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Abstract 
Analysis of failed problem solving efforts enables 

people to guide subsequent problem solving to avoid 
similar failures. This kind of learning while doing is 
essential in complex domains. We define Explanation-
based Learning from Failure (ELF), a technique for 
achieving such a capability, and describe its prototype 
implementation in Failsafe, a Prolog program that 
learns from failure while solving floor planning 
problems. 

1 I n t r o d u c t i o n 
Explanation Based Generalization (EBG) [Mitchell et 

al 86] has been proposed as a method whereby 
problem-solvers can speed up with practice by learning 
from positive examples of problem-solving 
behavior [Prieditis & Mostow 87]. However, complex 
domains like design may require an unreasonable 
amount of brute-force search to find positive examples 
from which to learn. [Mostow 85] suggests that in 
such domains the problem solver must do intelligent 
adaptive search to converge to a solution quickly. 
One way to do adaptive search is to find the 
properties that make a generated solution unacceptable 
and, in future, avoid proposing solutions with these 
properties. We call such unacceptable solutions 
failures. In this paper, we propose that a system can 
use EBG to explain its failures in order to get 
sufficient conditions for them. These sufficient 
conditions, when negated, give necessary conditions for 
success which, in turn, can be used as negative 
heuristics to prune the search. 

As a test bed for exploring the approach, we have 
chosen a simplified floor planning task developed by 
Prof. Chris Tong for an intermediate AI course. In 
this domain, a problem consists of fitting rectangular 
rooms into a rectangular area called 'house' of given 
integer length and width, subject to the following 
constraints: 
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• Room length and width must be integers in 
the ranges given in the problem. 

• Rooms must not overlap. 

• Rooms must be inside the house. 

• The rooms must cover the entire house 
area. 

• Every room must touch at least one side of 
the house. 

• In addition, a problem may require that a 
given room be adjacent to another along a 
specified direction, or to a specified side of 
the house. 

This paper describes Failsafe, a prototype floor 
planner implemented in Prolog. Failsafe uses 
Explanation-based Learning from Failures (ELF) to 
learn new operator preconditions. 

I I Desc r i p t i on o f t h e Techn ique 
We now use an example to introduce ELF. We 

shall assume that the reader is familiar with the EBG 
learning paradigm described in [Mitchell et al 86]. 

Consider a generate-and-test (G&T) problem solver 
that generates floor plans using the operator 
'Locate(R,X,Y,Sx,Sy)' to place room 'R' with width 
'Sx', length 'Sy', and front left corner at (X,Y), where 
the front left corner of the house is at (0,0). An N 
room floor plan is generated by N applications of this 
operator. This plan is then passed to the tester 
module, which tests if all constraints of the problem 
are satisfied. Initially, operator 'Locate' has no 
knowledge about which placements of rooms would 
generate 'obviously wrong' floor plans and should be 
avoided. It has the following STRIPS-style definition: 

Operator: Locate(R,X,Y,Sx,Sy) 

Preconditions: room(R) A is__in__house(X,Y) 
A valid__width(Sx) A valid__length(Sy) 

Add List: located(R,X,Y,Sx,Sy) 
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The preconditions check that the object to be placed 
is a room, that the width and length are in the legal 
ranges, and that the room's front left corner will fall 
in the house area. 

Suppose the floor planner defined above is given the 
following trivial floor planning problem: fit two rooms, 
r l ' and 'r2', of length 1 and width either 1 or 2, in a 
house of length 1 and width 3. A solution to this 
problem is shown in Figure II-1. However, starting 
from the lower left corner of the house and giving the 
smallest allowed size to the rooms, the floor planner 
first generates the plan shown in Figure II-2. Here S0 
is the initial state, S2 is the final failure state, and 
the failure path contains two applications of operator 
'Locate.' 

Figure I I - 2: An Unacceptable Solution 

One reason this plan fails is that it has overlapping 
rooms. The simple G&T floor planner will, at this 
stage, chronologically backtrack to the point where it 
made its last choice, say the size of room *r2', and 
select the next possible value, namely 2x1. This 
behavior is doubly stupid, first because the floor 
planner places the rooms in overlapping positions, and 
second because in changing the size of 'r2', it tries to 
repair the faulty plan at a place away from the fault. 

Suppose the floor planner has the domain knowledge 
shown in Figure II-3. Here "failure" is a global 
assertion which the learning module tries to prove 
whenever the tester fails a generated solution. 
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Notice that the condition being regressed back may 
pass unchanged through one or more operator 
applications, i.e., Regress(Gi, Oirrelevent. In 
learning from this failure, we can simply filter out 
such operators from the operator sequence, since they 
have no effect on the sufficient condition for failure. 
An interesting case occurs when all but one of the 
operators are thrown out. In this case we discover a 
new precondition of the single operator left in the 
sequence after throwing irrelevant operators out. 

In our example, the regression process yields: 

This condition describes a situation in which a room 
'R2' to be placed with width 'Sx2,' length 'Sy2,' and 
lower-left corner at location (X2,Y2) would overlap 
with an already located room 'R1' G2 can be 
treated as a negative heuristic: when placing 'r2' the 
planner should make sure that G2 not hold. Since 
G2 has no problem-specific constant, we add - G 2 to 
the preconditions for the operator 'Locate', as shown 
below. The resulting conjunction could be simplified, 
but Failsafe does not do so. 

(4) Resume the search: Select a new instantiation 
O J+1 of Oj+1 for which G i fails to hold, and continue 
the search until the goal state is reached or another 
failure is detected. If no such instantiation exists and 
no other operator is applicable, regress G i further up 
until it undergoes another change at operator Om, 
m < j + l , and repeat. If, backtracking in this fashion, 
the search reaches state S0, and no instantiation of O1 

is applicable, and no other untried operator applies at 
S0, then the problem does not have a solution. 

In our example the problem solver will now try 
alternate sizes and locations for room 'r2' that do not 
overlap the room 'rl' 
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I l l D e s c r i p t i o n o f t he A r c h i t e c t u r e 
In designing Failsafe, we chose a very simple 

generate and test architecture, because it provides 
failures in abundance and is easy to implement. 

Failsafe's solution generator initially uses 
exhaustive search to place the rooms, starting from 
the front left corner of the house space and going left 
to right and front to back. After every application of 
the operator 'Locate(R,X,Y,Sx,Sy),' the generator adds 
the new fact 'located(R,X,Y,Sx,y)' to the problem 
state. When all rooms are located, the solution is 
passed to the tester. 

The tester checks if the generated floor plan meets 
all the problem constraints. If not, it rejects the 
solution. 

The learning module uses ELF to learn new 
preconditions for the operator 'Locate'. It has a 
knowledge base of theorems about floor planning, some 
of which are shown in Figure II-3. Whenever the 
tester rejects a floor plan, Failsafe uses these theorems 
to try to prove the goal "failure" in the context of 
the failed plan. Failsafe explains and generalizes the 
failure using a Prolog implementation of 
EBG [Kedar-Cabelli & McCarty 87]. 

TV Resu l t s o f t h e I m p l e m e n t a t i o n 
We now present the results of experiments carried 

out to measure Faiisafe's performance, the effect of 
increasing problem complexity, and transfer of learning 
from one problem to another. 

A Performance on Three Problems 
To test the effectiveness of ELF, we ran Failsafe on 

three example problems of increasing complexity, 
shown in Figure IV-1. 
We measured Failsafe's performance by counting the 
number of PROLOG subgoals generated while solving 
each problem. We ran Failsafe on these problems 
with learning switched off, while learning, and after 
learning. Table IV-1 shows the results. 

Improvement in performance is apparent for each of 
the three problems. Even for small problems the 
learning overhead is outweighed by improvement in 
performance, thanks in large part to the inefficiency of 
Failsafe's initial G&T problem solver. Performance 
after learning is, as expected, better than during 
learning, although the difference is not as dramatic as 
in systems that learn from positive examples. For 
instance, Soar [Laird et al 86) learns a chunk for an 
entire problem, which enables it to solve the same 
problem in a single step the next time around. 

B Between-problem Transfer 
Table IV-2 shows the between-problem transfer effect 

for each pair of example problems. We measured this 
effect by training Failsafe on the first problem and 
then testing it on the second. 

Solving P2 or P3 teaches Failsafe not to overlap 
rooms and not to cross house boundaries. Transfer is 
therefore ideal from P2 to P3, i.e., P2 trains Failsafe 
for P3 as well as P3 itself would. 
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Since no boundary-crossing happens to occur during 
the normal solution of P1, transfer is negative from 
P2 or P3 to R l : checking for crossed boundaries only 
slows things down. Since accumulating control 
knowledge indiscriminately can degrade performance, it 
may be a good idea to store and test only those 
preconditions that are frequently violated. 

V O p e n Issues 
Currently Failsafe finesses several issues. 

A Safety 
ELF is defined as safe whenever it does not prevent 

the problem-solver from finding a correct solution. 
ELF uses a single failed path to reject an entire 
subtree without searching it exhaustively. While this 
strategy is crucial for efficient adaptive search of large 
spaces, it risks losing the ability to find a solution. 
ELF's safety depends on the problem-solver's operators 
and the nature of the failed constraint. 

A constraint is monotonically necessary if, once 
violated in a partial plan, it will remain violated in all 
extensions of this plan [Mostow 83a]. Such constraints 
are safe to learn as preconditions, since no solutions 
are thereby rendered unreachable; we will call 
violations of them monotonic failures. For example, 
room overlap is a monotonic failure in Failsafe, since 
it cannot be repaired by placing additional rooms. 

If the effects of an operator can be reversed by other 
operators, there can be no monotonic failures, since 
every partial plan can be extended into a (possibly 
non-optimal) plan that leads to the goal state, 
assuming one exists. Failsafe's single operator, 
'Locate,' has no such inverse. 

Even if a condition is not monotonically necessary, it 
can be treated as such provided there are ways to 
solve the problem without violating it. Such a 
condition can be called pseudo-monotonically necessary. 
For example, suppose Failsafe had an operator for 
sliding an already-placed room from one location to 

another. Non-overlap would be pseudo-monotonically 
necessary if every room could be placed without 
sliding. 

Some conditions are not even pseudo-monotonically 
necessary. For instance, the constraint that every 
point in the house be covered by some room can be 
made true by placing additional rooms. Even such 
constraints can safely be learned as operator 
preconditions by restricting the circumstances under 
which they are tested. For example, if the covering 
condition is only applied to complete floor plans, we 
can learn that the last room to be placed must 
include the remaining uncovered points. 

B The Hopeless State Problem 
At an intermediate state in planning, decisions made 

during the placement of earlier rooms can make it 
impossible to satisfy the preconditions of 'Locate' for 
the next room. We call such a state hopeless. An 
example of a hopeless state is shown in Figure V- l . 
Here room 'r2' is required to be adjacent to the left 
and front walls of the house, but room ' r l ' has 
already been placed there, so 'r2' cannot be placed as 
required. 

Figure V - l : A Hopeless State 

Learning to efficiently recognize hopeless states might 
enable Failsafe to handle much larger problems. 
Currently Failsafe recognizes hopeless states only after 
exhaustive search fails to satisfy the preconditions of 
an operator. We plan to extend Failsafe to invoke 
learning at this point; at present learning occurs only 
when a complete floor plan is rejected by the tester. 

C The Non-operational Precondition Problem 
To be operational in the sense defined in [Mostow 

81, Mostow 83b], an operator precondition must refer 
only to information available when the operator is 
selected, such as the operator's parameters and the 
steps used to get to the current state. The non-
operational precondition problem occurs when the 
learned precondition refers to parameters bound by 
operators selected later on. For example, when the 
non-overlap condition is regressed back through the 
sequence 
locate(rl,Xl,Yl,Wl,Ll);locate(r2,X2,Y2,W2,L2), the 
resulting condition refers not only to X I , Y l , Wl and 
LI but also to X2, Y2, W2 and L2. In fact, the 
regressed condition is a precondition for the two-
operator macro, not for the first operator by itself. 

One possible approach is to constrain X I , Y l , W l , 
and Ll to leave at least one acceptable assignment for 
X2, Y2, W2, and L2. However, evaluating this 
condition involves searching for such an assignment, 
and is therefore liable to defeat the purpose of testing 
preconditions - enhancing efficiency. 

D Detecting Failures 
To learn from its failures, a planner must first 

detect them. In general, detection of failures is 
difficult. Failsafe gets around this difficulty because 
in its domain the length of the target plan is fixed 
and known: exactly N applications of the operator 
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'Locate' are required to complete an N room floorplan. 
Failure detection requires other methods when the 
maximum length of the solution path is not known, 
such as noticing cycles [Langley 83, Minton & 
Carbonell 87]. 

E Which Necessary Conditions to Test 
Explanation-based learning becomes counter-

productive when so many macro operators are learned 
that testing their preconditions costs more than 
rediscovering them by search [Minton 85]. ELF is 
potentially subject to the same problem. 

A system like Failsafe could sample how often a 
given condition fails and, before trying an operator, 
test only those which fail more frequently than some 
threshold that reflects the relative costs of precondition 
testing and search. This threshold could be modified 
dynamically depending on the performance of the 
system. 

V I R e l a t e d W o r k 
The usefulness of negative heuristics learned by 

analyzing problem-solving failures has been reported 
previously. [Kibler & Morris 83] reports four negative 
heuristics obtained by manually analyzing "stupid" 
actions taken by a blocks world planner. By guiding 
the planner to avoid such actions, these four heuristics 
reduce search to almost zero. 

CHEF [Hammond 86] uses domain knowledge to 
anticipate the failures that might occur while trying to 
satisfy a goal. When such failures occur, this 
knowledge is used to repair the plan instead of re-
planning from scratch. 

[Siklossy & Dowson 77] describes preprocessing of 
STRIPS operators to discover conditions that cannot 
simultaneously hold in any legal state. Such 
conditions become indicators of failures. For example, 
inspection of the operator definitions reveals that no 
state can satisfy holding(X) and clear(X) for the same 
block X, since operators that assert one delete the 
other. Knowledge gained by preprocessing the 
operators is used to prune planning states that satisfy 
two or more, mutually inconsistent conditions. 

FOO [Mostow 83a] refines a G&T search procedure 
into a heuristic search by using monotonically 
necessary conditions to prune partial paths, and by 
using monotonically sufficient conditions to reorder the 
search. While FOO uses static analysis to refine the 
procedure without ever executing it, Failsafe relies on 
executing the search to identify the conditions that 
actually lead to failure in practice. FOO uses domain 
knowledge to split tests into monotonic components so 
it can move them, while Failsafe lacks the ability to 
reformulate its tests, FOO mechanically applies the 

sequence of program transformations that modifies the 
search procedure, but relies on a user to select the 
sequence. Unlike FOO, Failsafe is completely 
automatic. 

PRODIGY learns search control knowledge from the 
failure of an entire subtree to produce a 
solution [Minton & Carbonell 87]. In contrast, ELF 
learns from a single failed path, though the resulting 
control knowledge is over-general for non-monotonic 
failures, 

ELF's technique for backtracking to the closest node 
where the failure might be repaired resembles the 
dependency directed backtracking method used in the 
EL system [Stallman 77]. However, unlike Failsafe, 
EL does not generalize. 

V I I Conc lus ion 
We have presented an implemented technique for 

learning useful search control knowledge from failures 
that occur during search. Failsafe's performance 
improvement more than compensates for its learning 
overhead, even for small problems, and even when 
learning while doing. 

We have shown how EBG can be used to learn from 
negative examples, not just positive ones. Learning 
from failure while problem-solving makes it 
possible to solve problems too complex to solve 
otherwise. However, learning from success seems to 
create more powerful control knowledge, such as Soar's 
chunks for achieving goals in one step. Future 
research should compare and integrate methods for 
learning from success and failure. 
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