
Conspiracy Numbers and Caching 
for 

Searching And/Or Trees and Theorem-Proving 

Charles Elkan* 
Department of Computer Science 

Cornell University 
Ithaca, New York 14853-7501 

A b s t r a c t : This paper applies the idea of con­
spiracy numbers to derive two heuristic algo­
r i thms for searching and/or trees. The first al­
gor i thm is an A O * best-first algori thm but the 
standard guarantees do not apply usefully to it 
because it conforms to the economic principle of 
sunk costs. The second algori thm works depth-
first and guides the search done by an iterative 
deepening SLD-resolution theorem prover that 
we have implemented. To avoid repeated effort, 
the prover caches successes and failures. It ex­
ploits the fact that a new goal matches a cached 
goal if it is a substi tut ion instance of the latter, 
not just if the two are identical. Experimental 
results indicate that conspiracy numbers and 
especially the new caching scheme are effective 
in practice. 

1 I n t r o d u c t i o n 

This paper applies the idea of conspiracy numbers 
[McAllester, 1988] to derive two heuristic algorithms for 
searching and/or trees. The first algorithm turns out 
to be a member of the class of A O * best-first algo­
r i thms [Nilsson, 1980], but it conforms to the principle of 
sunk costs (a rule of economic rationality not respected 
by tradit ional and/or tree search algorithms) and hence 
the standard guarantees of termination and admissibility 
do not apply usefully to i t . 

The second algori thm works depth-first. It guides the 
search done by an iterative deepening SLD-resolution 
theorem prover that we have implemented. In addition 
to caching successes, the prover caches failures and uses 
the latter to avoid repeated effort also. The prover ex­
ploits the fact that a new goal matches a cached success 
or failure if it is a substitution instance of the cached 
goal, not just if the two are identical. Unlike many 
heuristics for guiding search and saving effort, the con­
spiracy number and caching ideas introduced in this pa­
per can be implemented efficiently. Our experimental 
results indicate that conspiracy numbers and especially 
the new caching scheme are effective in practice. 

Section 2 develops the best-first conspiracy numbers 
algor i thm, relates it to tradi t ional and/or tree search 

'This research was supported in part by the United States 
Office of Naval Research through grant N0014-88-K-0123. 

algorithms, and then presents the depth-first conspir­
acy numbers algorithm. Section 3 describes our theorem 
prover and compares it to a similar PROLOG-technology 
theorem prover [Stickel, 1986]. The caching done by our 
prover is discussed in Section 4. Finally, our experimen­
tal results appear in Section 5, and Section 6 contains 
our conclusions. 

2 Best- f i rs t and depth- f i rs t conspiracy 
number a lgor i thms 

And/or trees are well-known [Nilsson, 1980; Pearl, 1984], 
and we shall describe them here only to the extent neces­
sary to make the terminology of this paper understand­
able. Briefly, an and/or tree is a tree where each node 
is an and-node or an or-node. The children of and-nodes 
are required to be or-nodes, and vice versa. An and/or 
tree may be completely or partial ly explored. Each node 
of a completely explored and/or tree is solved or failed. 
An internal and-node is solved if each of its children is 
solved and it is failed if at least one of its children is 
failed. Conversely, an internal or-node is solved if at least 
one of its children is solved, and failed if all its children 
are failed. A partial ly explored and/or tree also contains 
leaf nodes called unexpanded leaves whose children have 
not yet been discovered. The solved/failed status of an 
unexpanded leaf is unknown, as is the status of any in­
ternal node of a partial ly explored tree whose status is 
not fixed by the status of its children. 

A solution of an and/or tree is a subtree that demon­
strates that the root of the tree is solved. The aim of 
searching an and/or tree is to find a solution. Concretely, 
a solution is a subtree such that all its nodes are solved, 
all the children of each of its and-nodes belong to the 
subtree, and at least one of the children of each of its 
or-nodes also belongs to the subtree. The basic search­
ing operation on a partial ly explored and/or tree is to 
expand an unexpanded leaf of the tree. When such a 
leaf is expanded there are three possible outcomes: it 
can be discovered to be solved, it can be discovered to 
be failed, or it can be discovered to have children, which 
are new unexpanded leaves. Different searching algo­
r i thms choose in different ways which unexpanded leaf 
to expand next. 

Elkan 341 



Pearl, 1984]. A O * algorithms are interesting because un­
der certain conditions, they are guaranteed to terminate 
and to find opt imal solutions. Lemma 2.3 shows that 
the function en is of the form used by A O * algorithms. 
However the standard guarantees do not apply usefully 
to best-first conspiratorial search, because it respects the 
principle of sunk costs. 

P r i n c i p l e of S u n k Cos ts : Amounts of resources ex­
pended in the past on different activities are irrelevant 
to the decision of which act iv i ty to pursue now. ■ 

Although people often act contrary to the principle of 
sunk costs, it is a guideline for rational agents that com­
mands universal assent among economists [McCloskey, 
1985; p. 267]. The principle says that , for example, the 
costs incurred to bui ld a nuclear power plant should have 
no bearing on the decision whether or not to operate the 
plant. 

For guaranteed terminat ion at a minimal-cost solu­
t ion, in deciding which node to expand next and when 
to halt, one must take into account the cost so far of in­
complete solutions. The principle of sunk costs disallows 
this. 

Termination. The nodes on an indefinitely long path 
from the root of an and/or tree can all have the same 
minimal conspiracy number. Hence best-first conspira­
torial search is not guaranteed to terminate. 

Admissibility. A O * algorithms find opt imal solutions 
because of their termination criterion, when they use 
conservative heuristic functions. 

Let Q be a function assigning measures to solutions. 
An A O * heuristic function h is a conservative estimator 
of Q if for all nodes a, h(α) is less than the lowest Q 
measure of any solution of the and/or subtree rooted at 
α. The termination criterion for an A O * algorithm is 
to stop only when no incomplete solution induces an h 
value for the root lower than the h value induced by the 
best complete solution found so far. Then the fact that 
h is a conservative estimator of Q guarantees that all 
solutions not yet found are worse under Q than this best 
solution, given that the h values induced by complete 
solutions are their Q measures. 

The Q that assigns the measure 0 to every solution is 
the only Q according to which the en values induced by 
complete solutions are their Q measures. Best-first con­
spiratorial search does find opt imal solutions according 
to this t r iv ia l measure. 

The en heuristic function is a conservative estimator 
of some non-tr ivial solution measures. For example en is 
a conservative estimator of the number of nodes that a 
solution contains. However if Q is a non-tr ivial measure, 
then best-first conspiratorial search does not in general 
find opt imal solutions according to Q, because the en 
values induced by complete solutions are less than their 
Q measures. 

2.3 D e p t h - f i r s t consp i racy n u m b e r search 

The intu i t ion behind depth-first conspiracy number 
search is to explore an and/or tree in depth-first fashion, 
but to backtrack when the smallest conspiracy involving 
a leaf is too large. Conspiratorial depth-first search has 

342 Search 



two advantages: the and/or tree being searched need 
never be stored explicit ly, and the decision whether to 
expand a leaf can be made using only information avail­
able at that leaf. A disadvantage is that leaves are not 
expanded in best-first order. 

Suppose an and/or tree is searched in depth-first fash­
ion. Then at any t ime one can identify a stack of or-
nodes whose subtree is currently being explored. The 
deepest node on this stack is the one whose subtree wi l l 
be explored next. Each of the or-nodes in the stack has 
some sibling or-nodes. If the deepest or-node can be 
solved, and the siblings of all the less deep or-nodes can 
also be solved, then a solution has been found for the 
whole tree. Thus the deepest or-node on the stack and 
the siblings of the less deep or-nodes constitute a con­
spiracy. In fact, they constitute the only conspiracy of 
the current part ial and/or tree, since the nodes on the 
stack and their siblings are the only nodes of the tree 
whose subtrees have not already been ful ly explored, and 
discovered to be failed. 

The information needed to decide during bounded 
depth-first search whether to expand a leaf is its con­
spiracy depth according to the following definit ion. 

D e f i n i t i o n 2.5: The conspiracy depth of a node in a 
partial and/or tree is the size of the smallest conspiracy 
of the whole tree involving that node. ■ 

The next lemma implies that conspiracy depths can be 
computed wi th only a constant amount of extra work per 
node, during depth-first exploration of an and/or tree. 

L e m m a 2.6: Consider the function cd defined on the 
nodes of an and/or tree as follows. 

• Let α be the root of the tree. Then cd(α) — 1. 

• Let α be an and-node wi th cd(α) — c. Let a have 
it children α 1 , . . . ,a r* which are explored in order. 
Then cd(αj) = c + k — j. 

• Let α be an or-node wi th cd(α) = c. Let the children 
of α be α 1 , . . . , αk. Then cd(αj) = c. 

At the t ime the decision is made whether or not to ex­
pand a leaf α during depth-first search of an and/or tree, 
the conspiracy depth of a is cd(α). 

Conspiratorially bounded depth-first search can be im­
plemented efficiently. 

3 A consp i ra tor ia l SLD- reso lu t ion 
t h e o r e m prover 

Conspiratorially bounded depth-first search guides the 
search done by a theorem prover that we have im­
plemented. The only inference rule of our prover is 
SLD-resolution [Lloyd, 1984]. The space that must be 
searched to find a proof of a given goal (an atomic first-
order predicate calculus formula) by SLD-resolution is 
an and/or tree, where or-nodes correspond to subgoals 
that must be unified wi th the head of some matching 
clause, and and-nodes correspond to bodies of clauses. 
For such an and/or tree, a conspiracy consists of a set of 
subgoals that must all be proved together. In order to do 
so, one must find an an answer substitution for each sub-
goal such that none of the substitutions conflict. Thus 

as a conspiracy gets larger, even if whether an answer 
substitution exists is a statistically independent event 
for each of its members, heuristically the chance that all 
the members can be compatibly proved decreases as if 
the events were negatively correlated. 

At the highest level, our prover uses the idea of itera­
tive deepening [Korf, 1985; Stickel and Tyson, 1985]: it 
repeatedly does depth-first search wi th increasing con­
spiracy depth bounds, unt i l a solution is found. Our 
prover is thus similar to the PROLOG-technology theo-
rem prover P T T P [Stickel, 1986]. P T T P does iteratively 
deepened depth-first search using a depth function sd 
which is the same as the conspiracy depth function cd 
except on and-nodes. If α is an and-node wi th k chil­
dren α 1 , . . .,αk then sd(αj) = c + k for each child αj;, 
whereas cd(αj) = c + k — j. The function sd is not con­
sistent wi th the principle of sunk costs. In depth-first 
search, the child αj; of an and-node is only expanded if 
its siblings α 1 , . . . , α j _ i have been solved. The effort 
required to do this is in the past at the moment the de­
cision is made whether or not to expand αj. At that 
moment it is only relevant what subgoals remain to be 
solved, and there are c + k — j of them. 

A second difference between P T T P and our prover is 
that P T T P attains first-order completeness, because it 
uses a model elimination inference rule in addition to 
SLD-resolution. In future work we plan to extend our 
prover similarly. 

Using conspiracy depths to l imi t search leads to one 
diff iculty: the conspiracy depth of an indefinitely large 
partial solution can be finite. If an and-node α has a sin­
gle child α' then cd(α') = cd(α), so in a partial and/or 
tree, it is possible for the nodes on an infinite path each 
to have the same conspiracy depth. This problem is 
circumvented in our prover by using a modified conspir­
acy depth function cd' such that if αj is any child of 
the and-node a, then cd'(αj) > cd'(α). Specifically, 
the definition of cd' is identical to that of cd, except 
that if a is an and-node wi th k children α 1 , . . . αk then 
cd'(αj) — c + k — j + e. For want of any principled way 
to choose e1 our prover takes c = 1. 

4 Caching successes and fai lures 

This section explains the caching scheme implemented 
in our SLD-resolution prover. The idea of caching is 
to store the results of past computations in order not 
to waste t ime repeating them in the future [Keller and 
Sleep, 1986; Pugh, 1988]. Caching is especially useful 
combined wi th iterative deepening, because results that 
have been cached during search to one depth bound can 
be reused during later searches. Our caching scheme is 
distinctive in two respects. 

First, if we fail to prove a subgoal wi th in a specified 
conspiracy depth bound, we cache the fact of the failure. 
If we attempt to prove the same subgoal later wi th in the 
same or a lower conspiracy depth bound, the attempt is 
recognized as doomed to failure and it is aborted. Some 
systems cache subgoals known to be false, which are of­
ten called contradictions or nogoods [de Kleer, 1986]. 
Our prover also caches resource-bounded failures. 

Elkan 343 



344 Search 



4.2 A n a l y z i n g t h e bene f i t s o f cach ing 

When a subgoal is found to be an instance of a cache 
entry, then that subgoal gives rise to no child subgoals. 
Thus one expects caching to reduce the effective branch­
ing factor of the and/or tree representing the space to be 
searched to find an SLD-resolution proof. The following 
theorem says how much the effective branching factor 
must be reduced for caching to be beneficial. 

T h e o r e m 4.4: Let the effective branching factor be bc 

with caching, and bo wi thout caching. Let the t ime to 
execute an install or query operation 
be Then caching saves t ime if 

P r o o f : Let the t ime required to find a solution be To 

without caching, and Tc w i th caching. We wish to know 

5 E x p e r i m e n t a l resul ts 

We have performed two sets of experiments to evalu­
ate the usefulness of the ideas developed in this pa-
per. Each experiment involved using a different search 
algori thm to search the same and/or tree. The tree 
used in all our experiments is the tree representing the 
SLD-resolution search space for a monkey-and-bananas 
situation-calculus planning problem [Plaisted, 1986]. 

The first set of experiments compared iterative deep­
ening wi th three different depth functions: actual proof 
depth, the P T T P depth function, and the modified con­
spiracy depth function cd!. The results of the experi­
ments are shown in Figure 1. Measured by the total 
number of nodes expanded, the conspiracy depth func­
t ion has a slight advantage. (The first solution to the 
monkey-and-bananas problem has actual proof depth 
11, P T T P depth 24, and modified conspiracy depth 29. 
Search to any depth is cut off when a solution is found, 
so the maximum number of nodes expanded occurs wi th 
P T T P depth bound 23 or conspiracy depth bound 28.) 

Using iterative deepening wi th the conspiracy depth 
function cd', the second set of experiments compared 
four caching regimes: no caching, caching of successes 
only, caching of failures only, and ful l caching. In each 
case the same search space was explored. Note that with 

Elkan 345 



caching of successes or wi th ful l caching, the first solution 
found is cached, so the problem can then be solved with 
just one node expansion when searching to depth 30, 31, 
and so on. 

The results of the second set of experiments are shown 
in Figure 2. W i t h no caching the effective branching fac­
tor is approximately 1.61. Caching successes reduces it 
to 1.46, caching failures to 1.55, and caching both to 1.40. 
The improvement is clear. It is especially encouraging 
that the benefits of caching successes and failures are 
cumulative. For our sample problem, the branching fac­
tor reduction achieved wi th ful l caching translates into 
a 99% reduction in the search space size. 

6 Conclus ion 

In this paper we have described heuristic best-first and 
depth-first algorithms for searching and /or trees based 
on the intr iguing idea of conspiracy numbers. We have 
also described an SLD-resolution theorem prover that 
uses the depth-first conspiracy numbers algorithm and 
a caching scheme that is sophisticated yet amenable to 
theoretical analysis. The theorem prover relies only on 
heuristics that can be implemented efficiently: it does 
not sacrifice speed for intelligence. 

Natural ly many issues remain unresolved. We con­
jecture that an algori thm conforming to the principle of 
sunk costs provably dominates in some way an algori thm 
that violates the principle, but we do not know in what 
way. We also do not know how to characterize the class 
of theorem-proving problems for which the caching ideas 
described here are beneficial. 

A c k n o w l e d g e m e n t s . Section 2 reports on work done 
jo int ly w i th David McAllester. Discussions wi th James 
Altucher, Wi l f red Chen, David McAllester, and Alberto 
Segre were helpful in developing the ideas reported in 
Section 4. 

References 

[Charniak et a/., 1987] Eugene Chamiak, Christopher 
K. Riesbeck, Drew V. McDermott , and James R. Mee-
han. Artificial Intelligence Programming. Lawrence 
Erlbaum Associates, Hillsdale, New Jersey, 1987. Sec­
ond edit ion. 

[de Kleer, 1986] Johan de Kleer. An assumption-based 
TMS. Artificial Intelligence, 28:127-162, 1986. 

[Forgy, 1982] Charles L. Forgy. RETE: A fast algorithm 
for the many pat tern/many object pattern match 
problem. Artificial Intelligence, 19:17-37, 1982. 

[Keller and Sleep, 1986] Robert M. Keller and M. Ro-
nan Sleep. Applicative caching. ACM Transactions 
on Programming Languages and Systems, 8(1):88-108, 
January 1986. 

[Korf, 1985] Richard E. Korf. Depth-first iterative-
deepening: An opt imal admissible tree search. Ar­
tificial Intelligence, 27(1):97-109, September 1985. 

[Lloyd, 1984] John W. Lloyd. Foundations of Logic Pro-
gramming. Symbolic Computat ion. Springer Verlag, 
1984. Second edit ion, 1987. 

[McAllester, 1988] David A. McAllester. Conspiracy 
numbers for min-max search. Artificial Intelligence, 
1988. 

[McCloskey, 1985] Donald N. McCloskey. The Applied 
Theory of Price. Macmil lan Publishing Company, 
New York, second edit ion, 1985. 

[Nilsson, 1980] Nils Nilsson. Principles of Artificial In-
telligence. Tioga Publishing Co., Palo Al to , Califor­
nia, 1980. 

[Pearl, 1984] Judea Pearl. Heuristics: Intelligent Search 
Strategies for Computer Problem Solving. Addison-
Wesley Publishing Company, 1984. 

[Plaisted, 1986] David A. Plaisted. Simplified problem 
reduction format theorem prover examples, 1986. Dis­
tr ibuted over the Arpanet. 

[Pugh, 1988] Wi l l iam W. Pugh. Incremental Compu-
tation and the Incremental Evaluation of Functional 
Programs. PhD thesis, Cornell University, 1988. 

[Stickel and Tyson, 1985] Mark E. Stickel and W. M. 
Tyson. An analysis of consecutively bounded depth-
first search wi th applications in automated deduction. 
In Proceedings of the Ninth International Joint Con-
ference on Artificial Intelligence, pages 1073 1075, 
August 1985. 

[Stickel, 1986] Mark E. Stickel. A PROLOG technology 
theorem prover: Implementation by an extended PRO­
LOG compiler. In J org H. Siekmann, editor, Eighth 
International Conference on Automated Deduction, 
number 230 in Lecture Notes in Computer Science, 
pages 573-587. Springer Verlag, 1986. 

[Tarjan, 1983] Robert E. Tarjan. Data Structures and 
Network Algorithms. Society for Industrial and Ap­
plied Mathematics, Philadelphia, 1983. 

346 Search 


