
Minimizing Response Times In Real Time Planning And Search 

Shashi Shekhar & Soumitra Dutta 

Computer Science Division 
University of California, 

Berkeley, CA 94720 

Abstract 

Real time artificial intelligence (AI) systems are required to 
respond within a given deadline, or have optimal response times. 
While some researchers have addressed the issue of planning 
under deadline constraints, there has been very little research 
towards optimizing the response time of problem-solving 
methods. The costs for a response consists of the cost to plan for 
a solution and the cost of executing the chosen solution. There is 
an intimate trade-off between these two costs. This paper 
presents an algorithm for providing near optimal response times 
by formalizing the trade-offs between planning and execution 
costs. We provide a proof of correctness and describe an imple­
mentation of the algorithm in a real time application of query 
planning. We also provide a model for considering response 
times in the context of the A* heuristic search algorithm. 

1. Introduction 
As the application of AI systems evolves from an art to an 

engineering science, we can expect more challenging applications to 
be addressed. Some of the most challenging and interesting applica­
tions can be found in real-time domains. An AI system operating in 
a real-time situation will typically need to respond within a certain 
deadline, or have optimal response times (for planning and execu­
tion). For example in managing defensive weapons against nuclear 
missiles, the system has to respond within a few seconds or 
minutes[l]. On the other hand, in credit approval systems[2], 
optimal response times are desired, but there are no hard deadlines. 
The deadline problem is hard and many such problems (e.g., 
scheduling with deadlines) are NP-complete [3] and guaranteeing an 
optimal solution within a fixed deadline is often not possible. The 
optimal response time is required in the case wherein the plan execu­
tion time is comparable to planning time. The response time is the 
sum of planning time and execution time, and the application has no 
strict short deadlines. As shown in figure 1, in general, the optimal 
response time is not achieved by solely minimizing execution time, 
as then planning time increases to offset the gains. 

Currently, ad hoc techniques are used for making a system pro­
duce a real-time response , and these methods suffer from poor 
extensibility, brittleness and a lack of a formal proof of "reliable real 
time performance" [4). Traditional search algorithms like depth first 
search, breadth first search and depth first iterative deepening [5], 
A* [6] and IDA* [5] are useful with small search spaces and large 

deadlines only. However, the size and complexity of most search 
spaces faced by real time AI systems preclude the use of these algo­
rithms, as they may take exponential time in producing a solution. 
These search strategies may be able to guarantee an optimal solution 
in the absence of limits on search time, but cannot function with the 
constraint of deadlines and response times. Consequently the plan­
ning methods based on A* and EDA* may potentially take exponen­
tial time for problem-solving. Within a given deadline to solve cer­
tain problem, the system may not produce any solution (complete or 
partial). Scaling them up with real world data and adequate 
knowledge-bases, would amplify their performance problems, 
including their inability to meet real time constraints[7]. 

Research on real-time AI systems have concentrated on 
software and implementation issues like interrupt handling[7]. There 
has been little research on problem-solving methods, which can meet 
a deadline or provide an optimal response time. Some researchers 
[8,9] have worked towards planning and search algorithms to meet 
reasonable deadlines by finding a partial solution within the given 
deadline. The algorithm is based on bounded look-ahead search, i.e. 
one searches forward from the current state to a fixed depth horizon 
determined by the deadline. A cost function (similar to A*) is used to 
evaluate the frontier nodes. The minimum value is then backed up 
and a single move is made in the direction of the minimum value. 
Korf has further proposed a real time modification of A* called 
RTA* for controlling the sequence of moves actually executed. 
Russell[10] has extended RTA* by adding meta-greedy decision-
theoretic search control. Some of the results from reasoning under 
resource constraints[\ 1,12] are also applicable, if time is considered 
as a resource. This line of work is based on assigning utility 
numbers with choices and maximizing utility. 
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The above mentioned real time algorithms essentially deal with 
the problem of deadlines in real time systems (see classification in 
figure 1). They ignore the execution cost of any solution and essen­
tially spend all available time (the deadline) searching. This may not 
be realistic in cases where executing the solution takes some appreci­
able amount of time and it is no longer possible to ignore it. Our 
research concerns the other class of real-time applications where 
response time is important. 

To optimize the response time, a real time system has to con­
sider the tradeoff between execution and planning costs. A greater 
planning cost may possibly lead to a lower execution cost, but the 
extra time spent planning may also lead to a potential increase in the 
response time as shown in Fig.t. Thus it is crucial that a real time 
system be able to decide upon the appropriate moment to stop 

planning and start executing the best solution plan obtained t i l l then. 
Our focus in this paper is to formalize the trade-off between planning 
cost and execution cost in such real time systems and prove bounds 
on the optimality of the results obtained. We present a search algo­
rithm for providing near optimal response times. We provide 
correctness proofs and bounds on the optimality of the response time 
performance obtained. We describe an implementation of our algo­
rithm in a real-time application of query planning [13], which sub­
stantiates our results experimentally. Finally we explore the combi­
nation of our algorithm with A* . 

The structure of this paper is as follows. Section 2 describes 
our search algorithm, correctness proofs and other results. Section 3 
and 4 describes the application of our proposed algorithm in two 
example domains: query optimization (planning) and the A* heuris­
tic search algorithm[14]. Finally, section 5 summarizes our contri­
butions and lists directions for future research. 

2. Optimizing Response Time 

For a real time system with optimal response time requirement, 
the total time for responding to a situation can be conceptually 
modeled as consisting of the time for planning a path to solution, and 
the time for actually executing the chosen solution path. In some 
situations we need to generalize the planning and execution times to 
planning and execution costs or utilities [10,11] to account for vari­
ous other aspects of the problem domain. 

For simplicity, we wi l l adopt to the model given by Korf, and 
consider costs as equivalent to the times required for planning and 
execution. In this context, the process of planning a response can be 
modeled as a search among different possible responses or actions 
for the best possible action. The space of different possible actions 
can be very large, and as the sequence of search for finding the best 
possible action is (usually) not known apriori, the process of plan­
ning (to find the best action) can take prohibitively large amounts of 
time, so as to thwart the desired optimality of the response time of 
the real time system. Thus it is important to devise algorithms which 
not only allow a real time system to suitably terminate the planning 
phase, but also prove some bounds on how well it has done as com­
pared to the optimal response time. 

2.1. NORA (Near Opt imal Response-time Algor i thm) 

In this sub-section, we shall describe NORA, a simple and 
intuitively appealing algorithm for providing near optimal response 
times in real time systems that satisfies the above-mentioned con­
cerns. Blind exhaustive searches like BFS or DFS are generally 
applicable to limited domains. Most heuristic search algorithms 
require the ability to recognize the goal node (i.e., the best action). 
This is not always possible, (e.g., recognizing the cheapest query 
execution plan in query optimization! 15] ) and one needs other ter­
mination criteria to stop the search. 

Given a search algorithm, a real time system has to make a cru­
cial decision of determining the time to stop searching so as to pro­
vide a near optimal response time. This problem is simplified for 
small search spaces (where it may be possible to search the entire 
search space quickly) or when it is possible to recognize the best 
action (so that the search can be stopped as soon as the best action is 
found). In general it may not be possible to characterize apriori the 
best action and even if it is possible to characterize it for recognition, 
reaching it in the many search traversal algorithms may require 
prohibitively large time. Thus a real time system must have some 
algorithm for appropriately balancing the planning and execution 
costs. 

The basic idea of NORA is simple and intuitive. Conceptually, 
the search space can be thought of as a set of nodes with inter­
connecting arcs. Each node represents one possible action (or set of 
actions) and has an associated execution cost. A search traversal 
algorithm specifies the order of traversal of these nodes and there are 
costs associated with this traversal. These costs include the cost of 
actually moving from node to node and any associated computation 
costs at each node (for example, to estimate the execution cost of the 
actions at the node). The chosen search traversal algorithm goes 
from node to node in some order to find the node with the best action 
(or here for simplicity, the least action time). At each node, NORA 
keeps track of two metrics: 

[ 1 ] Planning cost so far this represents all associated costs of plan­
ning so far and includes all cost of traversing the search space. 

[2] Least execution cost so far: this is the node with the least exe­
cution cost so far. 

The search space traversal is terminated whenever the planning 
cost exceeds some fraction of the best execution cost found so far, 
i.e., when the following condition is satisfied: 

where X defines the fraction. As shown in the next sub-section, this 
simple stopping criterion allows us to achieve a near-optimal 
response time (when the search is terminated with the above condi­
tion satisfied) satisfying the following bound: 

This is for the general case, in which we are unable to recognize 
apriori the best action. In cases, where it is possible to recognize the 
best action, a direct comparison can be made for a crisper bound (see 
section 3.2). As evident, the choice of X is crucial and at the end of 
the next sub-section, we describe how we can obtain heuristics for 
the choice of an appropriate X. We further note that the bound holds 
for any given search space traversal ordering (e.g. A* ) . 

22. Correctness of NORA 

In this section, we provide a correctness proof for NORA. 
Some notation used in the proof below is introduced in Table 2.1. 
We structure the search space as a interconnected set of nodes Qi,, 
each node representing a possible action (or set of actions). 
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3. Query Optimization: A Real-time Application 
We implemented our algorithm for optimizing the response 

time of query optimizer for data-bases. Most databases are on-line 
and users access desired information via a query, represented in a 
suitable query language. Queries involve operations like join, select, 
and project, and can be answered by executing several different 
execution-plans each with different execution-times. The query 
optimizer generates and examines many execution plans to choose 
the one with the least execution-time. The planning time increases 
exponentially, as the optimizer expands its search of possible execu­
tion plans. 

The optimization cost can be comparable to the cost of query 
execution. The tradeoff between optimization time and the cost of 
query execution becomes a major issue in optimizing the total cost of 
query processing. We further note that it is not possible to apriori 
specify the query with the least execution cost, while traversing the 
search space. 

We tested NORA for semantic query optimization for a ship­
ping database of six relations. The database schema, the relation 
sizes, semantic integrity constraints and the various indexes available 
are reported elsewhere[16,17]. The first step in our experiment was 
to generate the search space. The NORA algorithm was simulated 
on the search space. The stopping rule of NORA terminates the 
search when the following condition becomes true : T(/) > t(i) The 
stopping rule was examined for the values λ = 2,1, and 1/2. The 
results are presented in Table 3.1. 

X This assumption is justified by many planners, e.g. query optimizers, 
t RT(i) = T( i ) + a/ ( i ) , and represents an integrated cost. 
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Table 3.1 Performance of NORA 
The result can be verified for all the three values of X. Here we 

shall illustrate the validation for λ- 1. The search stops after itera­
tion 3, since the stopping criterion of NORA evaluates to 
(163X1) + (5)(5) > 127.0 =» 188 > 127.0, which is true. The optimiza­
tion cost and best execution cost estimate are, 

t ( i )=188w; t( i )= 127.0 ms 
The bound of the Correctnes Theorem is satisfied since, 

) 

We see that stopping rule is quite effective. Especially notable 
is the fact that even though we attempt to minimize a weighted sum 
of T(I ) and r(i), and not t(i) alone, the value of /(i) obtained is actu­
ally quite close to the minimum. We believe a more careful analysis 
of the algorithm would help us get a better bound. 

4. NORA and Heuristic Search Algorithm A* 
A* +[18] is probably the best known heuristic search algorithm 

for finding a solution path from an initial start node to a goal node, 
when the execution costs are negligible. It finds an optimal solution 
path in optimal planning time if the heuristic function, h(n), is mono-
tone and admissible, i.e., it satisfies triangle inequality and it never 
overestimates the actual cost of reaching a goal node. A* ignores 
execution time and essentially concentrates on minimizing the 
searching time instead on response time. Furthermore A* terminates 
by recognizing the goal node. Thus the problem definition must pro­
vide adequate characterization of the goal node, so that it can be 
recognized easily. 

To apply NORA formalism to A* we generalize A* in two 
respects: (a) introduce the notion of execution time, (b) relax the 
assumption that the search algorithm can recognize the goal node 
during the search process, even though one can define heuristic func­
tions. We use a more general stopping criteria for search termina­
tion. 

To introduce execution costs in A*, we proceed as follows. 
Associated with any node n, in the search space, let ge (n) represent 
the execution time for executing the partial solution (corresponding 
to the path from the start node to node n) found so far and let h, (n) 
represent the heuristic estimate of the cost of execution from the par­
tial solution to a goal node (corresponding to a path from node n to a 
goal node). Note that ge(n) and he(n) are distinct from the conven­
tional g and h functions of A*. While g(n) estimates the cost of 
expanding the search tree from the start node to the node n and thus 
contributes to the planning costs for finding a solution path from the 
initial state to the partial solution state specified by node n, ge{n) 
estimates the cost of actually executing that partial solution path in 
the real world. Similarly, while h(n) estimates the planning cost of 
further expanding the search tree from node n to a goal node, he (n) 
estimates the actual cost of execution while trying to reach a goal 
from the partial solution state specified by node n. These functions 
can be computed as it is possible to apriori precisely characterize the 
goal state. 

+ a best-first search of the search space, where the merit of a node, f(n) is the si 
of reaching that node, n, from the start node, S, and the estimated cost, h(n), of reac 
that node. 

While trying to optimize response times in real time planning 
and search using A*, it is possible that we may decide to terminate 
the search (based on a chosen search stopping criterion, e.g., as 
specified by NORA) at some node i, before reaching a goal node, G. 
Assume that stopping at some node i, (i * goal node), forces us to 
incur some penalty for execution in real time (caused by the distance 
from the partial solution state, node i, to a goal node), and let it be 
represented by ht (i). We assume that he (i) is proportional to the dis­
tance of the node i from a goal node and that it monotonically 
decreases as i approaches a goal node. 

4.1. Applying Stopping Criterion of NORA 
Let us assume that the A* heuristic evaluation function, h, 

satisfies the monotone t restriction and is admissible. Under these 
conditions, A* never expands any nodes other than those that lie on 
the optimal solution path and thus at any node, i, (i = goal node), on 
the optimal solution path, the total planning cost so far is given by 
g(i) and the best estimate of the execution cost is given by the sum of 
g€(i) and he(i). Let G represent the goal node, and thus the planning 
cost for reaching the goal node is g(G) and the execution cost is 
given by the sum of ge (G). The stopping criterion as specified by 
NORA would be: stop when 

Writing the ratio of the response time, RT(i), when stopping at node 
i over the response time, RT(G), when stopping at goal node, G, we 
have: 

Note that g(G) £g(i) + h(i) as h is assumed to be admissible. Since 
h(i) is positive, we can ignore it from the denominator and on substi­
tuting the stopping condition we get: 

Dividing both numerator and denominator by g(i), we get 

as both g,(G) and g(i) are positive. Thus the bound of NORA is 
satisfied. Note that as λ is positive, 1 + λ is greater than 1. 

Thus result provides an interesting extension of A* for minim­
izing response time for the real-time problems, where plan-execution 
time is not negligible. Use of stopping criteria of NORA leads to a 
near optimal response time, which is shown to be near-optimal even 
when he (goal) = 0. We have verified this assertion for the best case 

of A*, ie the case of monotone admissible heuristic functions. It can 
easily be verified that the assertion holds in all cases. 
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5. Conclusions 
We have looked at real-time AI applications, where planning 

and execution costs are equally important. We have presented a 
classification of real-time problem solving systems, and an algorithm 
for producing near optimal response times. We proved that balanc­
ing planning cost with execution cost, can lead to near-optimal 
response time, and provided bounds on the worst-case deviation 
from the optimal point. We have then provided an empirical valida­
tion of the algorithm, via a real-time application of query planning 
for databases. Experimental results show that the performance of our 
algorithm is often much better than the worst case bounds. We have 
also developed a framework for obtaining bounds on response times 
in the context of real time heuristic search using A*. 

The results can be extended in many directions. The bounds 
on the performance of the algorithm are far from tight as illustrated 
by experiments. We would like to prove tighter bounds on the 
optimality of our algorithm. Secondly, our termination criterion can 
be used with any search algorithm like A*, RTA* etc. More 
research needs to be done in this direction. In particular we would 
like to combine it with RTA*[ 9] and explore the properties of that 
algorithm. Finally, we are exploring the applicability of our results in 
domains. 
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