adding all of some other fixed set (the add list). Sec­
ond, plan representation languages differ in how they 
describe the action-sets associated with a plan step in 
a partial plan. One common technique, used in Chap-
man's system among others, allows action "schemas" 
such as Puton(x.y) which stand for all actions obtained 
instantiating the variables x ,y ; we discuss such systems 
in somewhat more detail later. Finally, planners can 
differ significantly in their constraint schemes (for ex­
ample, Chapman uses a simple language that constrains 
the values his variables can be instantiated to). Note 
that the constraint language and the action-set repre­
sentation language are interrelated. 

In our model, these differences are represented within 
a uniform framework. We first define a partial plan, 
which is a tuple { I , P , -<) (where each component is as 
described above). The structure of partial plans can be 
viewed as a plan representation language, but it is very 
weak because we make no provision for constraints. Our 
model is based on the observation that a nonlinear plan 
in a general language, possibly wi th constraints, can be 

3Some of these planners, such as NOAH, NONLIN , and 
SIPE, also make use of a hierarchical structure on actions 
That is, there is a concept of "high level" actions and /or 
propositions, which can be expanded into a more detailed 
and more complex objects at a lower abstraction level. Our 
model does not capture this aspect of a plan representation 
system. This does not invalidate its usefulness however, be-
cause, as Wilkins [Wilkins, 1988] points out, all hierarchical 
planners operate on a series of planning levels, where on any 
one level the degree of abstraction never changes. With in one 
level our model is usually applicable. Nevertheless, giving a 
deeper theory for these concepts would probably be the most 
interesting extension to the model we are proposing here. 

4 In addit ion, we sometimes specify a set of preconditions, 
which are propositions that must be true before an action is 
regarded as being truly executable. Considerations of exe-
cutabil i ty are ignored in the model we present (and, in effect, 
this is also true for Chapman's model). During planning, pre­
conditions become (sub-)goals that must be achieved, and so 
typically only influence the goal selection component of the 
planner. 
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From any ni, there are a large number of potential 
specializations (formed by constraining the partial order 
in some way, and restricting the action-sets associated 
with some of the plan steps). However, not all these 
possibilities can be considered by the planner. This is 
because the planner has a limited language for describ­
ing action-sets, so that not all possible subsets of R can 
be captured, and also because of constraints. This is 
perhaps the key point: the main differences between dif­
ferent planners' representations system can be captured 
by differences in how the specialization relation works. 

We can define a formal language, which makes asser­
tions about plan-structures. Because the model is so 
general, the language covers many planning systems. To 
shorten the presentation, we introduce our language in­
formally. The key features are: 

• The language is a based on a sorted first-order logic, 
with the usual connectives, and quantification for 
the two sorts plan-steps and propositions. At any 
node in the model, the domain of plan-steps is, of 
course, just the plan-steps at the node, and the do­
main of the sort propositions is P.5 

* 

i 

L 

i 

I 

5 Note that these domains are independent of the node 
in a plan-structure. In a presentation of the formal proper­
ties of the logic (for which we have insufficient space here) 
this observation has some important consequences (such as 
the truth of the "Barcan" axiom; see [Hughes and Cresswell, 
1968]). 
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precedes b. 

• There is one unary predicate Initially on propo­
sitions. If p is a term denoting a proposition, 
Initially(p) is true at a node if the denotation of p 
is in I (for that node). 

♦ There are three binary predicates, Asserts, Denies 
and Holds which relate propositions to plan steps. 
First suppose that, n is a complete plan, say 
( I ,P , -< ) , and that p denotes a proposition in V. 
Then Holds(p, a) is true at n if the proposition de­
noted by p is true immediately prior to the plan 
step denoted by a. This is well defined because of 
the nature of complete plans, and because we know 
the init ial state I. In a complete plan, Asserts(a,p) 
is true if Holds(p, a) is false but p holds immediately 
after a is executed. (Denies is defined similarly; p 
must be true before o but false afterwards.) 
When n is not complete, the denotations of Asserts, 
Denies and Holds can be defined arbitrarily. 



(In this axiom, Ensures(z,p) is simply an abbreviation 
for Asserts(x,p) V Holds(p,x).) This axiom can be un­
derstood as showing that the constraint language in 
T W E A K is rather weak; it cannot be used to constrain 
a group of actions to assert p, except in the rather tr ivial 
case where one particular action is guaranteed to assert 
p anyway. We have insufficient space to explain in detail 
how such axioms arise in Chapman's system. In brief, 
Chapman's action-set language makes use of "proposi­
tions" with variables, which are essentially placehold­
ers that are instantiated during planning. For example, 
in the "blocks world" a plan step might be associated 
with action schema Pickup(x), with add list Holding(x) 
(and perhaps some preconditions, such as Clear(x)). This 
stands for all actions in R obtainable by instantiating x 
to a real object,6 It turns out to be very important 
for Chapman's TC that variables can be instantiated in 
infinitely many ways; and the reason for this is essen­
tially to guarantee the t ruth of axioms like the above, 
although this can appear quite mysterious unti l Chap­
man's proof is read. In our language we express many 
of the important properties Chapman required without 
using planner specific features such as variables. It is 
not possible to reprove Chapman's TC exactly in our 
system, because his TC makes use of features specific to 
T W E A K . However, a TC which is very similar in spirit 
can be proven just by making assumptions, such as the 
formula just given, whose t ru th can be tested for any 
nonlinear planning system. 

3 T r u t h Cr i ter ion 

Chapman proved that his T W E A K t ruth criterion is cor­
rect and sufficient for his model. However, as he points 
out, this criterion fails for any planning system just 
somewhat more expressive than his. One basic short­
coming of Chapman's t ruth criterion is its requirement 
that, whenever a proposition necessarily holds at some 
point in the plan, it is necessarily asserted by one partic­
ular plan step. But in general, it is possible for multiple 
plan steps to act together to guarantee the t ruth of a 
proposition, even where no one step alone is enough. 

In this section, we discuss a new t ru th criterion that 
is correct and sufficient for any planning system within 
the scope of our model. 

3.1 P resen ta t i on 

Intuit ively our t ru th criterion can be read as follows. 
A proposition p is necessarily true immediately before 
plan step a iff, in all specializations of the plan, two 
conditions hold; (1) If a is necessarily the first plan step, 
then it is necessarily the case that p is init ially true, and 
(2) whenever there is a plan step c that is necessarily 

6Note that expressions like Holdtng(z) are part of the plan 
representation language, and are meaningless unless consid­
ered in the context of the planning process. This contrast 
with true propositions in V, for example Holding(BLOCKA), 
which can be used to describe the state of the world. In lan-
guages like Chapman's, it is important to keep in mind that 
"variables" like x are just formal objects used by the planner, 
and do not connote any formal first-order quantification, 
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that if the above expression does not hold in a special­
ization then CTC(p, a) must hold there. 

Second, we only need to examine the weakest such spe-
cializations. A specialization is weaker than another if 
the latter is a specialization of the former. If CJC(p,a) 
does not hold in such a specialization we can stop, since 
in that case CTC(p, a). If CTC(p, a) does hold in 
such a specialization then it holds for all specializations 
of that specialization. For a proof of this, see [Chris-
tensen, 1990]. Using these two properties we arrive at 
the algorithm in figure 1. 

The algorithm for checking the t ruth criterion re­
quires time exponential in the length of the plan. Chap­
man proved that determining Holds(p, a) in any system 
where the schema representation is sufficiently strong 
to include conditionals is NP-Hard.7 It is therefore ex­
tremely unlikely that any polynomial time algorithm wil l 
ever be found for verifying the t ruth criteria of such sys-
tems. However, our algorithm wil l often be considerably 
more efficient than the application of the Holds axiom 
to all the completions of a plan, as we shall see shortly. 
Furthermore, as we discuss later, it represents a good 
starting point in the development of incomplete or un­
sound algorithms which might overcome the complexity 
barrier. 

3.3 R e s t r i c t e d Ranges of Var iab les 

Chapman gives an example of an extension to T W E A K 
that causes his TC to fai l . Recall that T W E A K uses 
"variables", which are placeholders the planner uses 
to reason about groups of actions. If T W E A K is ex­
tended with a mechanism for restricting the range of 
variables, then Chapman's TC is no longer sufficient. 
For example, in T W E A K , if CLEAR(x) is denied by a 
T W E A K plan step, this step can be specialized into in­
finitely many actions which deny propositions that sat­
isfy the CLEAR(i) schema, e.g. CLEARS) , CLEAR(B), 
CLEAR(C), CLEAR(Harry), etc., where A, B, C, and 
Harry are constants. Restricting the range of variables 
might be desirable to ensure that variables adhere to a 
certain type, e.g. we might wish to restrict variable x to 
the values {A, B, C}, thereby eliminating the possibility 
CLEAR(Harry). 

Suppose we have the plan in figure 2. In this example, 
Punch(Bob, John) necessarily holds in the final situation. 

Conditional actions, which can be modeled in our system, 
will be described later. 
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Figure 2: Example where Chapman's TC fails. 

However, it is not necessarily asserted by any one step, 
and so fails Chapman's t ruth criterion. 

On the other hand, our t ru th criterion succeeds. Fur­
thermore, our t ru th criterion algorithm requires that 
only two specializations of the plan be checked. To see 
this let us step through the algorithm. We would be­
gin by evaluating Holds(Punch(Bob, John),C). Clearly, 
there are no specializations where C is the first plan 
step. However, there are two distinct weakest specializa­
tion such that there is a plan step immediately before C 
and that plan step does not possibly assert Punch(Bob.  
John). These are simply the specializations where the 
constraints y Bob and x John have been respec­
tively added. We wil l examine the former specialization. 
In this specialization plan step B must not possibly deny 
Punch(Bob, John). This is in fact so, since plan step B 
does not deny anything. 

Furthermore, we want Holds(Punch(Bob, John),B). 
This is checked with another application of the TC. 
There are no specializations where B is the first plan 
step. However, in this case there are no specializations 
where there is a plan step immediately before B that does 
not possibly assert Punch(Bob, John). To guarantee this 
would mean adding either x Bob or y John. If we 
add the former then both y and x must denote John, 
which is not allowed. If we add the latter then y can't 
possibly denote any object, which is also disallowed. 

The evaluation of the other specialization proceeds in 
an analogous manner. As can be seen from stepping 
through the algorithm, it is somewhat reminiscent of 
resolution theorem proving, in that we continually at­
tempt to disprove the proposition unti l a contradiction 
is found. It is different from resolution theorem proving 
in that it is guaranteed to terminate if a contradiction is 
not found in this manner. 

3.4 C o n d i t i o n a l A c t i o n s 

Figure 3 shows a plan which, while simple, cannot be 
represented by T W E A K , or by most other classical plan­
ning systems. One exception is [Pednault, 1988], who 
presents a plan language that supports conditional ac­
tions and a method for synthesizing linear plans using 
these actions. 

The actions in figure 3 might be described as being 
conditional because their effect depends on the state 
of the world in which they are executed. In contrast 

To test if Holds(p,a): 
For every weakest specialization such that there 
is a plan step c necessarily immediately before a 
which does not possibly assert p: 

Check that c does not possibly deny p 
and necessarily Holds(p, c). 

For any weakest specialization such that a is 
the first plan step: 

Check that Initially(p) necessarily holds. 

Figure 1: Algor i thm for checking t ruth criterion. 



STRIPS-like actions have a constant effect (in any world 
where their preconditions are true).8 In the figure, one 
can always go to the beach; there are no executabil-
ity preconditions as such. However, nothing wil l be 
achieved at night. This is a very simple conditional ac­
tion representation and nothing in our model precludes 
UE from having arbitrari ly complex conditional actions; 
our model allows any action that is a function mapping 
states to states. 

The algorithm for determining our t ru th criterion 
would begin by considering one of the specializations 
where there is an action immediately before the fi­
nal situation which does not possibly assert HaveG-
oodTime. Assume it considers Goto(Beach) first. We 
must constrain -day to be true, or else HaveGood-
Time would possibly be asserted. Then, we verify that 
Goto(Beach) cannot deny HaveGoodTime and recurse 
on Holds(HaveGoodTime,Goto(Party)). However, there 
are no specializations with an action immediately be-
fore Goto(Party) where HaveGoodTime is not possibly as-
serted. If there were then both —"night and -day must 
hold, which is impossible. 

3,5 Conc lus ion a n d F u r t h e r W o r k 

In practical terms, one might argue, our t ruth criterion 
is not useful since the algorithm for verifying it appears 
to be inherently exponential. This contrasts with Chap­
man's t ruth criterion, which can be verified in polyno-
mial time. However, the value of a polynomial time t ruth 
criterion is somewhat questionable, given that the plan­
ning process is sti l l undecidable. Furthermore, T W E A K 
achieves efficiency in the t ru th criterion at the cost of 
limitations in expressive power. 

As domains become more complex it becomes less and 
less likely that the T W E A K representation can be used 
to adequately model them. For example," T W E A K is 
unable to efficiently model HACKERS cubical blocks 
world, and completely unable to solve problems whose 
solution requires conditional actions. 

There is an interesting tradeoff between expressivity 
of a planning language and the search process using that 
language. As expressivity is added to the language the 
number of choice points at each plan node in the search 

5The idea of modifying the STRIPS paradigm, to allow 
for "preconditions" which determine action's effects, can be 
found occasionally in the literature; for instance, these are 
Pednault's secondary preconditions. 

tree increases. Furthermore, efficient t ru th criteria such 
as Chapman's are less likely to exist. On the other hand, 
because of the finer resolution greater expressivity al­
lows, over-commitment is more easily avoided, and so 
the amount of backtracking can be reduced. Also, the 
increased expressivity allows more knowledge to be en­
coded at each node, thereby allowing for possibly more 
informed choices. So it is far from clear what the op­
t imal point along this spectrum of expressivity is. We 
note that much of planning research has concerned itself 
with developing planners which support powerful plan 
representations. 

Of course, such planners are generally not based on 
provably correct t ru th criteria. Our t ruth criterion could 
in principle be used instead. However, for efficiency rea­
sons, it is likely that the actual algorithm used would 
be tailored to take advantage of the planner's specific 
plan representation. It might even be the case that com­
pleteness, or even in some circumstances, correctness, is 
sacrificed in order to achieve efficiency gains. However, 
the designer of the t ruth criterion would have a sound 
and complete reference point from which to start, and 
would therefore be well aware of the corners that were 
cut to achieve efficiency. It remains to be seen what 
the appropriate tradeoff between efficiency, correctness, 
completeness, and expressive power of the plan represen­
tation is. 
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