
F a i l s a f e — A F l o o r P l a n n e r t h a t U s e s E B G t o L e a r n

f r o m i t s F a i l u r e s

Jack M o s t o w and Nee ra j B h a t n a g a r *

Rutgers University Computer Science Department
New Brunswick, New Jersey 08903, USA

Abstract
Analysis of failed problem solving efforts enables

people to guide subsequent problem solving to avoid
similar failures. This kind of learning while doing is
essential in complex domains. We define Explanation-
based Learning from Failure (ELF), a technique for
achieving such a capability, and describe its prototype
implementation in Failsafe, a Prolog program that
learns from failure while solving floor planning
problems.

1 I n t r o d u c t i o n
Explanation Based Generalization (EBG) [Mitchell et

al 86] has been proposed as a method whereby
problem-solvers can speed up with practice by learning
from positive examples of problem-solving
behavior [Prieditis & Mostow 87]. However, complex
domains like design may require an unreasonable
amount of brute-force search to find positive examples
from which to learn. [Mostow 85] suggests that in
such domains the problem solver must do intelligent
adaptive search to converge to a solution quickly.
One way to do adaptive search is to find the
properties that make a generated solution unacceptable
and, in future, avoid proposing solutions with these
properties. We call such unacceptable solutions
failures. In this paper, we propose that a system can
use EBG to explain its failures in order to get
sufficient conditions for them. These sufficient
conditions, when negated, give necessary conditions for
success which, in turn, can be used as negative
heuristics to prune the search.

As a test bed for exploring the approach, we have
chosen a simplified floor planning task developed by
Prof. Chris Tong for an intermediate AI course. In
this domain, a problem consists of fitting rectangular
rooms into a rectangular area called 'house' of given
integer length and width, subject to the following
constraints:

This work is supported by NSF under Grant Number
DMC-8610507, by the Rutgers Center for Computer Aids to
Industrial Productivity, and by DARPA under Contract Number
N00014-85-K-0116.

• Room length and width must be integers in
the ranges given in the problem.

• Rooms must not overlap.

• Rooms must be inside the house.

• The rooms must cover the entire house
area.

• Every room must touch at least one side of
the house.

• In addition, a problem may require that a
given room be adjacent to another along a
specified direction, or to a specified side of
the house.

This paper describes Failsafe, a prototype floor
planner implemented in Prolog. Failsafe uses
Explanation-based Learning from Failures (ELF) to
learn new operator preconditions.

I I Desc r i p t i on o f t h e Techn ique
We now use an example to introduce ELF. We

shall assume that the reader is familiar with the EBG
learning paradigm described in [Mitchell et al 86].

Consider a generate-and-test (G&T) problem solver
that generates floor plans using the operator
'Locate(R,X,Y,Sx,Sy)' to place room 'R' with width
'Sx', length 'Sy', and front left corner at (X,Y), where
the front left corner of the house is at (0,0). An N
room floor plan is generated by N applications of this
operator. This plan is then passed to the tester
module, which tests if all constraints of the problem
are satisfied. Initially, operator 'Locate' has no
knowledge about which placements of rooms would
generate 'obviously wrong' floor plans and should be
avoided. It has the following STRIPS-style definition:

Operator: Locate(R,X,Y,Sx,Sy)

Preconditions: room(R) A is__in__house(X,Y)
A valid__width(Sx) A valid__length(Sy)

Add List: located(R,X,Y,Sx,Sy)

Mostow and Bhatnagar 249

The preconditions check that the object to be placed
is a room, that the width and length are in the legal
ranges, and that the room's front left corner will fall
in the house area.

Suppose the floor planner defined above is given the
following trivial floor planning problem: fit two rooms,
r l ' and 'r2', of length 1 and width either 1 or 2, in a
house of length 1 and width 3. A solution to this
problem is shown in Figure II-1. However, starting
from the lower left corner of the house and giving the
smallest allowed size to the rooms, the floor planner
first generates the plan shown in Figure II-2. Here S0
is the initial state, S2 is the final failure state, and
the failure path contains two applications of operator
'Locate.'

Figure I I - 2: An Unacceptable Solution

One reason this plan fails is that it has overlapping
rooms. The simple G&T floor planner will, at this
stage, chronologically backtrack to the point where it
made its last choice, say the size of room *r2', and
select the next possible value, namely 2x1. This
behavior is doubly stupid, first because the floor
planner places the rooms in overlapping positions, and
second because in changing the size of 'r2', it tries to
repair the faulty plan at a place away from the fault.

Suppose the floor planner has the domain knowledge
shown in Figure II-3. Here "failure" is a global
assertion which the learning module tries to prove
whenever the tester fails a generated solution.

250 KNOWLEDGE ACQUISITION

Notice that the condition being regressed back may
pass unchanged through one or more operator
applications, i.e., Regress(Gi, Oirrelevent. In
learning from this failure, we can simply filter out
such operators from the operator sequence, since they
have no effect on the sufficient condition for failure.
An interesting case occurs when all but one of the
operators are thrown out. In this case we discover a
new precondition of the single operator left in the
sequence after throwing irrelevant operators out.

In our example, the regression process yields:

This condition describes a situation in which a room
'R2' to be placed with width 'Sx2,' length 'Sy2,' and
lower-left corner at location (X2,Y2) would overlap
with an already located room 'R1' G2 can be
treated as a negative heuristic: when placing 'r2' the
planner should make sure that G2 not hold. Since
G2 has no problem-specific constant, we add - G 2 to
the preconditions for the operator 'Locate', as shown
below. The resulting conjunction could be simplified,
but Failsafe does not do so.

(4) Resume the search: Select a new instantiation
O J+1 of Oj+1 for which G i fails to hold, and continue
the search until the goal state is reached or another
failure is detected. If no such instantiation exists and
no other operator is applicable, regress G i further up
until it undergoes another change at operator Om,
m < j + l , and repeat. If, backtracking in this fashion,
the search reaches state S0, and no instantiation of O1

is applicable, and no other untried operator applies at
S0, then the problem does not have a solution.

In our example the problem solver will now try
alternate sizes and locations for room 'r2' that do not
overlap the room 'rl'

Mostow and Bhatnagar 251

I l l D e s c r i p t i o n o f t he A r c h i t e c t u r e
In designing Failsafe, we chose a very simple

generate and test architecture, because it provides
failures in abundance and is easy to implement.

Failsafe's solution generator initially uses
exhaustive search to place the rooms, starting from
the front left corner of the house space and going left
to right and front to back. After every application of
the operator 'Locate(R,X,Y,Sx,Sy),' the generator adds
the new fact 'located(R,X,Y,Sx,y)' to the problem
state. When all rooms are located, the solution is
passed to the tester.

The tester checks if the generated floor plan meets
all the problem constraints. If not, it rejects the
solution.

The learning module uses ELF to learn new
preconditions for the operator 'Locate'. It has a
knowledge base of theorems about floor planning, some
of which are shown in Figure II-3. Whenever the
tester rejects a floor plan, Failsafe uses these theorems
to try to prove the goal "failure" in the context of
the failed plan. Failsafe explains and generalizes the
failure using a Prolog implementation of
EBG [Kedar-Cabelli & McCarty 87].

TV Resu l t s o f t h e I m p l e m e n t a t i o n
We now present the results of experiments carried

out to measure Faiisafe's performance, the effect of
increasing problem complexity, and transfer of learning
from one problem to another.

A Performance on Three Problems
To test the effectiveness of ELF, we ran Failsafe on

three example problems of increasing complexity,
shown in Figure IV-1.
We measured Failsafe's performance by counting the
number of PROLOG subgoals generated while solving
each problem. We ran Failsafe on these problems
with learning switched off, while learning, and after
learning. Table IV-1 shows the results.

Improvement in performance is apparent for each of
the three problems. Even for small problems the
learning overhead is outweighed by improvement in
performance, thanks in large part to the inefficiency of
Failsafe's initial G&T problem solver. Performance
after learning is, as expected, better than during
learning, although the difference is not as dramatic as
in systems that learn from positive examples. For
instance, Soar [Laird et al 86) learns a chunk for an
entire problem, which enables it to solve the same
problem in a single step the next time around.

B Between-problem Transfer
Table IV-2 shows the between-problem transfer effect

for each pair of example problems. We measured this
effect by training Failsafe on the first problem and
then testing it on the second.

Solving P2 or P3 teaches Failsafe not to overlap
rooms and not to cross house boundaries. Transfer is
therefore ideal from P2 to P3, i.e., P2 trains Failsafe
for P3 as well as P3 itself would.

252 KNOWLEDGE ACQUISITION

Since no boundary-crossing happens to occur during
the normal solution of P1, transfer is negative from
P2 or P3 to R l : checking for crossed boundaries only
slows things down. Since accumulating control
knowledge indiscriminately can degrade performance, it
may be a good idea to store and test only those
preconditions that are frequently violated.

V O p e n Issues
Currently Failsafe finesses several issues.

A Safety
ELF is defined as safe whenever it does not prevent

the problem-solver from finding a correct solution.
ELF uses a single failed path to reject an entire
subtree without searching it exhaustively. While this
strategy is crucial for efficient adaptive search of large
spaces, it risks losing the ability to find a solution.
ELF's safety depends on the problem-solver's operators
and the nature of the failed constraint.

A constraint is monotonically necessary if, once
violated in a partial plan, it will remain violated in all
extensions of this plan [Mostow 83a]. Such constraints
are safe to learn as preconditions, since no solutions
are thereby rendered unreachable; we will call
violations of them monotonic failures. For example,
room overlap is a monotonic failure in Failsafe, since
it cannot be repaired by placing additional rooms.

If the effects of an operator can be reversed by other
operators, there can be no monotonic failures, since
every partial plan can be extended into a (possibly
non-optimal) plan that leads to the goal state,
assuming one exists. Failsafe's single operator,
'Locate,' has no such inverse.

Even if a condition is not monotonically necessary, it
can be treated as such provided there are ways to
solve the problem without violating it. Such a
condition can be called pseudo-monotonically necessary.
For example, suppose Failsafe had an operator for
sliding an already-placed room from one location to

another. Non-overlap would be pseudo-monotonically
necessary if every room could be placed without
sliding.

Some conditions are not even pseudo-monotonically
necessary. For instance, the constraint that every
point in the house be covered by some room can be
made true by placing additional rooms. Even such
constraints can safely be learned as operator
preconditions by restricting the circumstances under
which they are tested. For example, if the covering
condition is only applied to complete floor plans, we
can learn that the last room to be placed must
include the remaining uncovered points.

B The Hopeless State Problem
At an intermediate state in planning, decisions made

during the placement of earlier rooms can make it
impossible to satisfy the preconditions of 'Locate' for
the next room. We call such a state hopeless. An
example of a hopeless state is shown in Figure V- l .
Here room 'r2' is required to be adjacent to the left
and front walls of the house, but room ' r l ' has
already been placed there, so 'r2' cannot be placed as
required.

Figure V - l : A Hopeless State

Learning to efficiently recognize hopeless states might
enable Failsafe to handle much larger problems.
Currently Failsafe recognizes hopeless states only after
exhaustive search fails to satisfy the preconditions of
an operator. We plan to extend Failsafe to invoke
learning at this point; at present learning occurs only
when a complete floor plan is rejected by the tester.

C The Non-operational Precondition Problem
To be operational in the sense defined in [Mostow

81, Mostow 83b], an operator precondition must refer
only to information available when the operator is
selected, such as the operator's parameters and the
steps used to get to the current state. The non-
operational precondition problem occurs when the
learned precondition refers to parameters bound by
operators selected later on. For example, when the
non-overlap condition is regressed back through the
sequence
locate(rl,Xl,Yl,Wl,Ll);locate(r2,X2,Y2,W2,L2), the
resulting condition refers not only to X I , Y l , Wl and
LI but also to X2, Y2, W2 and L2. In fact, the
regressed condition is a precondition for the two-
operator macro, not for the first operator by itself.

One possible approach is to constrain X I , Y l , W l ,
and Ll to leave at least one acceptable assignment for
X2, Y2, W2, and L2. However, evaluating this
condition involves searching for such an assignment,
and is therefore liable to defeat the purpose of testing
preconditions - enhancing efficiency.

D Detecting Failures
To learn from its failures, a planner must first

detect them. In general, detection of failures is
difficult. Failsafe gets around this difficulty because
in its domain the length of the target plan is fixed
and known: exactly N applications of the operator

Mostow and Bhatnagar 253

'Locate' are required to complete an N room floorplan.
Failure detection requires other methods when the
maximum length of the solution path is not known,
such as noticing cycles [Langley 83, Minton &
Carbonell 87].

E Which Necessary Conditions to Test
Explanation-based learning becomes counter-

productive when so many macro operators are learned
that testing their preconditions costs more than
rediscovering them by search [Minton 85]. ELF is
potentially subject to the same problem.

A system like Failsafe could sample how often a
given condition fails and, before trying an operator,
test only those which fail more frequently than some
threshold that reflects the relative costs of precondition
testing and search. This threshold could be modified
dynamically depending on the performance of the
system.

V I R e l a t e d W o r k
The usefulness of negative heuristics learned by

analyzing problem-solving failures has been reported
previously. [Kibler & Morris 83] reports four negative
heuristics obtained by manually analyzing "stupid"
actions taken by a blocks world planner. By guiding
the planner to avoid such actions, these four heuristics
reduce search to almost zero.

CHEF [Hammond 86] uses domain knowledge to
anticipate the failures that might occur while trying to
satisfy a goal. When such failures occur, this
knowledge is used to repair the plan instead of re-
planning from scratch.

[Siklossy & Dowson 77] describes preprocessing of
STRIPS operators to discover conditions that cannot
simultaneously hold in any legal state. Such
conditions become indicators of failures. For example,
inspection of the operator definitions reveals that no
state can satisfy holding(X) and clear(X) for the same
block X, since operators that assert one delete the
other. Knowledge gained by preprocessing the
operators is used to prune planning states that satisfy
two or more, mutually inconsistent conditions.

FOO [Mostow 83a] refines a G&T search procedure
into a heuristic search by using monotonically
necessary conditions to prune partial paths, and by
using monotonically sufficient conditions to reorder the
search. While FOO uses static analysis to refine the
procedure without ever executing it, Failsafe relies on
executing the search to identify the conditions that
actually lead to failure in practice. FOO uses domain
knowledge to split tests into monotonic components so
it can move them, while Failsafe lacks the ability to
reformulate its tests, FOO mechanically applies the

sequence of program transformations that modifies the
search procedure, but relies on a user to select the
sequence. Unlike FOO, Failsafe is completely
automatic.

PRODIGY learns search control knowledge from the
failure of an entire subtree to produce a
solution [Minton & Carbonell 87]. In contrast, ELF
learns from a single failed path, though the resulting
control knowledge is over-general for non-monotonic
failures,

ELF's technique for backtracking to the closest node
where the failure might be repaired resembles the
dependency directed backtracking method used in the
EL system [Stallman 77]. However, unlike Failsafe,
EL does not generalize.

V I I Conc lus ion
We have presented an implemented technique for

learning useful search control knowledge from failures
that occur during search. Failsafe's performance
improvement more than compensates for its learning
overhead, even for small problems, and even when
learning while doing.

We have shown how EBG can be used to learn from
negative examples, not just positive ones. Learning
from failure while problem-solving makes it
possible to solve problems too complex to solve
otherwise. However, learning from success seems to
create more powerful control knowledge, such as Soar's
chunks for achieving goals in one step. Future
research should compare and integrate methods for
learning from success and failure.

A c k n o w l e d g m e n t s
We thank Chris Tong and Prasad Tadepalli for their

excellent ideas during various stages of this work,
Smadar Kedar-Cabelli for her Prolog implementation
of EBG, Lou Steinberg for his continuing
encouragement, and Steve Minton and an anonymous
referee for their helpful comments.

254 KNOWLEDGE ACQUISITION

References

[Hammond 86] Kristian J. Hammond.
Learning to anticipate and avoid

planning problems through the
explanation of failures.

In AAAI86, pages 556-560. American
Association for Artificial
Intelligence, Philadelphia, PA, 1986.

[Kedar-Cabelli & McCarty 87]
Kedar-Cabelli, S. T. and McCarty,
L. T.
Explanation-Based Generalization as

Resolution Theorem Proving.
In Proceedings of the Fourth

International Machine Learning
Workshop. Morgan Kaufmann,
University of California at Irvine,
June, 1987.

[Kibler & Morris 83]
Dennis Kibler and Paul Morris.
Don't be Stupid.
In IJCAI83, pages 345-347.

Karlsruhe, Germany, 1983.

[Laird et al 86] J. E. Laird, P. S. Rosenbloom, and
A. Newell.
Chunking in Soar: the anatomy of a

general learning mechanism.
Machine Learning l (l) : l l -46, 1986.

[Langley 83] Pat Langley.
Learning effective search heuristics.
In IJCAI83, pages 419-421.

Karlsruhe, Germany, 1983.

[Minton 85] Steven Minton.
Selectively generalizing plans for

problem-solving.
In Proceedings IJCAI85, pages

596-599. Los Angeles, CA.,
August, 1985.

[Minton & Carbonell 87]
S. Minton and J. G. Carbonell.
Strategies for learning search control

rules: an explanation-based
approach.

In Proceedings JJCAI87. Milan, Italy,
August, 1987.

[Mitchell et al 86]
T. M. Mitchell, R. M. Keller, and
S. T. Kedar-Cabelli.
Explanation-based generalization: a

unifying view.
Machine Learning l(l):47-80, 1986.

[Mostow 81] J. MOStow.
Mechanical Transformation of Task

Heuristics into Operational
Procedures.

PhD thesis, Carnegie-Mellon
University, 1981.

Technical Report CMU-CS-81-113.

[Mostow 83a] D. J. Mostow.
Learning by being told: machine

transformation of advice into a
heuristic search procedure.

In J. G. Carbonell, R. S. Michalski,
and T. M. Mitchell (editors),
Machine Learning. Palo Alto, CA:
Tioga Publishing Company, 1983.

[Mostow 83b] J. Mostow.
A problem-solver for making advice

operational.
In AAAI88, pages 279-283. American

Association for Artificial
Intelligence, Washington, DC,
August, 1983.

[Mostow 85] J. Mostow.
Toward better models of the design

process.
Al Magazine 6(l):44-57, Spring, 1985.

[Prieditis & Mostow 87]
A. Prieditis and J. Mostow.
PROLEARN: Towards A Prolog

Interpreter that Learns.
In Proceedings AAAI87. Seattle, WA,

July, 1987.

[Siklossy & Dowson 77]
L. Siklossy and Clive Dowson.
The role of preprocessing in problem

solving systems.
In IJCAI-5, pages 465-471.

Cambridge, MA, 1977.

[Stallman 77] Stallman, R., and Sussman, G.
Forward reasoning and dependency-

directeti backtracking in a system
for computer-aided circuit analysis.

Artificial Intelligence 9:135-196, 1977.

Mostow and Bhatnagar 255

