
Experiences Implementing a Parallel ATMS on a Shared-Memory Multiprocessor

Edward Rothberg and Anoop Gupta"
Department of Computer Science

Stanford University
Stanford, CA 94305

Abstract
The Assumption-Based Truth Maintenance System
(ATMS) is an important tool in A I . So far its wider use
has been l imited due to the enormous computational re
sources which it requires. We investigate the possibility
of speeding it up by using a modest number of proces
sors in parallel. We begin with a highly efficient sequen
tial version written in C and then extend this version to
allow parallel execution on the Encore Mult imax, a 16
node shared-memory multiprocessor. We describe our
experiences in implementing this shared-memory par
allel version of the ATMS, present detailed results of
its execution, and discuss the factors which l imit the
available speedup.

1 Introduction
The Assumption-Based Truth Maintenance System (ATMS) is an
important tool in A I . It makes the task of designing a problem
solver much easier, removing the need for the problem solver to
maintain information concerning derivations which it makes. With
out an ATMS, the problem solver must implicit ly record which of
its assumptions it currently believes to be true and what these as
sumptions imply. When it wishes to change its assumption set, it
must also recompute the set of items which are implied. With an
ATMS, the problem solver explores the problem space, informing
the ATMS of the assumptions it makes, the items which it wishes to
reason about, and the derivations which it makes concerning these
items. The ATMS keeps track of which items hold under any given
assumption set, thus allowing the problem solver to freely change
the set of assumptions which it currently believes. A number of
problem solvers have been built which use the ATMS in a num
ber of AI subfields. The ATMS provides a convenient level of
abstraction, greatly simplifying the structure of the problem solver
[Filman, 1988].

So far wider use of the ATMS has been limited due to the enor
mous computational resources which it requires. The ATMS is
often the bottleneck in the problem solving process, often having
greater computational requirements than the problem solver wi th
which it is collaborating. We investigate the possibility of speeding
up the ATMS by using a modest number of processors in paral
lel. We begin with a highly efficient C-based implementation of
the ATMS based on the techniques described in [deKleer, 1986].
Through a number of modifications to the basic sequential ATMS,
we obtain moderate speedup on the three example problem solver
trace files which we examine.

'This research is supported by DARPA contract N00014-87-K-
0828. Edward Rothberg is also supported by an Office of Naval
Research graduate fellowship. Anoop Gupta is also supported by
a faculty award from Digital Equipment Corporation

The paper is organized as follows. Section 2 presents back
ground information about the ATMS and introduces related termi
nology. Section 3 presents details of an efficient sequential imple
mentation of the ATMS. Section 4 presents the modifications to the
sequential implementation which were necessary to allow parallel
execution. Section 5 presents the results of executing the basic
parallel implementation. We discuss the bottlenecks encountered
and introduce a number of modifications to the basic algorithm to
deal wi th these bottlenecks. Section 6 discusses related work, and
Section 7 presents the conclusions.

2 The ATMS
The ATMS serves as a companion to a problem solver, acting
as a sort of ''truth database". The problem solver feeds beliefs,
contradictions, and implications to the ATMS. The ATMS keeps
track of what is true under what assumption sets and why. In
this section we illustrate how the ATMS is used and introduce the
terminology with a brief example. The example problem that we
solve is the 3-queens problem, the problem of finding placements
for three queens on a 3 by 3 chessboard such that no queen can
capture any other.

Everything which the problem solver reasons about is assigned
an ATMS node. In the 3-queens example we use 10 nodes, one for
each of the 9 squares on the chessboard and one goal node to rep
resent the solution. Each chessboard node represents the placement
of a queen on the corresponding chessboard square. Some subset
of the ATMS nodes are designated to be assumptions. These are
nodes which are presumed to be true unless there is evidence to
the contrary. In the example, the 9 nodes assigned to chessboard
squares are the assumptions. We assume that a queen can be placed
at each square of the board. Every important derivation made by
the problem solver is recorded as a justification:

where x1. x2 are the antecedent nodes and 7? is the consequent
node. In the example, the problem solver tells the ATMS that any
set of three queens placed on the board constitutes a solution. Thus,
the justifications take the form:

position 1, posit ion 2,positions => goal-node

where position, is an assumption which corresponds to a queen
being on a particular square on the chessboard. An ATMS envi
ronment is a set of assumptions. A node n holds in environment E
if n can be derived from E using the current set of justifications.
An environment is inconsistent (called nogood) if the distinguished
node false holds in it. In the 3-queens example, we declare any set
of assumptions in which the corresponding board positions contain
a capturing pair to be nogood. The answer to the 3-queens prob
lem is the set of all consistent environments in which the goal node
holds.

Rothberg and Gupta 1 9 9

In the ATMS, sets of environments play an important role in
keeping track of the contexts under which a given node holds.
They are used extremely frequently, and consequently we need a
concise representation for a mem. In our representation, we can
take advantage of the fact that if a node holds under environment
E, then it also holds under any superset of E. Also, any node
holds under a nogood environment, so it is never necessary to
keep track of nogoods in the set. We therefore represent a set
S of environments by its smallest consistent members, a list of
environments (E 1 . E 2 —) , which we call a minimal environment
list. This representation has the fol lowing properties:

• Minimality — No E1 is a subset of any other.

• Consistency — No E1 is nogood.

The distinction between sets of environments and sets of assump
tions presents a possible source of confusion. For example, con
sider the environments { A , B) and {A , B, C) . Clearly { A , B, C} is
a superset of {A , B } . Yet, the minimal environment list ({ A , B, C})
represents a subset of the minimal environment list ({ A , B }) ; the
second contains environments which do not have assumption C in
them, while the first does not. Please keep this potential source
of confusion in mind when we discuss environment supersets and
subsets in the remainder of this paper.

The problem solving process involves a dialogue between the
problem solver and the ATMS, in which the ATMS receives a se
quence of requests to create new nodes, new assumptions, new
justifications, and to provide information on the environments in
which nodes hold. This information can be easily provided if the
ATMS maintains with each node n a set of environments, in mini
mal environment list form, called its label. In addition to its mini
mal environment list properties, each node's label has the fol lowing
two properties:

• Label soundness — Node n holds in every environment in
the label set.

• Label completeness — Every environment E in which n
holds is a member of the label.

3 Sequential Implementation
We now examine how the sequential ATMS is actually imple
mented, with emphasis on those aspects of the implementation
which are relevant to parallel execution. Since we wi l l be com
puting the speedups of the parallel implementation based on the
execution time of the sequential implementation, we must make
sure that sequential version is as efficient as possible.

3.1 The Trace Files
We first present the results of executing three problem solver traces
on our ATMS. These traces were generated by monitoring the in
teraction between an actual problem solver and an ATMS, and
dumping the observed interaction into a trace file. The traces are:

• QPE, from a problem solver created by Ken Forbus fForbus,
1986] which solves Qualitative Physics problems.

• BUG, a trace which led to a bug in some ATMS implemen
tation.

• 8-Q, from a problem solver which solves the 8-queens prob
lem. This formulation of the N-Queens problem differs some
what from the one described earlier in this paper.

Table 1 provides information on the three traces. It also provides
the runtimes for the three traces, both for the LISP-based ATMS
implementation of deKleer [deKleer, 1986] and for our C-based
implementation. We provide these numbers to demonstrate that we
are basing our parallel program on an efficient sequential imple
mentation. The time quoted for deKleer's ATMS is from execution
on a Texas Instruments Explorer I lisp machine. The time quoted

for our implementation is from execution on a single processor of
an Encore Multimax multiprocessor. The Encore Mult iMax is a
16 node, shared-memory multiprocessor, with an NS 32032 (0.75
MIPS) microprocessor at each node. We also include the runtime
on a more widely available machine, a DEC DecStation 3100, for
reference purposes. These times include all costs involved in pro
cessing the trace files from beginning to end, including the time
spent processing the ATMS commands and the time spent reading
the trace files from disk.

3.2 Implementation Overview
The four basic operations which the ATMS makes available to the
problem solver are:

• Create-Node n — create a new node.

• Create-As sumption // — create a new assumption.

• Justify-Node n by x 1 . x 2 . . — add a new justification.

• Node-Query n — request the current label of node n.

The problem solver places a sequence of these commands on
a queue it shares with the ATMS. The ATMS repeatedly removes
available commands from this queue. Given a command, it per
forms the requested action, restores node label soundness and con
sistency for all nodes in the inference graph, and is then ready to
perform the next command.

Of the four commands which the ATMS makes available to the
problem solver, only Justify-Node consumes significant amounts of
time. The Create-Node command takes very little time, since at the
point at which the node is created it does not participate in any jus
tifications. The Create-Assumption command also takes little time
for the same reason. The Node-Query command is also computa
tionally inexpensive because of the properties of label consistency,
soundness, completeness, and minimality. In order to process a
Node-Query command, the ATMS simply returns the current label
of the appropriate node.

When a Justify-Node command arrives at the ATMS, the labels
of the consequent node n and any nodes which depend on node
n may no longer be complete. Node n may now be derivable
from a new set of assumptions not currently in node n 's label. Its
label must be updated, and any changes to node n's label must be
propagated to the successors of node n.

A new justification can also cause new nogood environments to
be discovered, potentially causing the node label of any node in
the inference graph to become inconsistent. The simplest example
of this would be a justification whose consequent is the false node.
In order to restore node consistency, environments which become
nogood must be removed from all node labels.

In order to handle propagation of node labels, the ATMS main
tains an Update request stack. Any time a node label is changed.
Update requests are placed on the request stack, one for each jus
tification which has the modified node as an antecedent. The first
step in the processing of a new justification is to push an Update
request onto the request stack. The ATMS continues popping Up
date requests off of the Update stack, processing the requests, and
potentially pushing more requests onto the stack until the stack is
empty. This corresponds to a depth first propagation of labels.

200 Parallel and Distributed Processing

A single Update request is processed as follows:

• The set of consistent environments which derive the conse
quent using the new justification and the new label environ
ments is computed. This set is the intersection of the new
label environments of the one antecedent with the labels of
the other antecedents of the justification.

• If the consequent is the false node, then all of these environ
ments are recorded as nogood.

• Otherwise, the consequent node label is set equal to the union
of the previous label and the new set of environments.

• The changes to the consequent label, i.e. the set of environ
ments in the label which were not present in the previous
label, are propagated to all nodes which depend on the con
sequent.

3.3 Set Operations on Minimal Environment Lists
Adding a new justification requires a number of set operations on
sets of environments, including set union and set intersection. The
minimal environment list representation allows us to perform these
operations quickly. Given two environment sets, $ and 1, rep
resented as (E 1 , E2) and (F1. F2) respectively, we perform
set operation on them as follows:

When we wish to add a new set of environments to the label of
a node, we must take the set union of the existing label with the
set of new environments. The set union of S and T, in minimal
form is the concatenation of the minimal forms of S and 7 , with
all supersets removed.

When we wish to compute the effect of a justification on its
consequent node, we must find the set intersection of all of the
labels of the antecedent nodes. The set intersection of S and T is
somewhat more involved than the set union. If all supersets of T,
are in S and all supersets of F1 are in T , then all environments
which are supersets of both E1..', and F1, are in S' n T". The set of all
supersets of both E1, and F1'-, is the set of all supersets of the union of
E1 and F1 (remember that environments are sets of assumptions).
For example, the intersection of the supersets of { 1 B) with the
supersets of { B . C} is the supersets of {A . B . C \ , which is the
union of {.4. B) with { B. C'} . Thus the intersection of S with T
is the set of all supersets of the pairwise unions of E1, with E1.
Thus, in minimal environment hst form, this is the cross product
of the minimal environment list forms of S and T, again with all
supersets removed.

3.4 Data Structures
The efficiency of the ATMS is highly dependent on the data struc
tures and algorithms used in the implementation. A straightforward
ATMS implementation can literally take days to solve a problem
which a more sophisticated implementation solves in a few min
utes. We first present the major data structures used in our ATMS
implementation. The data structures are simply laid out here with
brief descriptions; the purpose of each individual field wi l l be made
clear in later sections.

The environment data structure has the fol lowing fields: (1)
Present a bit vector representing the set of assumptions present in
the environment. (2) Constituents: a list of all assumptions present
in the environment. (3) Size: the number of assumptions present.
(4) Contra: a flag indicating whether the environment is consistent.
(5) Where: a list of all nodes which contain this environment in
their labels. (6) Orthogonal: a bit vector representing the set of
assumptions which, if added to the environment, would result in a
nogood environment.

The node data structure has the fol lowing fields: (1) Label the
node's label. (2) Assumption: a pointer to the node's assumption
fields, if the node is an assumption. (3) Consequences: a list of
justifications in which the node is an antecedent.

The assumption data structure has the fol lowing fields, in addi
tion to its node fields: (1) Binary: a bit vector representing the set
of all binary nogoods this assumption participates in. If bit j is set
in the Binary field of assumption ?, then the environment { i , j) is
nogood. (2) Nogoods: a table of all minimal nogood environments
in which the assumption belongs, indexed by environment size.

The justification data structure has the fol lowing fields: (1) An-
tecedents: a list of antecedent nodes. (2) Consequent: the conse
quent node.

3.5 The Environment Database
Our ATMS maintains three data structures to keep track of envi
ronments encountered during a problem solver run, an environment
hash table, a Consistent table, and a Minimal Nogood (MNG) table.
The environment hash table holds all environments encountered so
far, both consistent and nogood, indexed by a hash function. The
Consistent table holds all consistent environments, and is indexed
by environment size (number of assumptions present in the envi
ronment). The MNG table holds all minimal nogoods, the nogoods
which are not subsumed by any other nogood, and is again indexed
by environment size. Each environment has a unique physical rep-
resentation in memory.

We make two modifications to the simple MNG table for ef
ficiency. First, we handle unary and binary nogoods as special
cases. The assumption data structure has a field entitled Binary
which keeps track of unary and binary nogoods. If bit j in the
Binary field of assumption I is set, then the environment {?..j"}
is nogood. Similarly, if bit ? is set, then {1} is nogood. The
second modification involves the Nogood field of the assumption
data structure. Any environment in the MNG table is also kept in
the Nogoods table of each assumption in the environment. These
two modifications allow the ATMS to find all minimal nogoods
containing a given assumption extremely quickly.

The Consistent and MNG tables form what we call the envi
ronment database. The environment database, together with the
environment hash table, make the following frequent operations
extremely fast:

• When searching for a particular environment, find its unique
representation.

• When checking an environment for consistency, find all min
imal nogoods smaller than that environment.

• When adding a new nogood, find all consistent and nogood
environments larger than that environment.

We represent an environment as a bit vector. A one in bit i of
the vector indicates the presence of assumption 1 in the environ
ment. This representation allows us to do subset testing, the most
prevalent operation in the ATMS, by simply ANDing the bit vector
of one environment with the complement of the bit vector of the
other environment. The bit vector representation also allows fast
hash function computation.

3.6 The Cross Product
When we handle an Update request, we need to compute the cross
product of a number of minimal environment lists, as was described
previously. Assume we wish to take the cross product of n min
imal environment lists l1, I2 , /n, with l\ being the incremental
update. We do this by looping over each Hst, creating m ,, the
cross product of l1 through /,. We begin with m1 — / 1 , and at each
iteration we compute mi +1 = m1, x /i+1, where both m, and mi+1

are in minimal environment list form. We do this by collecting the
unions of each environment E in m , with each environment F in
/, + i, again with supersets removed

We can greatly decrease the amount of time it takes to compute
mn by using the fol lowing two techniques. First, if some envi
ronment E in m, is subsumed by some environment in the label
of the consequent of the justification which we are updating, then

Rothberg and Gupta 201

clearly every environment in m , + i . . . mn which is generated from
E w i l l also be subsumed by this environment. Any such E may
therefore be discarded

Second, consider taking the cross product of m , with / i+1. If
some environment E in m, is subsumed by some F in 1 i+1, then
clearly E w i l l be in m i+1. Since all environments which would
result from taking the union of E with some environment in / i+1

are supersets of E and since E is in mi+1, none of the resulting
environments w i l l be present in mi+1. We can therefore place any
such E into mi+1, thus avoiding having to take the union of E
with each environment in m i+1.

If we compute the cross product, using these two techniques, the
result is a minimal environment list which represents the change to
the label of the consequent node n. If the consequent is not the false
node, we add each environment in our cross product to the label of
node n. We must now restore minimality in the label by checking
every environment previously in the label for subsumption against
every environment just added to the label. We then propagate the
cross product list, which represents the changes to the label of node
n, to every justification which has node n as an antecedent.

If the consequent is the false node, then our cross product list is
a set of environments which were previously consistent but have
just become nogood. We add them to the MNG table, and sweep
through the Consistent and MNG tables looking for subsumed en
vironments. If an environment in the Consistent table is subsumed,
it is removed from the table and from the labels of all nodes which
contain it (found in the Where field of the environment). If an
environment in the MNG table is subsumed, it is removed from
the table.

Computing the union of two environments is an extremely fre
quent and potentially extremely costly operation in the ATMS. The
method of union computation which we use is an assumption by
assumption method. That is, given two environments E\ and E2,
we compute the union by successively adding the assumptions in
£2 into E, computing an intermediate environment at every step.
The result of a union is either a consistent environment £ 3 , which
is the union of E\ with £2, or nogood', indicating that the union
of E1 with E2 is nogood. While this seems like a somewhat cum
bersome way of computing the union, if we look at the amount of
work done per union we see that in practice it is extremely effec
tive. In QPE, BUG, and 8-Q, the average number of assumptions
which must be added to E1 before the union is known are 1.05,
1.04, and 1.00, respectively.

While the exact details of the union computation are crucial to
the efficiency of a sequential implementation, they are not essential
to understanding the parallel modifications which follow. Briefly,
the Orthogonal field of the environment and the Binary field of the
assumption (see Section 3.4) allow the ATMS to quickly determine
when adding an assumption to a particular environment w i l l result
in a nogood. If these quick tests fa i l , then the environment must
be checked for its existence in the hash table, and if it doesn't exist
it must be checked for consistency with the minimal nogoods.

This concludes our discussion of an efficient sequential imple
mentation of the ATMS. As was discussed in section 3.1, our im
plementation is quite competitive with existing ATMS implemen
tations. We use the sequential implementation which we have de
scribed as the basis of comparison for the parallel implementations
which we describe in the remainder of this paper.

4 Modifications for Parallel Implementation

We now discuss the modifications which are necessary to allow
the preceding algorithm to be executed in parallel on a modest
number of processors. Our goal is to exploit as much parallelism
as possible, but we can not afford to introduce a large amount of
redundant work in doing so.

4.1 Division of Work
The overall structure of our parallel ATMS is quite similar to the
structure of the sequential ATMS. The ATMS and the problem
solver run concurrently, sharing commands and data through a
shared command queue. In order to allow a greater amount of par
allelism, we no longer require that node labels be made sound and
complete at the completion of each command. This requirement
would necessitate the synchronization of all processors after each
command, an operation which would greatly constrain our ability
to distribute work among the processors. We now only require that
labels be made sound and complete before a Node-Query command
is answered. Thus, Node-Query commands are now somewhat ex
pensive, since they require a global synchronization. Create-Node
and Assume-Node messages again require very little work to be
done, and are dealt wi th quickly. Justify-Node again require by far
the most computation time, and thus afford the most opportunity
to distribute work.

In order to decrease contention for tasks, each processor has its
own Update request stack. When a processor completes a task, it
first looks for a new task in it 's own Update request stack. If it is
empty, then the processor checks the global command queue. If the
next command on the command queue is a Node-Query (or if the
command queue is empty) the processor becomes idle. When all
processors are idle, one processor processes and removes the Node-
Query command, thus unblocking the problem solver and allowing
the problem solving process to proceed. We call this Program PL
We later provide variations of this basic algorithm.

4.2 Locks
In our shared memory implementation, all the processors access
the same data structures. We therefore need a number of mutual-
exclusion locks to control simultaneous access to shared data. We
begin by using straightforward locking techniques, and later modify
our approach based on the observed bottlenecks.

Our ATMS implementation has a number of local structures,
where access and modifications to these structures has little or
no effect on other structures. These include the environment hash
table buckets, the environments, and the ATMS nodes. We provide
a lock for each one of these structures to enforce the following
conditions: For hash table buckets, no two processors may access
the same bucket at the same time. For environments, we enforce
the conditions that no nogood environment may be added to a
node's label and when an environment becomes nogood, it must
be removed from the label of every node which contains it, and
that only a single processor may change an environment from good
to nogood. For nodes, we enforce the condition that no node label
may be accessed by more than one processor at the same time. In
order to decrease contention when processing justification updates,
we copy the node label and work with the copy. Since a typical
ATMS application has thousands of each of these structures and
for now we are using at most 16 processors, contention for these
locks is usually not a problem.

In contrast to the relatively local structures which we have just
discussed, the environment database is a very global structure. A
single change could conceivably affect every environment in the
environment database. We must be able to check a new environ
ment for consistency against all nogoods encountered so far. We
must also allow a new nogood to be added and all existing environ
ments to be checked for consistency against this new nogood. Since
the ATMS spends much of its time creating new environments and
checking them for consistency, we cannot tolerate a high latency
on consistency checking. At the same time, however, most new
environments which are encountered are nogood, so to avoid su
perfluous work we want a new nogood to be recorded as soon as
possible. We initially used a single global lock to control access
to both the Consistent and M N G tables. Since the ATMS spends
a substantial percentage of its time within this lock (3-15% for

202 Parallel and Distributed Processing

the three traces), this global locking approach appears somewhat
suspect.

5 Results
We now present the results of executing the three problem solver
traces on our parallel ATMS. Note that because Node-Query in
formation was not required when the traces were originally gener
ated, these traces do not record this command The absence of this
command does not affect the performance of the sequential ATMS
significantly, since Node-Query commands take so little time to ex
ecute. In our parallel ATMS, however, the lack of these commands
obviates the need for global synchronization. Thus, the results we
present here are optimistic, as the synchronization is done only at
the completion of the entire trace. In applications where Node-
Query commands are frequent, one would expect less available
parallelism.

The ATMS traces we examine seem to present abundant oppor
tunities for parallelism. Their inference graphs are extremely large,
with thousands of justifications capable of being distributed among
the processors (see Table 1). Though the only l imiting factor would
appear to be the global lock on the Consistent and MNG tables, we
observed speedups of only 3.9, 1.6, and 6.5 for QPE, BUG, and
8-Q, respectively, when Program 1 was executed on 14 processors.
These were greatly below what one would expect, even given the
global lock. The sequential ATMS spends 3%, 15%, and 6% of
its time within the lock for the three traces. If this were the only
parallelism limitation, we would expect speedups of 7 or more.
Clearly, parallelism is being limited in some other way.

The most serious bottleneck appears to be processor idle time.
When executed on 14 processors, the processors spend 54%, 72%,
and 5% of the total runtime, for QPE, BUG, and 8-Q, respectively,
without a task to execute. We have a number of tasks of varying
size to execute, and we wish to divide them among a number of
processors so that each processor takes approximately the same
amount of time to complete them. This near equal division of
tasks is usually possible given a large number of tasks to distribute;
the large number of tasks serve to smooth out the variations in
grain size. However, two factors make this untrue in Program P I .
First, the variation in grain size is enormous. In the BUG trace,
for example, the processing of a single justification accounts for
43% of the run-time of the trace (see Table 2). Second, as the
trace progresses the size and complexity of the inference graph
increases, thus making the amount of work involved in processing
a justification increase. The combination of some extremely large
grains with the tendency for the large grains to be towards the end
of the trace combine to make it extremely likely that one processor
w i l l be stuck with a large grain while the other processors have
nothing to work on.

In order to alleviate the grain size problem, we decrease the
task size. Instead of each problem solver issued command being a
single task, we now consider each Update request to be a task. In
Program P I , once the command queue becomes empty the proces
sor simply quits. Now, in Program P2, an idle processor attempts
to steal an Update request from the Update stacks of the other
processors. In this way, work can be distributed among the proces
sors even after the command queue has been emptied. Comparing

columns in Table 2 we see that by decreasing the task size we have
greatly increased the number of tasks and greatly reduced both the
average and maximum task size. The net result of our modifica
tion (Figure 1) is that the speedup is greatly increased from that of
Program P I , but it is still far from ideal.

Another serious bottleneck in our parallel implementation is the
environment database lock. In order to increase concurrency in
the environment database, we introduce another variation on our
basic algorithm. In Programs PI and P2, only a single processor
may access the database at one time. Our modification, which we
call Modal access, allows a number of processors to access the
table concurrently, while still maintaining the stringent consistency
requirements of the environment database.

The problem in allowing concurrent access to the database
comes from the potential simultaneous additions of a consistent
environment and a nogood environment. In order to add the con
sistent environment to the database, we must know that it is not
subsumed by any environment in the MNG table. To add the no-
good to the database, we must remove all environments which are
subsumed by it from the Consistent table. These requirements seem
to place serious sequentiality constraints on modifications to the en
vironment database. In order to avoid these constraints, we add a
mode of access indicator. The three access modes are Free mode,
in which no processor is currently accessing the database; Consis
tent mode, in which only consistent environments may be added to
the database; and NG mode, in which only nogood environments
may be added to the database. If a processor wishes to add a new
consistent or nogood environment and finds the database in the
wrong mode, it must wait until the conflicting access is complete.

We can modify the above slightly to increase concurrency. When
new nogood environments are generated, they usually come in
groups of more than one. We can therefore distribute the work
of adding a list of new nogoods among a number of processors.
New nogoods waiting to be added are placed on a global list. Now
when a processors wishes to add a consistent environment and
finds the database in NG mode, instead of waiting for the mode to
change, the processor pulls new nogood environments off of the
global list and processes them.

Figures 3 and 4 show the percentage of time each processor
spends doing useful work as compared to the percentage spent
waiting on locks and the percentage spent idle for two of the three
traces executed with Program P3. The numbers for the third trace
are between those of the two presented. The speedups obtained
from Program P3 (Figure 2) are still far from ideal. While con
tention for the environment database is greatly reduced, it is still

Rothberg and Gupta 203

substantial. We also still have a substantial speedup reduction due
to processor idle time.

Note that the speedup obtained is not equal the product of the
processor utilization and the number of processors used. This is
due to several factors. First, our speedup numbers are obtained
by dividing the parallel execution time by the execution time of
the best sequential implementation. There are a number of over
heads involved in the parallel implementation, such as environment
list copying and redundant checks, which can reduce the speedup
when compared to a sequential implementation without these over
heads. Second, the parallel ATMS does not necessarily do the same
amount of work that the sequential ATMS does. For example, the
parallel ATMS can process the justifications in a different order
than the sequential ATMS. While the answer we arrive at is the
same, the amount of propagation necessary to get to this answer
may differ. Third, there a number of hardware contention issues,
including bus bandwidth and cache interactions, which can preclude
linear speedups. We noticed a substantial degradation in speedup
(as much as 30%) which could not be attributed to software issues
and must therefore be caused by hardware contention. These issues
are not reflected in the utilization graphs which we present.

We have yet to examine one possible cause of reduced speedup
in the parallel implementation, redundant work. In the ATMS, it
is difficult to establish a measure of how much "work" is being
done. There are a number of routines which are called often and
take large amounts of time, yet none dominates the others. One
routine, subset testing, accounts for more of the runtime of the se-
quential ATMS than any other routine, and appears in many diverse
places in the computation. It therefore appears to be a reasonably
accurate measure of work. According to our subset measure of
work, we observed that the parallel ATMS does between 90% and
106% of the work of the sequential ATMS for 14 or fewer pro
cessors. Though the subset test numbers show interesting trends
as the number of processors grows larger, the differences for less
than 14 processors are not significant.

5.1 Going to a Still Finer Grain
Variation in grain size is still a problem in our implementation. Fur
thermore, the problem would be much more severe if Node-Query
commands were more frequent. One possible way to further de
crease the grain size would be to split Update requests into smaller
pieces. In Program P3, an Update request contains a list of new
environments which have been added to the label of an antecedent.
In order to decrease the size of a single grain, we could split this
list into many smaller lists. We could use a heuristic to determine
approximating how long an Update task w i l l take. Depending on
the estimate, the list can be split so that other processors wi l l not
go idle while this task is executed. In the extreme, Update requests
can be split into single new antecedent environments.

Performing Updates with smaller lists of environments can gen
erate a large amount of avoidable work, however. Consider the
cross product of ({ A } . { B } . { C } . { D }) with (\I)}) If we sim
ply perform the cross product, we get the fist ({1) }) . If we split
the list ({ A } , { B } . {C ' } . { D }) into two parts and perform separate
cross products, however, we get ({,A, D}, { B, D }) from the first
part and ({D)]) from the second. Now, instead of propagating a
single list of length one to the successors of the consequent, a list
of length two and a list of length one are propagated.

We can observe this situation in the BUG trace file. The
largest Update task in the trace arises from a justification
x1.x2,x3,x4,x5 = n. The Update request comes from x i with a
list of 8 new environments. Nodes x2, x3, and x4 all have 8 envi
ronments in their labels, and node x 5 has 1 environment in its label.
The resulting cross product environment list contains 293 environ
ments, If the incoming new environment list of 8 environments is
split into two environment lists of 4 environments each, one result
ing cross product contains 367 environments and the other contains

55. The net effect of splitting this single Update request into two
smaller requests is substantial. The sequential execution time for
BUG increases from around 82.31 seconds to 119.96 seconds, an
increase of 46%. While we could have all processors working on a
single Update synchronize and combine their results before propa
gating them on, the added synchronization combined with the fact
that the pieces of a split Update are not necessarily smaller than
the whole Update combine to make such an action unwise.

Due to the above reasons, our initial efforts to go to a smaller
grain have not resulted in much success. In order to get signifi
cantly more speedup from some ATMS instances, we need to find
a natural task grain which is smaller than that of an Update request.
Unfortunately, no obvious alternative presents itself.

6 Related work
While in this paper we have explored how ATMS parallelism can
be exploited on a shared-memory multiprocessor, a related question
is how it can be exploited on other types of parallel machine archi
tectures. Mike Dixon and Johan de Kleer have proposed [Dixon
and deKleer, 1988] a Massively Parallel Assumption-Based Truth
Maintenance System, which we refer to as the MPATMS. This
MPATMS can utilize thousands of processors, thus potentialy mak
ing possible the extremely fast solution of large ATMS problems.
For example, on the N-Queens problem they achieve speedups
of around 100 running on a 16K processor Connection Machine
[Hil l is, 1985] over a sequential ATMS running on a Symbolics
Lisp Machine.

As Dixon and deKleer discuss in the paper, their MPATMS has
a strong relation to chronological backtracking. Specifically, the
number of processors which execute a specific command in the
MPATMS is exactly equal to the number of times the command is
executed by a sequential backtracker. In other words, the MPATMS
preforms the same amount of work as a sequential chronological
backtracker, though, of course, the work is done in parallel. The
problem, however, is that chronological backgracking is not the
most efficient form of backtracking. More efficient techniques such
as dependency directed backtracking exist. In fact, the ATMS was
designed by deKleer as a means of dealing with the limitations
inherent in backtracking. The ATMS avoids the main source of
inefficiency in backtracking, the rederivation of previously derived
conclusions. As an example of this efficiency, Ken Forbus [Forbus,
1986] has developed a pair of problem solvers in the domain of
qualitative physics. He finds that QPE, his ATMS based problem
solver, is approximately 95 times faster than his backtracking based
GIZMO.

In the above context, while a 100-fold speedup for the N-Queens
problem appears promising, several factors must be considered.
First, the Symbolics LISP machine is a relatively slow machine.
More modem machines offer many times the performance. Second,
the N-Queens problem is one for which the ATMS offers no advan
tage over chronological backtracking. A backtracker wi l l perform
no redundant derivations when solving this problem. On problems
which are less amenable to solution by chronological backtracking,
we would expect substantially less speedup. Thus, it remains to
be seen whether this approach w i l l offer significant speedups for
ATMS problems from a wide range of domains.

Work is also being done by Hiroshi Okuno on a parallel QLISP-
based ATMS lOkuno, 1989].

7 Conclusions
In this paper, we have presented the details of implementing both a
sequential and a parallel ATMS. The results we obtained from ex
ecuting the parallel implementation on an Encore Mult iMax allow
us to draw a number of conclusions.

• The traces we examined seemed to present abundant op
portunities for parallelism. They consisted of thousands

of relatively independent tasks, seemingly capable of being
distributed among a number of processors. However, this
apparent abundance of parallelism proved to be somewhat
elusive to exploit.

• The obvious source of parallelism in the ATMS, the thousands
of justifications, generated grains which varied enormously
in size. In one trace, for example, a single justification ac
counted for 43% of the total runtime, making effective paral
lel distribution of grains impossible. In order to make grain
sizes more uniform, we decreased the grain size by treating
a single justification update as a task. We also introduced
the notion of modal access to the environment database in
order to alleviate the sequentiality constraints imposed by the
global consistency requirements.

• With these modifications, we were able to obtain speedups of
between 4.7 and 8.4 using 14 processors for the three trace
files which we examined. Further speedups were limited by
a number of factors, including still too large a variation in
task grain size, processor contention for numerous mutual-
exclusion locks, and hardware contention issues.

• Although the parallelism is limited, by combining it with a
highly efficient C-based implementation we have created an
ATMS implementation which is significantly faster than cur
rently available LISP-based implementations.

• Finally, despite significant efforts made by us, any attempts at
increasing the available parallelism in the ATMS by reducing
grain size resulted in an explosion in the amount of work
done. This explosion of work is also present in the massively
parallel approach to the ATMS. Consequently, a major new
insight is needed if we are to obtain significant speedup from
parallel processing.

A more detailed version of this paper can be found in [Rothberg
and Gupta, 1989].

Acknowledgments
We would like to thank Johan deKleer and Ken Forbus for pro
viding us with ATMS trace files. We would like to thank Hiroshi
Okuno for his assistance in the initial stages of this research.

References
[deKleer, 1986] deKleer, J., ''An Assumption-Based Truth Main

tenance System", Artificial Intelligence, 28, 1986.

iDixon and deKleer, 1988] Dixon, M. and deKleer, J., "Massively
Parallel Assumption-Based Truth Maintenance", Proceedings
of the National Conference on Artificial Inteligence, 1988.

[Filman, 1988] Filman, R., "Reasoning With Worlds and Truth
Maintenance in a Knowledge Based Programming Environ
ment", Communications of the ACM, 31 , 1988.

[Forbus, 1986] Forbus, K., "The Qualitative Process Engine", Uni
versity of Illinois Technical Report No. UIUCDCS-R-86-
1288, December, 1986.

[Hil l is, 1985] Hil l is, D., The Connection Machine, MIT Press,
Cambridge, Massachusetts, 1985.

[Okuno, 1989] Okuno, H., "Parallel Execution of the ATMS on a
Shared-Memory Multiprocessor", to appear.

[Rothberg and Gupta, 1989] Rothberg, E. and Gupta, A., "Expe
riences Implementing a Parallel ATMS on a Shared-Memory
Multiprocessor", Stanford University Technical Report, May,
1989.

Rothberg and Gupta 205

