
Reducing the Derivation of Redundant Clauses 
in Reasoning Systems 

Rol f Socher-Ambrosius 
Fachbereich Informatik, Universitat Kaiserslautern 

Postfach 3049, D-6750 Kaiserslautern, W.-Germany 

Abstract 
This paper addresses two problems concerning the 
issue of redundant information in resolution based 
reasoning systems. The first one deals with the 
question, how the derivation of redundant clauses can 
be substantially reduced a priori. The second one asks 
for a criterion to decide, which clauses need not be 
tested for reduncancy. In this paper we consider a 
particular kind of reduncancy, which we call ancestor 
subsumption, that is the subsumption of a resolvent 
by one of its ancestors. We give a complete syntactic 
characterization of clause sets producing ancestor 
subsumed clauses. Given this characterization, a 
solution to the problem with generating redundant 
clauses is proposed. Moreover, a suitable restriction 
of the (usually very expensive) subsumption test is 
derived from this result. SAM's lemma will serve as 
an example for demonstrating various possibilities 
how to avoid the derivation of redundant clauses. 

1 In t roduct ion 
The derivation of redundant information is one of the 
greatest obstacles to the efficiency of reasoning programs. 
Wos (1988) reports an attempt to prove SAM's lemma (see 
Guard 1969) using hyperrcsolution, where 6000 clauses 
identical to retained clauses and 5000 clauses being proper 
instances of retained clauses were generated. Even if these 
redundant clauses can be removed after their generation, they 
must be processed with demodulation, subsumption, and 
other procedures. Moreover, the test on subsumption, being 
a very useful means for removing reduncancies, is rather 
expensive as Chang & Lee (1973), Eisinger (1981), and 
some others remark. A strategy to prevent the generation of 
redundant clauses, or at least to reduce the amount of newly 
generated unneeded clauses, would thus prove very useful for 
increasing the power of reasoning systems. 

On closer inspection of the proof of SAM's lemma it 
turns out that many of the 6000 duplicates are generated by 

double resolution with a clause of the form Pxy v ¬Pyx. 
Such a duplicate is identical to its own "grandfather" in this 
resolution derivation. More general, we will deal with the 
situation that a resolvent is subsumed by one of its own 
ancestors, which we wil l call ancestor subsumption. 
Ancestor subsumption is a particular kind of forward sub
sumption (Ovcrbcek 1975), that is the subsumption of a 
newly deduced clause by a given clause. One of the paper's 
objectives is to characterize clause sets that admit ancestor 
subsumption. This approach is based on the following 
observation: A resolvent of two clauses cannot be subsumed 
by one of its parent clauses, unless the other parent is self-
resolving. This can be easily seen for the ground case: let 
C={L1,L2,..Ln} and D={-L1K2,..,Kn) be ground clauses 
and assume, C subsumes the resolvent 
R=[K2,..,Kn,L2 -Ln}. Then L eR must hold and from 
L1 {L2,..Jn} now follows L1 [K2,..,Kn}- Hence D is a 
tautology. We wil l generalize this observation in the 
following way: A resolvent R cannot be subsumed by an 
ancestor C, unless the set of ancestors of R contains a cycle 
(the notion of a cycle was introduced by Shostak (1976)). 
Noncyclic clause sets thus have the nice property of 
excluding ancestor subsumption. A prominent example for 
this class of clause sets is Schubert1s Steamroller (see 
Stickel 1986). Linear resolution has the property that the 
later a clause is derived in the linear deduction, the more 
ancestors it possesses. Provided that a given clause set is 
known to disallow ancestor subsumption, a linear strategy 
thus seems most preferable in order to reduce the generation 
of subsumed clauses. 

Another question addressed by this paper is closely 
related to the first problem. The characterization mentioned 
above provides a means to avoid the generation of subsumed 
clauses only for noncyclic clause sets. But for other clause 
sets we can at least give a criterion to decide, which clauses 
have to be considered as potential subsumers in the sub
sumption test. Being not self-resolving, for example, a 
clause can be excluded from being subsumer of its own 
"child". 

Socher-Ambrosius 401 



As cycles in clause sets are heavily responsible for the 
generation of redundant information, a technique to remove 
such cycles would prove very useful. This paper considers 
two approaches. A certain class of cycles (cycles represen
ting the logical equivalence of some literals) can be made 
harmless by using them only as demodulators. Consider for 
example a clause set containing the two clauses and 
¬QvP, which form a cycle and give rise to an endless 
resolution derivation. These two clauses express that P and 
Q are equivalent literals, which therefore can be substituted 
for each other without changing the truth value of the whole 
clause set. Replacing for instance each occurrence of P in the 
clause set by Q yields an equivalent clause set, where the 
two cycle clauses have become tautologies. This approach is 
in fact a demodulation on literals instead of terms. The well-
known problems with term rewriting, however, arise with 
literal demodulation, too. Directing equations to rewrite 
rules requires the existence of a well founded ordering on 
terms. Thus, according to the same reason, why the equation 
fxy =fyx cannot be directed to a rewrite rule, the equivalence 
Pxy =Pyx cannot be used as a demodulator. The second 
approach, which overcomes the problem with directing 
equivalences, consists in using cycles as the basic theory for 
performing theory resolution. The cyclic clauses, for 
instance the symmetry clause disappear in a 
theory box, enabling in this case resolution between the 
clauses Pab and ¬Pba. 

2 Basic Notions 
In the following we assume the reader to be familiar with 
the standard terminology of First Order Logic. The few basic 
notions of clause graphs used in this paper can be found for 
instance in Eisinger's (1988) thesis. Clauses are always 
considered as sets of literals, but written without set braces. 
The empty clause is denoted by 

Let a denumerable set of variables. A substitution 
a is an endomorphism on the term algebra, which is 
identical almost everywhere on Vand thus can be represen
ted as a finite set . A substitution p 
is called a renaming substitution, iff p is injective on its 
domain and literal or clause L is called a variant 
(or a copy) of the literal or clause K, if there exists a re
naming substitution p, such that Two substitutions 

are compatible, if there exists some substitution X with 

3 Cycles in Clause Sets 
This chapter provides a characterization of clause sets admit
ting ancestor subsumption. Our main result is as follows: 
Clause sets admitting ancestor subsumption possess cycles, 
whose elements are the far parents of the subsumed clause. 

First, we define the two basic notions of ancestor subsump
tion in terms of circular derivations and of cycles. The 
proofs of the following lemmata and theorems can be found 
in the full version, Socher (1988), of this paper. 

3,1 Definition; 
A clause is self-resolving, if it resolves with a copy of 
itself. 

The following lemma determines those clauses that 
possibly produce subsumed resolvents. For any clause D we 
define the deduction relation ->D between clauses C and R 
by C —>D R> iff R is a resolvent of C and D. 

402 Automated Deduction 



A semicycle D is a directed graph, whose nodes are 
labelled with clauses and whose links are R-links, labelled 
with substitutions and which satisfies the following 
conditions a) to c). (Note that we do not distinguish between 
a node and its label.) 
a) Each node of D has the following form (figure 1): 

fig.l 
with m incoming R-links and n outgoing R-links, and 
m>0, n>0 holds. 

b) There is a node Co such that each cyclic path of D 
passes C0 There is a substitution T, which is a 
common instance of all substitutions of the R-links 
going into Co and there is a common unifier a for all 
other links of D. 

c) a and T are compatible, with common instance X- The 
substitution % is called the cycle substitution of D. 

The semicycle D is called complete, if a is an instance 
of T, that is La = Ka for all literals L and K joined by a 
link going into C0. Let D be a semicycle consisting of only 
one clause C. Then a is the identity substitution andC is 
self-resolving. If, moreover, CD is complete, then C is a 
tautology. D is called a cycle, if each node has exactly one 
successor. 

A cycle is just what Shostak (1976) and (1979) calls a 
loop. This notion also corresponds to the notion of recursive 
predicates in the terminology of deductive databases (Vieille 
1987, Ohlbach 1988) and logic programming. 

3,4 Example; 
The clause sets D1 D2, and D3, which are shown in figure 
2, are semicycles; D1 is a cycle. It can be seen that each 
node of a cycle may be chosen to be the special clause Co. 
As to semicycles, still several, but in general not all nodes 
have this property. For instance the clauses ¬rw and sw 
cannot be chosen to be C0. 

The previous examples illustrated that in general there 
are several possibilities to choose a clause of a semicycle to 
be the special clause C0. The cycle substitution, however, is 
independent of this choice, according to the definition of 
semicycles. 

fig.2 

The following two theorems provide a characterization of 
clause sets producing subsumed clauses. It turns out that 
those clause sets have a "cyclic" structure, varying from the 
weakest form for clause sets producing some ancestor 
subsumed resolvent to the strongest form of a cycle for 
clause sets producing only copies as resolvents. 

3.5 Theorem; 
Let C be a unit clause, let D be a set of clauses and let 
C->DR. 
a) If R is a variant of C, then D is a semicycle. 
b) If R is subsumed by C, then D contains clauses 

D1..Dn such that for each D i , i € { l , . . , n - l } the 
following hold: 
(i) there exist literals Ki and Li; and an R-link between 
Li and ki+1. 
(ii) Ln and K\ are literals with the same predicate 
symbol, but different polarity. 

3.6 Theorem; 
Let D be a set of clauses. 
a) Suppose for all clauses C the following holds: C->R 

implies that C and R are variants. Then D is a complete 
cycle, all clauses of which are function and constant 
free. 

b) Suppose for all clauses C the following holds: C->DR 

implies that R is an instance of C. Then D is a 
complete cycle. 

c) Suppose for all clauses C the following holds: C->DR 

implies that C subsumes R. Then D is a complete 
semicycle. 

Socher-Ambrosius 403 



Note that the definition of the deduction relation ->D 
does not capture ancestor resolution, which is part of 
complete linear strategics. 

3,7 Example; 
Let D be the clause set, which is shown in fig. 3. 

fig 3 
D allows a linear deduction with ancestor resolution as 
follows: 

where the last step is an ancestor resolution step. But D is 
not a semicycle. 

The following lemma shows that it is sufficient to look 
for cycles in an initial clause set during a resolution 
deduction, as "new" cycles cannot be generated by 
resolution. For any clause set 5,R(5) denotes the resolution 
closure of 5, that is the smallest clause set containing S and 
closed under the resolution operation. 

3.8 Lemma; 
Let S be a set of clauses. Then S contains a semicycle, iff 
R(S) contains a semicycle. ■ 

4 Removing Cycles From Clause Sets 
Besides being the very reason for the undecidability of first 
order logic, cycles in clause sets also turned out to be a main 
source of reduncancy for clause set resolution. Thus the 
question arises as to what extent cycles can be excluded from 
producing lots of unneeded clauses. A first approach to this 
question is due to Bibel (1981). He showed that under certain 
conditions, similar to those allowing the deletion of 
tautologies in clause graphs, cycles can be removed from 
clause sets. We wil l consider here two approaches, both 
restricted to proper cycles. However, we will also show by 
means of SAM's lemma, that in particular cases there exists 
also an appropriate treatment of semicycles. 

The first idea in order to shut down this source of 
reduncancy is to use cycles not directly for resolving. 
Instead, they are taken as literal demodulators (Wos 1967): 
Cycles, expressing the equivalence of literals, can be 
transformed into rules, in the same way as equations can be 
directed yielding rules. Consider for example a clause set 
containing among others the two clauses ¬PvQ and -QvP. 
These two clauses represent the formula P=Q> which can be 

directed yielding for instance the rule P->Q. Application of 
this rule means substituting Q for each occurrence of P and 
¬Q for each occurrence of ¬P. (Note that this effect can be 
achieved also with an ordering restriction (Loveland 1978), 
which precludes resolution with the Q and ¬Q literal in the 
two clauses.) However, the method of literal demodulators 
applies only for cycle clauses that can be directed, such as 
ground clauses or clauses with different predicate symbols. 
Thus, a lot of relevant clause sets does not allow this 
approach. For instance, the (cyclic) clause ¬PxyvPyx, 
expressing the symmetry of P, cannot be directed. 

Another approach, which overcomes the problem with 
directing equivalences, is based on the idea of "compiling" 
cycles into a theory serving as the basis for theory 
resolution. Theory resolution, first proposed by Stickel 
(1985), is a generalization of ordinary resolution. The 
literals resolved upon need not be syntactically 
complementary, it is sufficient for them to be complemen
tary under some theory. In particular, each clause C = 
{L1.Ln) defines a theory Tc, in which, for instance, the 
set of literals { L 1 , . . , - . L n } is complementary. Taking 
clauses (or clause sets) as a particular theory to perform 
theory resolution is essentially the same idea as Ohlbach's 
(1988) link resolution. The set Tc in general is not 
computable. Yet, in order to perform theory resolution on a 
clause set 5, it is sufficient to compute the resolution 
closure R(S) of 5. 

4.1 Lemma; 
Let S be a set of clauses and D E Tsbe a clause, which is not 
a tautology. Then there is some clause Ce R(5), such that C 
subsumes D. ■ 

In order to find the substitutions , which make a set 
[L1,..,Ln) of literals complementary under the theory TS, 
or, equivalently, which map the clause D:={-L1 , . . ,¬Ln } 
onto an element of Ts, it is sufficient, according to the 
previous lemma, to find some and a clause C E R ( 5 ) , such 
that C subsumes Da. Thus, having a finite resolution 
closure R(S), the set S guarantees the number of Ts-
resolvcnts of two clauses to be finite. In particular, this is 
the case for cycles that produce only copies as resolvents, 
since these cycles are function free. The next lemma shows 
that the theory of a complete, function free cycle CD with 
cycle substitution a can be completely described by the 
equivalence of all literals of (Da. 

4.2 Lemma; 
Let CD be a complete, function free cycle with cycle 
substitution a. Then R(D) = [-TLGKG IL and K are literals 
occurring in CD). ■ 

404 Automated Deduction 



Taking into account the tight connection between £-
unification (see Biirckert, Herold & Schmidt-SchauB 1987) 
and theory resolution for equational theories, the previous 
examples' behaviour is not surprising, as the number of 
most general unifiers under the theory of commutativity is 
finite, whereas it is infinite under associativity (see Herold 
& Siekmann 1985). 

5 Conclusion 

In this chapter we want to show by means of an 
example, how the information about cycles in clause graphs 
can be used to reduce the search space in resolution theorem 
proving. The predicate logic formulation of SAM's lemma 
(without equality) leads to a clause set S, consisting of a set 

Acknowledgement 

I would like to thank my colleague Norbert Eisinger for 
thoroughly reading this manuscript. His comprehensive 
knowledge of the field, particularly about many examples 
and counterexamples that arise in theorem proving, resulted 
in improvements of the paper. 

References 

Bibel, W. (1981). On Matrices with connections. Journal of the 
ACM 28/4, 633 - 645. 

Burckert, H.-J., Herold, A. & Schmidt-SchauB, M. (1987). On 
Equational Theories, Unification and Decidability, in: 

Socher-Ambrosius 405 

In the following we describe a refutation of this clause 
set using positive hyperresolution together with theory 
resolution, as in chapter 4. The cyclic clauses C1 and C2, 
describing the symmetry of the min and max predicates, are 
used for theory resolution, as in example 4.3.b). The same 
holds for the clause C5, which is neither self-resolving nor a 
member of a cycle. The clauses C3 and C4, describing the 
associativity of the min predicate, form a semicycle, which 
produces copies in the following way: Let (D1 , D2, D3) 



Lescanne, P. (ed): Proc. of 2nd Conference on Rewri t ing 
Techniques and Appl icat ions, Bordeaux, France. Springer 
LNCS 256, 204 - 215. 

Chang, C.L . & Lee, R.C. (1973). Symbol ic Log ic and 
Mechanical Theorem Proving. Academic Press. New York. 

Eisinger, N. (1981). Subsumption and Connect ion Graphs. 
Proceedings of the 7th IJCAI , Vancouver, 480 - 486. 

Eisinger, N. (1988). Completeness, Confluence, and Related 
Properties of Clause Graph Resolution. PhD thesis and SEKI-
Report SR-88-07, Universitftt Kaiserslautern. 

Guard, J. et al (1969). Semi-Automated Mathematics. Journal of 
the A C M . 16, 49 - 62. 

Herold, A. (1983). Some Basic Notions of First Order Unification 
Theory. Internal Report, Universitftt Kaiserslautern. 

Herold, A. & Siekmann, J. (1985). Uni f ica t ion in Abel ian 
Semigroups. Memo-SEKI-85- I I I . Universitat Kaiserslautern. 

Loveland, D.W. (1978). Automated Theorem Proving: A Logical 
Basis. North-Hol land. 

Ohlbach, H.J. (1988). Using Automated Reasoning Techniques 
for Deductive Databases. SEKI-Report SR-88-06, Universitat 
Kaiserslautern. 

Overbeek, R. (1975). An Implementation of Hyper-Resolution. 
Computational Mathematics wi th Applications 1, 201 - 214. 

Shostak, R.E. (1976). Refutation Graphs. Ar t i f i c ia l Intell igence. 
I l l , 51 - 64. 

Shostak, R.E. (1979). A Graph-Theoretic V iew of Resolution 
Theorem-Proving. Report SRI International, Menlo Park. 

Socher, R. (1988). Reducing the Derivation of Redundant Clauses 
in Reasoning Systems. SEKI-Report SR-88-20, University of 
Kaiserslautern. 

St icke l , M. E. (1985). Automated Deduct ion by Theory 
Resolution. Journal of Automated Reasoning. 1/4, 333 - 356. 

St icke l , M. E. (1986) . Schubert 's steamrol ler p rob lem: 
Formulations and Solutions. Journal of Automated Reasoning. 
2/1, 89 - 102. 

Vie i l le , L. (1987). Recursive Query Processing: The Power of 
Logic. ECRC Munich, Technical Report TR-KB-17. 

Wos, L. et.al. (1967). The Concept of Demodulation in Theorem 
Proving. Journal of the A C M , 14, 698 - 709. 

Wos, L. (1988). Automated Reasoning: 33 Basic Research 
Problems. Prentice Hal l , Englewood Cl i f fs. 

406 Automated Deduction 


