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Abstract 

Nilsson's Probabilistic Logic is a set theoretic mechanism for 
reasoning with uncertainty. We propose a new way of 
looking at the probability constraints enforced by the 
framework, which allows the expert to include conditional 
probabilities in the semantic tree, thus making Probabilistic 
Logic more expressive. An algorithm is presented which will 
find the maximum entropy point probability for a rule of 
entailment without resorting to solution by iterative 
approximation. The algorithm works for both the 
propositional and the predicate logic. Also presented are a 
number of methods for employing the conditional 
probabilities. 

1 . In t roduc t ion 

A recent trend in reasoning with uncertainty has been to move 
away from representing the uncertainty of a sentence with a point 
probability, towards more complex mechanisms. Most notably with 
Probabilistic Logic 
[Nilsson 1986a, Grosofl986a, Guggcnheimer 1987a], Incidence 
Calculus [Bundy 1986a, Bundyl986b], and stochastic simulation 
[Pearl 1987a]. All of these systems involve explicit knowledge of 
possible world scenarios. In Incidence Calculus, the probability of a 
sentence is based on a sample space of points. Each of these points 
can be regarded as a possible world. In Pearl's stochastic simulation 
probabilities of events are computed by recording the fraction of 
time that events occur in a random series of scenarios generated 
from some causal model. Probabilistic Logic is a generalisation of 
the ordinary true-false semantics for logical sentences to a semantics 
that allows sentences to be uncertain, and consequently to have more 
than one possible state. 

The consequences of their set-theoretic nature leaves these 
systems prey to complexity problems in space and time. Bundy's 
Legal assignment finder, which finds all the legal specialisations of 
an initial probability assignment is at least exponential. The number 
of runs it takes to approximate correct probability values in the 
stochastic simulator is of the same order, as is entailment inside 
probabilistic logic. Nilsson reports that implementation of the full 
procedure for probabilistic entailment would usually be 
impracticable. 

The maximum entropy [Levine 1979a, Bard 1982a] principle also 
needs knowledge of all the possible states of uncertain information, 
and in this respect it is related to the possible world listed above, and 
shares the same complexity problems. 

These methods form part of what appears to be a formidable 
family of conceptually compelling theories of reasoning with 
uncertainty which suffer from the same problem: intractibility. This 
paper addresses this problem for Nilsson's probabilistic logic, and 
discusses it's use of the maximum entropy method. It is the 
coupling of this method to the semantic framework of probabilistic 
logic which is at the core of this paper. The system produced is very 
fast, and allows the expert to use conditional probabilities in 
designing the statistical distribution. 

2. Entropy 

Entropy [Harris 1982a], is a statistical term which has evolved 
from a study of thermodynamics [1977a]. It is related to the 
probability of a thermodynamic system being in a given state as 
related to the number of different molecular configurations that the 
system can assume in that state. Since in general a system changes 
spontaneously toward a more probable stale, the entropy increases 
accordingly. Equilibrium, or maximum entropy, is the state in 
which the molecules can occupy the greatest number of 
configurations. 

More formally, the entropy of the probability mass function 
px(x) may be regarded as a descriptive quantity, just as the median, 
mode, variance and coefficient of skewness may be regarded as 
descriptive parameters. The entropy of a distribution is a measure of 
the extent to which the probability is concentrated on a few points or 
dispersed over many. It is an expression of the degree of disorder of 
a system. 

In the examples here we will use 2 as the logbase; although any 
base can actually be used [Harrisl982a]. 

Example 

We are provided with four coins and told that one of the coins is 
counterfeit Below there are four probability distributions given, 
where the coins are labelled 1 to 4, and pn represents the probability 
that coin n is the counterfeit coin. The distributions are labelled Dl 
to D4, and the entropy is labelled H. 
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In this case, the distribution with maximum entropy is D l . The 
reduction in entropy from Dl to D4 demonstrates the effect of 
having more information about the change in probabilistic likelihood 
of one of the coins over the others. D4 represents the case where 
there is no uncertainty as to which coin is counterfeit. 

Information is embodied in each of the distributions, and we can 
see that the distribution which says least about the identity of the 
counterfeit coin is D l . This equation of information with entropy 
leads to the maximum entropy principle: Of all probability 
distributions which satisfy the constraints imposed by the known 
aggregate probabilities, choose the one which has the maximum 
entropy or, equivalently, contains the least information. 

3. Probabi l ist ic Enta i lment and Context 

Nilsson defines probabilistic entailment as an analogue of logical 
entailment in classical logic. The rule of modus ponens allows us to 
use the set (A1 A1,=>B) to deduce (B). When we have uncertainty 
about whether or not A1 or A1=>B is true, the real world, which has 
the real value of B, becomes a random variable, and can be one of a 
number of possible states. These states (possible worlds) can be 
produced mechanically by an exhaustive theorem prover 
[Changl973a], and the collected group represented called a semantic 
tree. In conventional set theoretic terms, this set of all possibilities 
is the universal set. In statistical terms, this set is called the sample 
space or possibility space. 

As an example, Nilsson uses the set (A1, A1=>B) to estimate the 
probability of logically entailed sentence B. A complete 
interpretation table for the worlds which form the base set for the 
inference is: 

The possible worlds are labelled with small letters a, b and c. 
Each possible world must eventually be assigned a non-zero 
probability such that if the probability of a sentence S is S, and S is 
true in worlds a and b, then p(a) + p(b) = S. The tautology T is true 
in all possible worlds and is included in the set to ensure that all the 
probabilities sum to 1. 

Structurally, world c in this example is the world which causes 
concern. Nilsson presented the states for the semantic tree as: 

The reasoning behind this being that in worlds a and b, B can 
only assume one logical value, 1 and 0 respectively. But in world c, 
B can logically assume either of the values 1 or 0. Hence, in figure 
3, c represents the world where B is false, and d represents the world 
where B is true. 

However, in the semantic tree for figure 3 there is no way of 
distinguishing between the worlds c and d, because they are the 
same world: i.e. where A 1 is false and the rule A 1=>B is true. Figure 
3 also imposes an unnecessary condition on the relationship between 
the possible worlds (-A1,A1=>B, B) and (-iA1A1=>B, -.B), namely 
that they have the same probability. In this sense, figure 3 
incorporates information into our reasoning process which is not 
necessarily true. 

In appendix B we show that 2"+l possible worlds are created 
from the tree in figure 2, where n is the number of propositions in 
the antecedent list of the rule. Effectively, we are left with n 
equations and 2n possible worlds to solve for. One way to remove 
the additional degrees of freedom is to maximise the entropy of the 
system. Bard [Bardl982a ,Bardl980a] presents examples which 
employs the notion of a semantic tree, and which illustrates the 
following solution methods with clear examples. 

Each possible world is rewritten in terms of a multiplication of 
factors [Bardl982a ,Cheeseman 1983a ,Nilsson 1986a], where an 
unknown factor is associated with each of the sentences in the 
database. We shall use the following notation, with a1 representing 
the factor for the tautology; and the factors aj being associated with 
proposition j; and factor aR being associated with the rule. We 
include the factor in the multiplication list for a possible world only 
if the world has a one in the corresponding row of the semantic tree. 
So, in figure 2, we have: 
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Figure 6: Algorithm for Rapid Calculations of Aggregate Factors. 

Once these aggregate factors are found for any consistent 
probability problem, the possible worlds can be rebuilt from the 
appropriate multiplication of factors. Not only will we have the 
probability of a conclusion but also a detailed breakdown of the 
probabilities of the contributing possible worlds. 

The proof that this algorithm is correct is inductive, and can be 
found in appendix A. For the case where the probability of the rule 
is one, we use the same reasoning on a simplified version of the 
semantic tree. 

8. Using Context Splits 

We are now in a position to use conditional probabilities in the 
Probabilistic Logic in the fonn of the context splits. Obviously, if 
the expert provides all of the context splits, Probabilistic Logic is 
now able to produce point probabilities from the probabilistic 
entailment. If the expert wishes to specify all of these for a rule of 
the form , the system requires: 

1. the probabilistic strength of the rule 
2. 2n- l context splits. 

Figure 10: Information the Expert can Provide. 

As the number n increases, providing reliable context splits will 
become impracticable. This section suggests some mechanisms for 
dealing with this problem. 

1/. If we assume that the probability of B and ~B is the same in each 
split context, then the probability of the conclusion is simply: 

Equation 4 

This method of assigning probability gives a very quick result. 

2/. We can assign a contextual weight of 1/n to each of the sentences 
in the rule. e.g. for the case of n = 3, the contextual weight to 
each sentence is 1/3, and for the tree: 

3/. Another method is to get the expert to assign contextual weights 
to each of the propositions Aj, to Am as an indicator of how much 
the entailment of the conclusion depends on each of the 
individual Ai,. 

So, lor example, in the rule given, the expert may assign weights: 
and from the tree, 

This system of Probabilistic Logic gives the expert all the 
necessary tools to fully design a subjective probability distribution 
to describe their level of expertise. All three of the above methods 
have been implemented in Prolog and may conveniently be used in 
meta-interprctcd expert systems [Sterling 1986a] for deducing 
maximum entropy point probabilities from uncertain information 
and uncertain rules of inference. A fully operational expert system 
using these mechanisms is described in [Kane 1989a]. 

9. Combination Problem 

We have presented a completely sound method of providing the 
maximum entropy result from a probabilistic rule of inference, 
within the constraints of consistency. All of these rules may exist in 
a database independently of each other and be called on only when 
needed. A problem which arises is how best to combine the results 
of two reasoning processes, both of which it is consistent to fire, and 
both of which entail the same conclusion? 

One solution would be to join the two rules together using the 
logical or-operator (since the conclusion can be entailed from either 
of the rules), and join the two probabilities together using the 
maximum entropy principle. 

Example 

The rules are: 

10. Conclusion 

What we have presented is a manner of getting a point estimate 
from a probabilistic rule of entailment using the maximum entropy 
distribution. The equations are not solved iteratively, and 
consequently, the result is achieved very quickly. This result has 
more mathematical significance than a point produced by the 
MYCIN inference mechanism, and can be computed just as quickly. 
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The system as presented might be thought of as a probabilistic 
Prolog, and is fully operational. 

We have implemented these ideas in an expert system for vision 
recognition of 2-dimensional objects, and the system works 
succesfully. 
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Appendix A: Proof of Algorithm by Induction 

The proof proceeds in four stages. First, to derive the expression for 
the world where the rule is false. Second, to show that for each of 
the terms there is a direct match of terms on the 
numerator and denominator of the expression: 
i.e. all the unknown worlds where sentence Aj, is true divided by all 
the worlds where Aj, is false. The third stage is related to the first 
and allows us to solve for at. The fourth stage is for the final factor 
aR and is based on the worlds in which the rule is true, and a 
recursive expression for describing the contribution of each of the 

possible worlds to this probability: 

Base Case 

From the equations we get: 

And the above equations satisfy the algorithm with n = 1. 

Step 

Algorithm is true for n, prove true for n+1. 

The new premise A(n+1) is added to the antecedent arm of the rule, 
and placed after premise An in the premise list. We now have 
aggregate factors axt,ai 

2/. In each row there are now 2n+1 possible worlds, where there used 
to be 2n The difference between the tree for n+1 propositions 
and n propositions, being that in row n+1 there are now 2" l 's 
and 2" 0\s, and the rule is pushed down to position n+2. 

For the half of the tree with 0's in row n+1 we proved that there is a 
direct match to give each of the previous ai 's. For the other half, we 
use the same enumeration, and find that the factor for proposition 
n+1 cancels out on top and bottom. Furthermore the numerator still 
only holds the worlds where sentence Aj is true, and the 
denominator the worlds where A} is false. Therefore the equation 
still holds. 

Is the formula true for new row n+1 ? 

The new tree was made up of two identical copies of the old tree, 
one of which has a 1 in row n+1, the other of which has a zero in 
row n+1. Consequently, again it is possible to cancel the terms of 
the true worlds divided by the false worlds so that there is only a 
factor of a (n+1) left. 

4/. The expression for all the worlds in terms of the factors for n 

When we include the new row, we have a new multiplicative factor: 
We have two copies: one with an an+1 in row n+1, and one with a 1. 
So the new expression for all the worlds is: 

In the event that the probability of the rule is 1, we lose the world 
where the rule is false, and consequently the rule is subsumed into 
the tautology. In this case we have only n+1 factors, where 

The proof is a generalisation 

from steps 2 and 4 above, and is omitted in the interests of brevity. 

Appendix B: Semantic Tree Case Analysis 
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inclusion of B in the set, would produce a contradiction. 

Bundy 1986a. A. Bundy, Incidence Calculus: A Mechanism for 
Probabilistic Reasoning, 2, pp. 109-126, (Apr 1986). 
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Case 3: At least one of AA1A2, An false, and rule true. The 
literals in the rule cannot all be resolved away from the premises, 
and so no statement can be made about B from the rule. 
Consequently, either B on ~B will be consistent with the set. The 
number of worlds produced is 2"~1. (i.e. only removing the all 
true world from the list of posiblitics.) 

There is no analogous case for case 3 where the rule is false. This is 
because, the rule will split into n+1 clauses, with A1A2, An all 
true; and B false. Consequently, if any of the A1A2, An premises 
are false, a contradiction is immediately produced. 


