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Abstract 
The Assumption-Based Truth Maintenance System 
(ATMS) is an important tool in A I . So far its wider use 
has been l imited due to the enormous computational re
sources which it requires. We investigate the possibility 
of speeding it up by using a modest number of proces
sors in parallel. We begin with a highly efficient sequen
tial version written in C and then extend this version to 
allow parallel execution on the Encore Mult imax, a 16 
node shared-memory multiprocessor. We describe our 
experiences in implementing this shared-memory par
allel version of the ATMS, present detailed results of 
its execution, and discuss the factors which l imit the 
available speedup. 

1 Introduction 
The Assumption-Based Truth Maintenance System (ATMS) is an 
important tool in A I . It makes the task of designing a problem 
solver much easier, removing the need for the problem solver to 
maintain information concerning derivations which it makes. With
out an ATMS, the problem solver must implicit ly record which of 
its assumptions it currently believes to be true and what these as
sumptions imply. When it wishes to change its assumption set, it 
must also recompute the set of items which are implied. With an 
ATMS, the problem solver explores the problem space, informing 
the ATMS of the assumptions it makes, the items which it wishes to 
reason about, and the derivations which it makes concerning these 
items. The ATMS keeps track of which items hold under any given 
assumption set, thus allowing the problem solver to freely change 
the set of assumptions which it currently believes. A number of 
problem solvers have been built which use the ATMS in a num
ber of AI subfields. The ATMS provides a convenient level of 
abstraction, greatly simplifying the structure of the problem solver 
[Filman, 1988]. 

So far wider use of the ATMS has been limited due to the enor
mous computational resources which it requires. The ATMS is 
often the bottleneck in the problem solving process, often having 
greater computational requirements than the problem solver wi th 
which it is collaborating. We investigate the possibility of speeding 
up the ATMS by using a modest number of processors in paral
lel. We begin with a highly efficient C-based implementation of 
the ATMS based on the techniques described in [deKleer, 1986]. 
Through a number of modifications to the basic sequential ATMS, 
we obtain moderate speedup on the three example problem solver 
trace files which we examine. 
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The paper is organized as follows. Section 2 presents back
ground information about the ATMS and introduces related termi
nology. Section 3 presents details of an efficient sequential imple
mentation of the ATMS. Section 4 presents the modifications to the 
sequential implementation which were necessary to allow parallel 
execution. Section 5 presents the results of executing the basic 
parallel implementation. We discuss the bottlenecks encountered 
and introduce a number of modifications to the basic algorithm to 
deal wi th these bottlenecks. Section 6 discusses related work, and 
Section 7 presents the conclusions. 

2 The ATMS 
The ATMS serves as a companion to a problem solver, acting 
as a sort of ''truth database". The problem solver feeds beliefs, 
contradictions, and implications to the ATMS. The ATMS keeps 
track of what is true under what assumption sets and why. In 
this section we illustrate how the ATMS is used and introduce the 
terminology with a brief example. The example problem that we 
solve is the 3-queens problem, the problem of finding placements 
for three queens on a 3 by 3 chessboard such that no queen can 
capture any other. 

Everything which the problem solver reasons about is assigned 
an ATMS node. In the 3-queens example we use 10 nodes, one for 
each of the 9 squares on the chessboard and one goal node to rep
resent the solution. Each chessboard node represents the placement 
of a queen on the corresponding chessboard square. Some subset 
of the ATMS nodes are designated to be assumptions. These are 
nodes which are presumed to be true unless there is evidence to 
the contrary. In the example, the 9 nodes assigned to chessboard 
squares are the assumptions. We assume that a queen can be placed 
at each square of the board. Every important derivation made by 
the problem solver is recorded as a justification: 

where x1. x2 are the antecedent nodes and 7? is the consequent 
node. In the example, the problem solver tells the ATMS that any 
set of three queens placed on the board constitutes a solution. Thus, 
the justifications take the form: 

position 1, posit ion 2,positions => goal-node 

where position, is an assumption which corresponds to a queen 
being on a particular square on the chessboard. An ATMS envi
ronment is a set of assumptions. A node n holds in environment E 
if n can be derived from E using the current set of justifications. 
An environment is inconsistent (called nogood) if the distinguished 
node false holds in it. In the 3-queens example, we declare any set 
of assumptions in which the corresponding board positions contain 
a capturing pair to be nogood. The answer to the 3-queens prob
lem is the set of all consistent environments in which the goal node 
holds. 
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In the ATMS, sets of environments play an important role in 
keeping track of the contexts under which a given node holds. 
They are used extremely frequently, and consequently we need a 
concise representation for a mem. In our representation, we can 
take advantage of the fact that if a node holds under environment 
E, then it also holds under any superset of E. Also, any node 
holds under a nogood environment, so it is never necessary to 
keep track of nogoods in the set. We therefore represent a set 
S of environments by its smallest consistent members, a list of 
environments ( E 1 . E 2 — ) , which we call a minimal environment 
list. This representation has the fol lowing properties: 

• Minimality — No E1 is a subset of any other. 

• Consistency — No E1 is nogood. 

The distinction between sets of environments and sets of assump
tions presents a possible source of confusion. For example, con
sider the environments { A , B) and {A , B, C ) . Clearly { A , B, C} is 
a superset of {A , B } . Yet, the minimal environment list ( { A , B, C} ) 
represents a subset of the minimal environment list ( { A , B } ) ; the 
second contains environments which do not have assumption C in 
them, while the first does not. Please keep this potential source 
of confusion in mind when we discuss environment supersets and 
subsets in the remainder of this paper. 

The problem solving process involves a dialogue between the 
problem solver and the ATMS, in which the ATMS receives a se
quence of requests to create new nodes, new assumptions, new 
justifications, and to provide information on the environments in 
which nodes hold. This information can be easily provided if the 
ATMS maintains with each node n a set of environments, in mini
mal environment list form, called its label. In addition to its mini
mal environment list properties, each node's label has the fol lowing 
two properties: 

• Label soundness — Node n holds in every environment in 
the label set. 

• Label completeness — Every environment E in which n 
holds is a member of the label. 

3 Sequential Implementation 
We now examine how the sequential ATMS is actually imple
mented, with emphasis on those aspects of the implementation 
which are relevant to parallel execution. Since we wi l l be com
puting the speedups of the parallel implementation based on the 
execution time of the sequential implementation, we must make 
sure that sequential version is as efficient as possible. 

3.1 The Trace Files 
We first present the results of executing three problem solver traces 
on our ATMS. These traces were generated by monitoring the in
teraction between an actual problem solver and an ATMS, and 
dumping the observed interaction into a trace file. The traces are: 

• QPE, from a problem solver created by Ken Forbus fForbus, 
1986] which solves Qualitative Physics problems. 

• BUG, a trace which led to a bug in some ATMS implemen
tation. 

• 8-Q, from a problem solver which solves the 8-queens prob
lem. This formulation of the N-Queens problem differs some
what from the one described earlier in this paper. 

Table 1 provides information on the three traces. It also provides 
the runtimes for the three traces, both for the LISP-based ATMS 
implementation of deKleer [deKleer, 1986] and for our C-based 
implementation. We provide these numbers to demonstrate that we 
are basing our parallel program on an efficient sequential imple
mentation. The time quoted for deKleer's ATMS is from execution 
on a Texas Instruments Explorer I lisp machine. The time quoted 

for our implementation is from execution on a single processor of 
an Encore Multimax multiprocessor. The Encore Mult iMax is a 
16 node, shared-memory multiprocessor, with an NS 32032 (0.75 
MIPS) microprocessor at each node. We also include the runtime 
on a more widely available machine, a DEC DecStation 3100, for 
reference purposes. These times include all costs involved in pro
cessing the trace files from beginning to end, including the time 
spent processing the ATMS commands and the time spent reading 
the trace files from disk. 

3.2 Implementation Overview 
The four basic operations which the ATMS makes available to the 
problem solver are: 

• Create-Node n — create a new node. 

• Create-As sumption // — create a new assumption. 

• Justify-Node n by x 1 . x 2 . . — add a new justification. 

• Node-Query n — request the current label of node n. 

The problem solver places a sequence of these commands on 
a queue it shares with the ATMS. The ATMS repeatedly removes 
available commands from this queue. Given a command, it per
forms the requested action, restores node label soundness and con
sistency for all nodes in the inference graph, and is then ready to 
perform the next command. 

Of the four commands which the ATMS makes available to the 
problem solver, only Justify-Node consumes significant amounts of 
time. The Create-Node command takes very little time, since at the 
point at which the node is created it does not participate in any jus
tifications. The Create-Assumption command also takes little time 
for the same reason. The Node-Query command is also computa
tionally inexpensive because of the properties of label consistency, 
soundness, completeness, and minimality. In order to process a 
Node-Query command, the ATMS simply returns the current label 
of the appropriate node. 

When a Justify-Node command arrives at the ATMS, the labels 
of the consequent node n and any nodes which depend on node 
n may no longer be complete. Node n may now be derivable 
from a new set of assumptions not currently in node n 's label. Its 
label must be updated, and any changes to node n's label must be 
propagated to the successors of node n. 

A new justification can also cause new nogood environments to 
be discovered, potentially causing the node label of any node in 
the inference graph to become inconsistent. The simplest example 
of this would be a justification whose consequent is the false node. 
In order to restore node consistency, environments which become 
nogood must be removed from all node labels. 

In order to handle propagation of node labels, the ATMS main
tains an Update request stack. Any time a node label is changed. 
Update requests are placed on the request stack, one for each jus
tification which has the modified node as an antecedent. The first 
step in the processing of a new justification is to push an Update 
request onto the request stack. The ATMS continues popping Up
date requests off of the Update stack, processing the requests, and 
potentially pushing more requests onto the stack until the stack is 
empty. This corresponds to a depth first propagation of labels. 
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A single Update request is processed as follows: 

• The set of consistent environments which derive the conse
quent using the new justification and the new label environ
ments is computed. This set is the intersection of the new 
label environments of the one antecedent with the labels of 
the other antecedents of the justification. 

• If the consequent is the false node, then all of these environ
ments are recorded as nogood. 

• Otherwise, the consequent node label is set equal to the union 
of the previous label and the new set of environments. 

• The changes to the consequent label, i.e. the set of environ
ments in the label which were not present in the previous 
label, are propagated to all nodes which depend on the con
sequent. 

3.3 Set Operations on Minimal Environment Lists 
Adding a new justification requires a number of set operations on 
sets of environments, including set union and set intersection. The 
minimal environment list representation allows us to perform these 
operations quickly. Given two environment sets, $ and 1, rep
resented as ( E 1 , E2 ) and (F1. F2 ) respectively, we perform 
set operation on them as follows: 

When we wish to add a new set of environments to the label of 
a node, we must take the set union of the existing label with the 
set of new environments. The set union of S and T, in minimal 
form is the concatenation of the minimal forms of S and 7 , with 
all supersets removed. 

When we wish to compute the effect of a justification on its 
consequent node, we must find the set intersection of all of the 
labels of the antecedent nodes. The set intersection of S and T is 
somewhat more involved than the set union. If all supersets of T, 
are in S and all supersets of F1 are in T , then all environments 
which are supersets of both E1..', and F1, are in S' n T". The set of all 
supersets of both E1, and F1'-, is the set of all supersets of the union of 
E1 and F1 (remember that environments are sets of assumptions). 
For example, the intersection of the supersets of { 1 B) with the 
supersets of { B . C} is the supersets of {A . B . C \ , which is the 
union of {.4. B) with { B. C'} . Thus the intersection of S with T 
is the set of all supersets of the pairwise unions of E1, with E1. 
Thus, in minimal environment hst form, this is the cross product 
of the minimal environment list forms of S and T, again with all 
supersets removed. 

3.4 Data Structures 
The efficiency of the ATMS is highly dependent on the data struc
tures and algorithms used in the implementation. A straightforward 
ATMS implementation can literally take days to solve a problem 
which a more sophisticated implementation solves in a few min
utes. We first present the major data structures used in our ATMS 
implementation. The data structures are simply laid out here with 
brief descriptions; the purpose of each individual field wi l l be made 
clear in later sections. 

The environment data structure has the fol lowing fields: (1) 
Present a bit vector representing the set of assumptions present in 
the environment. (2) Constituents: a list of all assumptions present 
in the environment. (3) Size: the number of assumptions present. 
(4) Contra: a flag indicating whether the environment is consistent. 
(5) Where: a list of all nodes which contain this environment in 
their labels. (6) Orthogonal: a bit vector representing the set of 
assumptions which, if added to the environment, would result in a 
nogood environment. 

The node data structure has the fol lowing fields: (1) Label the 
node's label. (2) Assumption: a pointer to the node's assumption 
fields, if the node is an assumption. (3) Consequences: a list of 
justifications in which the node is an antecedent. 

The assumption data structure has the fol lowing fields, in addi
tion to its node fields: (1) Binary: a bit vector representing the set 
of all binary nogoods this assumption participates in. If bit j is set 
in the Binary field of assumption ?, then the environment { i , j) is 
nogood. (2) Nogoods: a table of all minimal nogood environments 
in which the assumption belongs, indexed by environment size. 

The justification data structure has the fol lowing fields: (1) An-
tecedents: a list of antecedent nodes. (2) Consequent: the conse
quent node. 

3.5 The Environment Database 
Our ATMS maintains three data structures to keep track of envi
ronments encountered during a problem solver run, an environment 
hash table, a Consistent table, and a Minimal Nogood (MNG) table. 
The environment hash table holds all environments encountered so 
far, both consistent and nogood, indexed by a hash function. The 
Consistent table holds all consistent environments, and is indexed 
by environment size (number of assumptions present in the envi
ronment). The MNG table holds all minimal nogoods, the nogoods 
which are not subsumed by any other nogood, and is again indexed 
by environment size. Each environment has a unique physical rep-
resentation in memory. 

We make two modifications to the simple MNG table for ef
ficiency. First, we handle unary and binary nogoods as special 
cases. The assumption data structure has a field entitled Binary 
which keeps track of unary and binary nogoods. If bit j in the 
Binary field of assumption I is set, then the environment {?..j"} 
is nogood. Similarly, if bit ? is set, then {1} is nogood. The 
second modification involves the Nogood field of the assumption 
data structure. Any environment in the MNG table is also kept in 
the Nogoods table of each assumption in the environment. These 
two modifications allow the ATMS to find all minimal nogoods 
containing a given assumption extremely quickly. 

The Consistent and MNG tables form what we call the envi
ronment database. The environment database, together with the 
environment hash table, make the following frequent operations 
extremely fast: 

• When searching for a particular environment, find its unique 
representation. 

• When checking an environment for consistency, find all min
imal nogoods smaller than that environment. 

• When adding a new nogood, find all consistent and nogood 
environments larger than that environment. 

We represent an environment as a bit vector. A one in bit i of 
the vector indicates the presence of assumption 1 in the environ
ment. This representation allows us to do subset testing, the most 
prevalent operation in the ATMS, by simply ANDing the bit vector 
of one environment with the complement of the bit vector of the 
other environment. The bit vector representation also allows fast 
hash function computation. 

3.6 The Cross Product 
When we handle an Update request, we need to compute the cross 
product of a number of minimal environment lists, as was described 
previously. Assume we wish to take the cross product of n min
imal environment lists l1, I2 , /n, with l\ being the incremental 
update. We do this by looping over each Hst, creating m ,, the 
cross product of l1 through /,. We begin with m1 — / 1 , and at each 
iteration we compute mi +1 = m1, x /i+1, where both m, and mi+1 

are in minimal environment list form. We do this by collecting the 
unions of each environment E in m , with each environment F in 
/, + i, again with supersets removed 

We can greatly decrease the amount of time it takes to compute 
mn by using the fol lowing two techniques. First, if some envi
ronment E in m, is subsumed by some environment in the label 
of the consequent of the justification which we are updating, then 

Rothberg and Gupta 201 



clearly every environment in m , + i . . . mn which is generated from 
E w i l l also be subsumed by this environment. Any such E may 
therefore be discarded 

Second, consider taking the cross product of m , with / i+1. If 
some environment E in m, is subsumed by some F in 1 i+1, then 
clearly E w i l l be in m i+1. Since all environments which would 
result from taking the union of E with some environment in / i+1 

are supersets of E and since E is in mi+1, none of the resulting 
environments w i l l be present in mi+1. We can therefore place any 
such E into mi+1, thus avoiding having to take the union of E 
with each environment in m i+1. 

If we compute the cross product, using these two techniques, the 
result is a minimal environment list which represents the change to 
the label of the consequent node n. If the consequent is not the false 
node, we add each environment in our cross product to the label of 
node n. We must now restore minimality in the label by checking 
every environment previously in the label for subsumption against 
every environment just added to the label. We then propagate the 
cross product list, which represents the changes to the label of node 
n, to every justification which has node n as an antecedent. 

If the consequent is the false node, then our cross product list is 
a set of environments which were previously consistent but have 
just become nogood. We add them to the MNG table, and sweep 
through the Consistent and MNG tables looking for subsumed en
vironments. If an environment in the Consistent table is subsumed, 
it is removed from the table and from the labels of all nodes which 
contain it (found in the Where field of the environment). If an 
environment in the MNG table is subsumed, it is removed from 
the table. 

Computing the union of two environments is an extremely fre
quent and potentially extremely costly operation in the ATMS. The 
method of union computation which we use is an assumption by 
assumption method. That is, given two environments E\ and E2, 
we compute the union by successively adding the assumptions in 
£2 into E, computing an intermediate environment at every step. 
The result of a union is either a consistent environment £ 3 , which 
is the union of E\ with £2, or nogood', indicating that the union 
of E1 with E2 is nogood. While this seems like a somewhat cum
bersome way of computing the union, if we look at the amount of 
work done per union we see that in practice it is extremely effec
tive. In QPE, BUG, and 8-Q, the average number of assumptions 
which must be added to E1 before the union is known are 1.05, 
1.04, and 1.00, respectively. 

While the exact details of the union computation are crucial to 
the efficiency of a sequential implementation, they are not essential 
to understanding the parallel modifications which follow. Briefly, 
the Orthogonal field of the environment and the Binary field of the 
assumption (see Section 3.4) allow the ATMS to quickly determine 
when adding an assumption to a particular environment w i l l result 
in a nogood. If these quick tests fa i l , then the environment must 
be checked for its existence in the hash table, and if it doesn't exist 
it must be checked for consistency with the minimal nogoods. 

This concludes our discussion of an efficient sequential imple
mentation of the ATMS. As was discussed in section 3.1, our im
plementation is quite competitive with existing ATMS implemen
tations. We use the sequential implementation which we have de
scribed as the basis of comparison for the parallel implementations 
which we describe in the remainder of this paper. 

4 Modifications for Parallel Implementation 

We now discuss the modifications which are necessary to allow 
the preceding algorithm to be executed in parallel on a modest 
number of processors. Our goal is to exploit as much parallelism 
as possible, but we can not afford to introduce a large amount of 
redundant work in doing so. 

4.1 Division of Work 
The overall structure of our parallel ATMS is quite similar to the 
structure of the sequential ATMS. The ATMS and the problem 
solver run concurrently, sharing commands and data through a 
shared command queue. In order to allow a greater amount of par
allelism, we no longer require that node labels be made sound and 
complete at the completion of each command. This requirement 
would necessitate the synchronization of all processors after each 
command, an operation which would greatly constrain our ability 
to distribute work among the processors. We now only require that 
labels be made sound and complete before a Node-Query command 
is answered. Thus, Node-Query commands are now somewhat ex
pensive, since they require a global synchronization. Create-Node 
and Assume-Node messages again require very little work to be 
done, and are dealt wi th quickly. Justify-Node again require by far 
the most computation time, and thus afford the most opportunity 
to distribute work. 

In order to decrease contention for tasks, each processor has its 
own Update request stack. When a processor completes a task, it 
first looks for a new task in it 's own Update request stack. If it is 
empty, then the processor checks the global command queue. If the 
next command on the command queue is a Node-Query (or if the 
command queue is empty) the processor becomes idle. When all 
processors are idle, one processor processes and removes the Node-
Query command, thus unblocking the problem solver and allowing 
the problem solving process to proceed. We call this Program PL 
We later provide variations of this basic algorithm. 

4.2 Locks 
In our shared memory implementation, all the processors access 
the same data structures. We therefore need a number of mutual-
exclusion locks to control simultaneous access to shared data. We 
begin by using straightforward locking techniques, and later modify 
our approach based on the observed bottlenecks. 

Our ATMS implementation has a number of local structures, 
where access and modifications to these structures has little or 
no effect on other structures. These include the environment hash 
table buckets, the environments, and the ATMS nodes. We provide 
a lock for each one of these structures to enforce the following 
conditions: For hash table buckets, no two processors may access 
the same bucket at the same time. For environments, we enforce 
the conditions that no nogood environment may be added to a 
node's label and when an environment becomes nogood, it must 
be removed from the label of every node which contains it, and 
that only a single processor may change an environment from good 
to nogood. For nodes, we enforce the condition that no node label 
may be accessed by more than one processor at the same time. In 
order to decrease contention when processing justification updates, 
we copy the node label and work with the copy. Since a typical 
ATMS application has thousands of each of these structures and 
for now we are using at most 16 processors, contention for these 
locks is usually not a problem. 

In contrast to the relatively local structures which we have just 
discussed, the environment database is a very global structure. A 
single change could conceivably affect every environment in the 
environment database. We must be able to check a new environ
ment for consistency against all nogoods encountered so far. We 
must also allow a new nogood to be added and all existing environ
ments to be checked for consistency against this new nogood. Since 
the ATMS spends much of its time creating new environments and 
checking them for consistency, we cannot tolerate a high latency 
on consistency checking. At the same time, however, most new 
environments which are encountered are nogood, so to avoid su
perfluous work we want a new nogood to be recorded as soon as 
possible. We initially used a single global lock to control access 
to both the Consistent and M N G tables. Since the ATMS spends 
a substantial percentage of its time within this lock (3-15% for 
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the three traces), this global locking approach appears somewhat 
suspect. 

5 Results 
We now present the results of executing the three problem solver 
traces on our parallel ATMS. Note that because Node-Query in
formation was not required when the traces were originally gener
ated, these traces do not record this command The absence of this 
command does not affect the performance of the sequential ATMS 
significantly, since Node-Query commands take so little time to ex
ecute. In our parallel ATMS, however, the lack of these commands 
obviates the need for global synchronization. Thus, the results we 
present here are optimistic, as the synchronization is done only at 
the completion of the entire trace. In applications where Node-
Query commands are frequent, one would expect less available 
parallelism. 

The ATMS traces we examine seem to present abundant oppor
tunities for parallelism. Their inference graphs are extremely large, 
with thousands of justifications capable of being distributed among 
the processors (see Table 1). Though the only l imiting factor would 
appear to be the global lock on the Consistent and MNG tables, we 
observed speedups of only 3.9, 1.6, and 6.5 for QPE, BUG, and 
8-Q, respectively, when Program 1 was executed on 14 processors. 
These were greatly below what one would expect, even given the 
global lock. The sequential ATMS spends 3%, 15%, and 6% of 
its time within the lock for the three traces. If this were the only 
parallelism limitation, we would expect speedups of 7 or more. 
Clearly, parallelism is being limited in some other way. 

The most serious bottleneck appears to be processor idle time. 
When executed on 14 processors, the processors spend 54%, 72%, 
and 5% of the total runtime, for QPE, BUG, and 8-Q, respectively, 
without a task to execute. We have a number of tasks of varying 
size to execute, and we wish to divide them among a number of 
processors so that each processor takes approximately the same 
amount of time to complete them. This near equal division of 
tasks is usually possible given a large number of tasks to distribute; 
the large number of tasks serve to smooth out the variations in 
grain size. However, two factors make this untrue in Program P I . 
First, the variation in grain size is enormous. In the BUG trace, 
for example, the processing of a single justification accounts for 
43% of the run-time of the trace (see Table 2). Second, as the 
trace progresses the size and complexity of the inference graph 
increases, thus making the amount of work involved in processing 
a justification increase. The combination of some extremely large 
grains with the tendency for the large grains to be towards the end 
of the trace combine to make it extremely likely that one processor 
w i l l be stuck with a large grain while the other processors have 
nothing to work on. 

In order to alleviate the grain size problem, we decrease the 
task size. Instead of each problem solver issued command being a 
single task, we now consider each Update request to be a task. In 
Program P I , once the command queue becomes empty the proces
sor simply quits. Now, in Program P2, an idle processor attempts 
to steal an Update request from the Update stacks of the other 
processors. In this way, work can be distributed among the proces
sors even after the command queue has been emptied. Comparing 

columns in Table 2 we see that by decreasing the task size we have 
greatly increased the number of tasks and greatly reduced both the 
average and maximum task size. The net result of our modifica
tion (Figure 1) is that the speedup is greatly increased from that of 
Program P I , but it is still far from ideal. 

Another serious bottleneck in our parallel implementation is the 
environment database lock. In order to increase concurrency in 
the environment database, we introduce another variation on our 
basic algorithm. In Programs PI and P2, only a single processor 
may access the database at one time. Our modification, which we 
call Modal access, allows a number of processors to access the 
table concurrently, while still maintaining the stringent consistency 
requirements of the environment database. 

The problem in allowing concurrent access to the database 
comes from the potential simultaneous additions of a consistent 
environment and a nogood environment. In order to add the con
sistent environment to the database, we must know that it is not 
subsumed by any environment in the MNG table. To add the no-
good to the database, we must remove all environments which are 
subsumed by it from the Consistent table. These requirements seem 
to place serious sequentiality constraints on modifications to the en
vironment database. In order to avoid these constraints, we add a 
mode of access indicator. The three access modes are Free mode, 
in which no processor is currently accessing the database; Consis
tent mode, in which only consistent environments may be added to 
the database; and NG mode, in which only nogood environments 
may be added to the database. If a processor wishes to add a new 
consistent or nogood environment and finds the database in the 
wrong mode, it must wait until the conflicting access is complete. 

We can modify the above slightly to increase concurrency. When 
new nogood environments are generated, they usually come in 
groups of more than one. We can therefore distribute the work 
of adding a list of new nogoods among a number of processors. 
New nogoods waiting to be added are placed on a global list. Now 
when a processors wishes to add a consistent environment and 
finds the database in NG mode, instead of waiting for the mode to 
change, the processor pulls new nogood environments off of the 
global list and processes them. 

Figures 3 and 4 show the percentage of time each processor 
spends doing useful work as compared to the percentage spent 
waiting on locks and the percentage spent idle for two of the three 
traces executed with Program P3. The numbers for the third trace 
are between those of the two presented. The speedups obtained 
from Program P3 (Figure 2) are still far from ideal. While con
tention for the environment database is greatly reduced, it is still 
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substantial. We also still have a substantial speedup reduction due 
to processor idle time. 

Note that the speedup obtained is not equal the product of the 
processor utilization and the number of processors used. This is 
due to several factors. First, our speedup numbers are obtained 
by dividing the parallel execution time by the execution time of 
the best sequential implementation. There are a number of over
heads involved in the parallel implementation, such as environment 
list copying and redundant checks, which can reduce the speedup 
when compared to a sequential implementation without these over
heads. Second, the parallel ATMS does not necessarily do the same 
amount of work that the sequential ATMS does. For example, the 
parallel ATMS can process the justifications in a different order 
than the sequential ATMS. While the answer we arrive at is the 
same, the amount of propagation necessary to get to this answer 
may differ. Third, there a number of hardware contention issues, 
including bus bandwidth and cache interactions, which can preclude 
linear speedups. We noticed a substantial degradation in speedup 
(as much as 30%) which could not be attributed to software issues 
and must therefore be caused by hardware contention. These issues 
are not reflected in the utilization graphs which we present. 

We have yet to examine one possible cause of reduced speedup 
in the parallel implementation, redundant work. In the ATMS, it 
is difficult to establish a measure of how much "work" is being 
done. There are a number of routines which are called often and 
take large amounts of time, yet none dominates the others. One 
routine, subset testing, accounts for more of the runtime of the se-
quential ATMS than any other routine, and appears in many diverse 
places in the computation. It therefore appears to be a reasonably 
accurate measure of work. According to our subset measure of 
work, we observed that the parallel ATMS does between 90% and 
106% of the work of the sequential ATMS for 14 or fewer pro
cessors. Though the subset test numbers show interesting trends 
as the number of processors grows larger, the differences for less 
than 14 processors are not significant. 

5.1 Going to a Still Finer Grain 
Variation in grain size is still a problem in our implementation. Fur
thermore, the problem would be much more severe if Node-Query 
commands were more frequent. One possible way to further de
crease the grain size would be to split Update requests into smaller 
pieces. In Program P3, an Update request contains a list of new 
environments which have been added to the label of an antecedent. 
In order to decrease the size of a single grain, we could split this 
list into many smaller lists. We could use a heuristic to determine 
approximating how long an Update task w i l l take. Depending on 
the estimate, the list can be split so that other processors wi l l not 
go idle while this task is executed. In the extreme, Update requests 
can be split into single new antecedent environments. 

Performing Updates with smaller lists of environments can gen
erate a large amount of avoidable work, however. Consider the 
cross product of ( { A } . { B } . { C } . { D } ) with (\I)}) If we sim
ply perform the cross product, we get the fist ( {1 ) } ) . If we split 
the list ( { A } , { B } . {C ' } . { D } ) into two parts and perform separate 
cross products, however, we get ({,A, D}, { B, D }) from the first 
part and ({D)]) from the second. Now, instead of propagating a 
single list of length one to the successors of the consequent, a list 
of length two and a list of length one are propagated. 

We can observe this situation in the BUG trace file. The 
largest Update task in the trace arises from a justification 
x1.x2,x3,x4,x5 = n. The Update request comes from x i with a 
list of 8 new environments. Nodes x2, x3, and x4 all have 8 envi
ronments in their labels, and node x 5 has 1 environment in its label. 
The resulting cross product environment list contains 293 environ
ments, If the incoming new environment list of 8 environments is 
split into two environment lists of 4 environments each, one result
ing cross product contains 367 environments and the other contains 



55. The net effect of splitting this single Update request into two 
smaller requests is substantial. The sequential execution time for 
BUG increases from around 82.31 seconds to 119.96 seconds, an 
increase of 46%. While we could have all processors working on a 
single Update synchronize and combine their results before propa
gating them on, the added synchronization combined with the fact 
that the pieces of a split Update are not necessarily smaller than 
the whole Update combine to make such an action unwise. 

Due to the above reasons, our initial efforts to go to a smaller 
grain have not resulted in much success. In order to get signifi
cantly more speedup from some ATMS instances, we need to find 
a natural task grain which is smaller than that of an Update request. 
Unfortunately, no obvious alternative presents itself. 

6 Related work 
While in this paper we have explored how ATMS parallelism can 
be exploited on a shared-memory multiprocessor, a related question 
is how it can be exploited on other types of parallel machine archi
tectures. Mike Dixon and Johan de Kleer have proposed [Dixon 
and deKleer, 1988] a Massively Parallel Assumption-Based Truth 
Maintenance System, which we refer to as the MPATMS. This 
MPATMS can utilize thousands of processors, thus potentialy mak
ing possible the extremely fast solution of large ATMS problems. 
For example, on the N-Queens problem they achieve speedups 
of around 100 running on a 16K processor Connection Machine 
[Hil l is, 1985] over a sequential ATMS running on a Symbolics 
Lisp Machine. 

As Dixon and deKleer discuss in the paper, their MPATMS has 
a strong relation to chronological backtracking. Specifically, the 
number of processors which execute a specific command in the 
MPATMS is exactly equal to the number of times the command is 
executed by a sequential backtracker. In other words, the MPATMS 
preforms the same amount of work as a sequential chronological 
backtracker, though, of course, the work is done in parallel. The 
problem, however, is that chronological backgracking is not the 
most efficient form of backtracking. More efficient techniques such 
as dependency directed backtracking exist. In fact, the ATMS was 
designed by deKleer as a means of dealing with the limitations 
inherent in backtracking. The ATMS avoids the main source of 
inefficiency in backtracking, the rederivation of previously derived 
conclusions. As an example of this efficiency, Ken Forbus [Forbus, 
1986] has developed a pair of problem solvers in the domain of 
qualitative physics. He finds that QPE, his ATMS based problem 
solver, is approximately 95 times faster than his backtracking based 
GIZMO. 

In the above context, while a 100-fold speedup for the N-Queens 
problem appears promising, several factors must be considered. 
First, the Symbolics LISP machine is a relatively slow machine. 
More modem machines offer many times the performance. Second, 
the N-Queens problem is one for which the ATMS offers no advan
tage over chronological backtracking. A backtracker wi l l perform 
no redundant derivations when solving this problem. On problems 
which are less amenable to solution by chronological backtracking, 
we would expect substantially less speedup. Thus, it remains to 
be seen whether this approach w i l l offer significant speedups for 
ATMS problems from a wide range of domains. 

Work is also being done by Hiroshi Okuno on a parallel QLISP-
based ATMS lOkuno, 1989]. 

7 Conclusions 
In this paper, we have presented the details of implementing both a 
sequential and a parallel ATMS. The results we obtained from ex
ecuting the parallel implementation on an Encore Mult iMax allow 
us to draw a number of conclusions. 

• The traces we examined seemed to present abundant op
portunities for parallelism. They consisted of thousands 

of relatively independent tasks, seemingly capable of being 
distributed among a number of processors. However, this 
apparent abundance of parallelism proved to be somewhat 
elusive to exploit. 

• The obvious source of parallelism in the ATMS, the thousands 
of justifications, generated grains which varied enormously 
in size. In one trace, for example, a single justification ac
counted for 43% of the total runtime, making effective paral
lel distribution of grains impossible. In order to make grain 
sizes more uniform, we decreased the grain size by treating 
a single justification update as a task. We also introduced 
the notion of modal access to the environment database in 
order to alleviate the sequentiality constraints imposed by the 
global consistency requirements. 

• With these modifications, we were able to obtain speedups of 
between 4.7 and 8.4 using 14 processors for the three trace 
files which we examined. Further speedups were limited by 
a number of factors, including still too large a variation in 
task grain size, processor contention for numerous mutual-
exclusion locks, and hardware contention issues. 

• Although the parallelism is limited, by combining it with a 
highly efficient C-based implementation we have created an 
ATMS implementation which is significantly faster than cur
rently available LISP-based implementations. 

• Finally, despite significant efforts made by us, any attempts at 
increasing the available parallelism in the ATMS by reducing 
grain size resulted in an explosion in the amount of work 
done. This explosion of work is also present in the massively 
parallel approach to the ATMS. Consequently, a major new 
insight is needed if we are to obtain significant speedup from 
parallel processing. 

A more detailed version of this paper can be found in [Rothberg 
and Gupta, 1989]. 
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